Gold Recovery from WPCB Gold Finger Using Water-Soluble Organic Leaching Agent Sodium Dichloroisocyanurate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Determination of Au and Base Metal Content in WPCB Gold Finger Powder
2.3. Leaching of Au from WPCB Gold Finger
2.4. Recovery of Au from PLS via Solvent Extraction
2.5. Experimental Au Leaching Pathway and Leaching Mechanism
3. Results and Discussion
3.1. Gold Leaching from WPCB Gold Finger Using DCCNa
3.1.1. Effect of Initial pH and Leaching Time
3.1.2. Effect of DCCNa Concentration
3.1.3. Effect of Leaching Temperature, Liquid-to-Solid Ratio, and Stirring Speed
3.1.4. Reagent Cost and Reagent Toxicity of DCCNa Leaching and Other Leaching Methods
3.2. Stepwise Extraction of Metals from DCCNa PLS
3.2.1. Extraction of Cu from the PLS
3.2.2. Stripping of Cu from the Organic Phase After Cu Extraction
3.2.3. Extraction of Au from the Raffinate Solution After Cu Extraction
3.3. Au Oxidation State in Leaching Products and Leaching Pathway of DCCNa Solution
4. Conclusions
- Optimal Leaching Conditions: The optimal conditions for the DCCNa aqueous organic leaching system were pH 2, a reaction time of 3 h, a DCCNa concentration of 40 mmol/L, a temperature of 25 °C, a liquid-to-solid ratio of 50:1, and a stirring speed of 800 rpm. Under these conditions, the gold leaching efficiency reached 96.4%, significantly higher than for other metals, demonstrating notable selectivity for gold.
- Gold Leaching Mechanism: Mechanistic studies showed that upon dissolution in water, DCCNa generates the strong oxidant HClO, which reacts with HCl to produce Cl2. HClO and Cl2 then oxidize Au(0) to Au(I) and Au(III), forming [AuCl2]− and [AuCl4]− complexes, with Cl− originating from the hydrolysis of HCl.
- Stepwise Solvent Extraction of Cu and Au: Copper and gold in the DCCNa leachate were recovered through stepwise solvent extraction. The optimal conditions for copper extraction using Acorga M5640 were pH 3.5, an extraction time of 60 min, and an O/A ratio of 1:10. For gold extraction using DBC, the optimal conditions were an extraction time of 60 min and an O/A ratio of 1:10. The stepwise extraction process achieved copper and gold extraction rates of 95.4% and 95.5%, respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFRs | brominated flame retardants |
CFCs | chlorofluorocarbons |
DBC | dibutyl carbitol |
DCCNa | sodium dichloroisocyanurate |
DMF | dimethylformamide |
ESI-MS | electrospray ionization mass spectrometry |
HCFCs | hydrochlorofluorocarbons |
L/S | liquid-to-solid ratio |
NBS | N-bromosuccinimide |
O/A | organic-to-aqueous ratio |
OAR | organic aqua regia |
PCB | printed circuit board |
PLS | pregnant leach solution |
Py | pyridine |
TCCA | trichloroisocyanuric acid |
USD | United States Dollar |
UV-Vis | ultraviolet–visible spectrophotometry |
WPCB | waste printed circuit boards |
XPS | X-ray photoelectron spectroscopy |
References
- Rezaee, M.; Abdollahi, H.; Saneie, R.; Mohammadzadeh, A.; Rezaei, A.; Darvanjooghi, M.H.K.; Brar, S.K.; Magdouli, S. A cleaner approach for high-efficiency regeneration of base and precious metals from waste printed circuit boards through stepwise oxido-acidic and thiocyanate leaching. Chemosphere 2022, 298, 134283. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.; Monteiro, J.; Futuro, A.; Regufe, M.J.; Soeiro, J.; Sousa, R. Recycling PCBs for nanoparticles production with potential applications in cosmetics, cement manufacturing, and CO2 capture. Waste Manag. 2025, 191, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Bao, P.; Liu, A.; Wang, M.; Shen, L.; Yu, R.; Liu, Y.; Chen, M.; Li, J.; Wu, X.; et al. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recycl. 2018, 136, 267–275. [Google Scholar] [CrossRef]
- Batnasan, A.; Haga, K.; Shibayama, A. Recovery of Precious and Base Metals from Waste Printed Circuit Boards Using a Sequential Leaching Procedure. J. Miner. Met. Mater. Soc. 2018, 70, 124–128. [Google Scholar] [CrossRef]
- Ongondo, F.; Williams, I.; Whitlock, G. Distinct Urban Mines: Exploiting secondary resources in unique anthropogenic spaces. Waste Manag. 2015, 45, 4–9. [Google Scholar] [CrossRef]
- Trivedi, A.; Vishwakarma, A.; Saawarn, B.; Mahanty, B.; Hait, S. Fungal biotechnology for urban mining of metals from waste printed circuit boards: A review. J. Environ. Manag. 2022, 323, 116133. [Google Scholar] [CrossRef]
- Lekka, M.; Masavetas, I.; Benedetti, A.; Moutsatsou, A.; Fedrizzi, L. Gold recovery from waste electrical and electronic equipment by electrodeposition: A feasibility study. Hydrometallurgy 2015, 157, 97–106. [Google Scholar] [CrossRef]
- Arab, B.; Hassanpour, F.; Arshadi, M.; Yaghmaei, S.; Hamedi, J. Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste. J. Environ. Manag. 2020, 261, 110124. [Google Scholar] [CrossRef]
- Becci, A.; Amato, A.; Fonti, V.; Karaj, D.; Beolchini, F. An innovative biotechnology for metal recovery from printed circuit boards. Resour. Conserv. Recycl. 2020, 153, 104549. [Google Scholar] [CrossRef]
- Chu, H.; Qian, C.; Tian, B.; Qi, S.; Wang, J.; Xin, B. Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resour. Conserv. Recycl. 2022, 178, 106018. [Google Scholar] [CrossRef]
- Thacker, S.C.; Nayak, N.S.; Tipre, D.R.; Dave, S.R. Multi-Metal Mining from Waste Cell Phone Printed Circuit Boards using Lixiviant Produced by a Consortium of Acidophilic Iron Oxidizers. Environ. Eng. Sci. 2022, 39, 287–295. [Google Scholar] [CrossRef]
- Ji, X.; Yang, M.; Wan, A.; Yu, S.; Yao, Z. Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review. Int. J. Environ. Res. Public Health 2022, 19, 7508. [Google Scholar] [CrossRef] [PubMed]
- Petter, P.; Veit, H.; Bernardes, A. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manag. 2013, 34, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.P.; Etsell, T.H. Recovery of gold from computer circuit board scrap using aqua regia. Waste Manag. Res. 2007, 25, 380–383. [Google Scholar] [CrossRef]
- Hao, J.; Wang, X.; Wang, Y.; Guo, F.; Wu, Y. Study of gold leaching from pre-treated waste printed circuit boards by thiosulfate-cobalt-glycine system and separation by solvent extraction. Hydrometallurgy 2023, 221, 106141. [Google Scholar] [CrossRef]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv. 2020, 10, 4300–4309. [Google Scholar] [CrossRef]
- Merli, G.; Becci, A.; Amato, A.; Beolchini, F. Non-toxic, high selectivity process for the extraction of precious metals from waste printed circuit boards. Front. Environ. Sci. Eng. 2023, 17, 123. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, S.; Liu, J.; Wu, Y.; Yu, J. Research progress of hydrometallurgy technology for leaching precious metals in waste printed circuit board. Environ. Chem. 2021, 40, 886–895. [Google Scholar] [CrossRef]
- Ning, C.; Lin, C.S.K.; Hui, D.C.W.; McKay, G. Waste Printed Circuit Board (PCB) Recycling Techniques. Top. Curr. Chem. 2017, 375, 43. [Google Scholar] [CrossRef]
- Anwer, S.; Panghal, A.; Majid, I.; Mallick, S. Urban mining: Recovery of metals from printed circuit boards. Int. J. Environ. Sci. Technol. 2022, 19, 9731–9740. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, R.; Jang, S.; Wong, C.; Hong, J. “Organic Aqua Regia”—Powerful Liquids for Dissolving Noble Metals. Angew. Chem. Int. Ed. 2010, 49, 7929–7932. [Google Scholar] [CrossRef] [PubMed]
- Serpe, A.; Marchiò, L.; Artizzu, F.; Mercuri, M.L.; Deplano, P. Effective One-Step Gold Dissolution Using Environmentally Friendly Low-Cost Reagents. Chem. Eur. J. 2013, 19, 10111–10114. [Google Scholar] [CrossRef] [PubMed]
- Lin, W. Recovery of high-purity Pt from Pt-Au bimetallic nanoparticles using organic aqua regia. Rare Met. 2012, 31, 92–95. [Google Scholar] [CrossRef]
- Yue, C.; Sun, H.; Liu, W.; Guan, B.; Deng, X.; Zhang, X.; Yang, P. Environmentally Benign, Rapid, and Selective Extraction of Gold from Ores and Waste Electronic Materials. Angew. Chem. Int. Ed. 2017, 56, 9331–9335. [Google Scholar] [CrossRef]
- Xiong, Z.; Huang, Y.; Li, Y.; Sheng, C.; Sun, L.; Ma, J.; Chi, B.; Tan, J.; Tang, X.; Zha, R.; et al. Selective recovery of Au from waste printed circuit board by water-soluble organic leaching: The key role of in situ bromine mediation and identificationof pathway. J. Hazard. Mater. 2024, 480, 136255. [Google Scholar] [CrossRef]
- Kim, J.; Kim, R.; Han, K.N. Advances in Hydrometallurgical Gold Recovery through Cementation, Adsorption, Ion Exchange and Solvent Extraction. Minerals 2024, 14, 607. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, J.; Guo, R.; Liu, B.; Qu, R.; Huo, Z.; Zhu, F. The transformation and interaction of diallyl phthalate (DAP) in the three kinds of plastic under ultraviolet/sodium dichloroisocyanurate (UV/DCCNa) disinfection process. Chem. Eng. J. 2023, 467, 143401. [Google Scholar] [CrossRef]
- He, Y.; Xu, Z. Recycling gold and copper from waste printed circuit boards using chlorination process. RSC Adv. 2015, 5, 8957–8964. [Google Scholar] [CrossRef]
- Pak, K.-S.; Zhang, T.-A.; Kim, C.-S.; Kim, G.-H. Research on chlorination leaching of pressure-oxidized refractory gold concentrate. Hydrometallurgy 2020, 194, 105325. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, L.; Wang, S.; Cui, W.; Peng, J. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation. Ultrason. Sonochem. 2017, 37, 471–477. [Google Scholar] [CrossRef]
- Niu, H.; Yang, H.; Tong, L. Research on gold leaching of carbonaceous pressure-oxidized gold ore via a highly effective, green and low toxic agent trichloroisocyanuric acid. J. Clean. Prod. 2023, 419, 138062. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J.; Cheng, G.; Xue, X.; Yang, H. Kinetics and mechanism of hydrochloric acid leaching of rare earths from Bayan Obo slag and recovery of rare earth oxalate and high purity oxides. Hydrometallurgy 2022, 208, 105782. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, C.; Liu, R.; Xie, Z.; Liu, Z.; Cen, S.; Tao, C.; Guo, S. Leaching kinetics of manganese from pyrolusite using pyrite as a reductant under microwave heating. Sep. Purif. Technol. 2021, 277, 119472. [Google Scholar] [CrossRef]
- Meng, Q.; Yan, X.; Li, G. Eco-friendly and reagent recyclable gold extraction by iodination leaching-electrodeposition recovery. J. Clean. Prod. 2021, 323, 129115. [Google Scholar] [CrossRef]
- Agarwal, S.; Reis, M.T.A.; Ismael, M.R.C.; Carvalho, J.M.R. Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane. Chem. Pap. 2015, 69, 679–689. [Google Scholar] [CrossRef]
- Nozari, I.; Azizi, A. An Investigation into the Extraction Behavior of Copper from Sulfate Leach Liquor Using Acorga M5640 Extractant: Mechanism, Equilibrium, and Thermodynamics. Min. Metall. Explor. 2020, 37, 1673–1680. [Google Scholar] [CrossRef]
- Oshima, T.; Koyama, T.; Otsuki, A.N. A Comparative Study on the Extraction of Au(III) Using Cyclopentyl Methyl Ether, Dibutyl Carbitol, and Methyl Isobutyl Ketone in Acidic Chloride Media. Solvent Extr. Ion Exch. 2021, 39, 477–490. [Google Scholar] [CrossRef]
- Oshima, T.; Matsuzaki, K.; Inada, A.; Ohe, K. Extraction of Au(III) using aromatic ethers via ion solvation from acidic chloride media: Structural factors that influence extraction. Sep. Purif. Technol. 2021, 258, 118008. [Google Scholar] [CrossRef]
- Alguacil, F.; Lopez, F.; Garcia-Diaz, I. Copper removal from acidic wastewaters using 2-hydroxy-5-nonylbenzaldehyde oxime as ionophore in pseudo-emulsion membrane with strip dispersion (PEMSD) technology. J. Ind. Eng. Chem. 2012, 18, 255–259. [Google Scholar] [CrossRef]
- Deep, A.; Kumar, P.; Carvalho, J.M. Recovery of copper from zinc leaching liquor using ACORGA M5640. Sep. Purif. Technol. 2010, 76, 21–25. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; An, W.; Bao, S. Effect of the Structure of Alkyl Salicylaldoxime on Extraction of Copper(II). Minerals 2017, 7, 61. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Sun, X.; Wang, L. Separation and recovery of copper from waste printed circuit boards leach solution using solvent extraction with Acorga M5640 as extractant. Sep. Sci. Technol. 2019, 54, 1302–1311. [Google Scholar] [CrossRef]
- Korolev, I.; Altınkaya, P.; Halli, P.; Hannula, P.-M.; Yliniemi, K.; Lundström, M. Electrochemical recovery of minor concentrations of gold from cyanide-free cupric chloride leaching solutions. J. Clean. Prod. 2018, 186, 840–850. [Google Scholar] [CrossRef]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Recycling copper and gold from e-waste by a two-stage leaching and solvent extraction process. Sep. Purif. Technol. 2021, 263, 118400. [Google Scholar] [CrossRef]
- Oshima, T.; Miyake, K. Au(III) extraction using ketone compounds with physical properties superior to current commercial extractants. AIChE J. 2021, 67, e17214. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Chen, D. Study of Gold Leaching from PCB by Thiocyanate Process. Precious Metals 2008, 29, 11–14. [Google Scholar] [CrossRef]
- Ding, X.; Tang, H. Determination of Trichloroisocyanuric Acid by HPLC. Pest. Sci. Admin. 2003, 24, 7–9. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Omary, M.A.; Patterson, H.H. Oligomerization of Au(CN)2− and Ag(CN)2− Ions in Solution via Ground-State Aurophilic and Argentophilic Bonding. J. Am. Chem. Soc. 2000, 122, 10371–10380. [Google Scholar] [CrossRef]
- White-Morris, R.L.; Stender, M.; Tinti, D.S.; Balch, A.L.; Rios, D.; Attar, S. New Structural Motifs in the Aggregation of Neutral Gold(I) Complexes: Structures and Luminescence from (Alkyl isocyanide)AuCN. Inorg. Chem. 2003, 42, 3237–3244. [Google Scholar] [CrossRef]
- Naumkin, A.V. NIST Standard Reference Database 20; National Institute of Standards and Technology, U.S. Department of Commerce: Gaithersburg, MD, USA, 2012; Version 4.1.
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of Xray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Vernon, C.; Fawell, P.; Klauber, C. XPS investigation of the states of adsorption of aurocyanide onto crosslinked polydiallylamine and commercial anionexchange resins. React. Polym. 1992, 18, 35–45. [Google Scholar] [CrossRef]
- Fan, R.; Xie, F.; Guan, X.; Zhang, Q.; Luo, Z. Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from e-wastes. Bioresour. Technol. 2014, 163, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Luo, H.; Wu, H.; Zhu, Z.; Huang, F.; Lin, X. Determination of Aquaculture Disinfectants Residues in Aquatic Products by Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. J. Instrum. Anal. 2012, 31, 639–643. [Google Scholar]
- Gross, J.; Todd, P. Mass Spectrometry: A Textbook. Phys. Today 2005, 58, 59–60. [Google Scholar] [CrossRef]
Metal | Cu | Ca | Al | Ni | Fe | Au |
---|---|---|---|---|---|---|
Content (mg/g sample) | 174.77 | 31.20 | 13.51 | 8.64 | 3.53 | 2.27 |
Metal content (%) | 74.71 | 13.34 | 5.78 | 3.69 | 1.51 | 0.97 |
Experimental Variable | Range of Variable Changes | Experimental Condition |
---|---|---|
Initial pH | 2, 3, 4, 5, 6, 7, 8, 9 | T = 25 °C, stirring speed = 800 rpm, L/S = 50:1, t = 5 h, [DCCNa] = 40 mmol/L |
Leaching time | 5 min, 15 min, 30 min, 60 min, 180 min, 300 min, 600 min | T = 25 °C, stirring speed=800 rpm, pH = 2, L/S = 100:1, [DCCNa] = 40 mmol/L |
DCCNa concentration | 5 mmol/L, 10 mmol/L, 20 mmol/L, 30 mmol/L, 40 mmol/L | T = 25 °C, stirring speed = 800 rpm, pH = 2, L/S = 50:1, t = 3 h |
Leaching temperature | 25 °C, 40 °C, 50 °C | stirring speed = 800 rpm, pH = 2, L/S = 50:1, t = 3 h, [DCCNa] = 40 mmol/L |
Liquid-to-solid ratio | 10:1, 25:1, 50:1, 100:1 | T = 25 °C, stirring speed = 800 rpm, pH = 2, t = 3 h, [DCCNa]=40 mmol/L |
Stirring speed | 200 rpm, 500 rpm, 800 rpm | T = 25 °C, L/S = 50:1, pH = 2, t = 3 h, [DCCNa] = 40 mmol/L |
Component | Gold Finger | After DCCNa Leaching (Leachate /Residue) | After M5640 Extraction (Cu-Bearing Organic Phase /Residual Aqueous Phase) | After DBC Extraction (Au-Bearing Organic Phase /Residual Aqueous Phase) | After Dilute H2SO4 Stripping (Organic Phase/Cu-Bearing Aqueous Phase) | Total Recovery Rate |
---|---|---|---|---|---|---|
Au (mg/g gold finger powder) | 2.27 | 2.19/0.08 | 0.07/2.12 | 2.06/0.06 | - | 90.7% |
Cu (mg/g gold finger powder) | 174.77 | 94.73/80.04 | 90.37/4.36 | 0.10/4.25 | 87.66/2.71 | 50.2% |
Ni (mg/g gold finger powder) | 8.64 | 5.19/3.45 | 0/5.19 | 0.03/5.17 | - | - |
Al (mg/g gold finger powder) | 13.51 | 0.20/13.31 | 0/0.20 | 0/0.20 | - | - |
Fe (mg/g gold finger powder) | 3.53 | 0.03/3.50 | 0.01/0.02 | 0/0.02 | - | - |
Ca (mg/g gold finger powder) | 31.20 | 1.81/29.39 | 0/1.81 | 0.04/1.77 | - | - |
Other parts (mg/g gold finger powder) | 766.08 | -/895.85 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Huang, Y.; Xiong, Z.; Ge, F.; Li, Y.; Tan, J.; Zha, R. Gold Recovery from WPCB Gold Finger Using Water-Soluble Organic Leaching Agent Sodium Dichloroisocyanurate. Sustainability 2025, 17, 2415. https://doi.org/10.3390/su17062415
Zhang G, Huang Y, Xiong Z, Ge F, Li Y, Tan J, Zha R. Gold Recovery from WPCB Gold Finger Using Water-Soluble Organic Leaching Agent Sodium Dichloroisocyanurate. Sustainability. 2025; 17(6):2415. https://doi.org/10.3390/su17062415
Chicago/Turabian StyleZhang, Guoqian, Ying Huang, Zhenfeng Xiong, Fei Ge, Yonghua Li, Jiali Tan, and Rong Zha. 2025. "Gold Recovery from WPCB Gold Finger Using Water-Soluble Organic Leaching Agent Sodium Dichloroisocyanurate" Sustainability 17, no. 6: 2415. https://doi.org/10.3390/su17062415
APA StyleZhang, G., Huang, Y., Xiong, Z., Ge, F., Li, Y., Tan, J., & Zha, R. (2025). Gold Recovery from WPCB Gold Finger Using Water-Soluble Organic Leaching Agent Sodium Dichloroisocyanurate. Sustainability, 17(6), 2415. https://doi.org/10.3390/su17062415