The Impact of Corporate ESG Performance on Regional Energy Efficiency in China from the Perspective of Green Development
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
3. Research Design
3.1. Data Source and Sample Selection
3.2. Model Construction and Variable Description
4. Empirical Results
4.1. Descriptive Statistics
4.2. Regression Results
4.3. Robustness Test
4.3.1. Robustness Test
- (1)
- In the baseline regression, super-efficiency SBM is the core dependent variable. In this section, super-efficiency CCR is a proxy for regional energy efficiency. The results are reported in Column (1) of Table 4, where the coefficient is 0.0037 and is significant at the 1% level.
- (2)
- For corporate ESG performance, a composite score (ESG_1) is used as an alternative indicator to measure the dependent variable, regional energy efficiency. The regression results are reported in Column (2) of Table 4. The coefficient for ESG_1 is 0.1135, which is significant at the 1% level, further validating the baseline regression results.
- (3)
- The COVID-19 pandemic in 2020 had a significant impact on China’s economy [31,32]. Lockdowns and social distancing measures led to a sharp decline in global traffic, including aviation, public transportation, and personal vehicle use. Column (3) reports the regression results after excluding the impact of the pandemic.
- (4)
- First-tier cities, such as Beijing, Shanghai, Guangzhou, and Shenzhen, typically possess advanced technology and well-developed infrastructure, including efficient building designs, modern transportation systems, and intelligent energy management systems. To reduce the influence of complex development factors in these cities on the conclusions, the sample data are re-regressed after excluding Beijing, Shanghai, Guangzhou, and Shenzhen. The results are reported in Column (4) of Table 4, where the ESG core coefficient is 0.0015 and significant at the 5% level.
- (5)
- Corporate managers play a critical role in shaping development strategies [33]. Managerial decisions regarding the allocation of funds and resources directly influence corporate actions in the ESG domain, such as investments in environmental technologies, improvements in labor conditions, and reforms in governance structures. This section incorporates managerial financial background (financialback), overseas experience (overseaback), and educational background (eduback) into the regression. The results are reported in the final column of Table 4, where the coefficient is 0.0048 and passes the significance test.
4.3.2. Endogeneity Test
4.4. Heterogeneity Test
4.4.1. Environmental Regulation Heterogeneity
4.4.2. External Attention Heterogeneity
4.4.3. Industry Competition Heterogeneity
4.5. Mechanism Test
4.6. Economic Effect Analysis
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
5.3. Limitations and Future Directions
5.3.1. Limitations
5.3.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.T.; Wang, K.; Sueyoshi, T.; Wang, D.D. ESG: Research Progress and Future Prospects. Sustainability 2021, 13, 11663. [Google Scholar] [CrossRef]
- Tsang, A.; Frost, T.; Cao, H. Environmental, Social, and Governance (ESG) Disclosure: A Literature Review. Br. Account. Rev. 2023, 55, 101149. [Google Scholar] [CrossRef]
- Wan, H.; Fu, J.L.; Zhong, X. ESG Performance and Firms’ Innovation Efficiency: The Moderating Role of State-Owned Firms and Regional Market Development. Bus. Process Manag. J. 2024, 30, 270–290. [Google Scholar] [CrossRef]
- Ye, J.; Xu, W.H. Carbon Reduction Effect of ESG: Empirical Evidence from Listed Manufacturing Companies in China. Front. Ecol. Evol. 2023, 11, 1311777. [Google Scholar] [CrossRef]
- Yang, C.; Yang, R.L.; Zhou, Y.; Liu, Z.Y. E, S and G, not ESG: Heterogeneous Effects of Environmental, Social, and Governance Disclosure on Green Innovation. Corp. Soc. Responsib. Environ. Manag. 2023, 31, 1220–1238. [Google Scholar] [CrossRef]
- Lian, Y.Q.; Weng, X.W. ESG Performance and Investment Efficiency. Financ. Res. Lett. 2024, 62, 105084. [Google Scholar] [CrossRef]
- Wang, K.D.; Yu, S.S.; Mei, M.; Yang, X.; Peng, G.; Lv, B.F. ESG Performance and Corporate Resilience: An Empirical Analysis Based on the Capital Allocation Efficiency Perspective. Sustainability 2023, 15, 16145. [Google Scholar] [CrossRef]
- Hu, W.J.; Sun, J.N.; Lin, Y.E.; Hu, J.B. ESG and Investment Efficiency: The Role of Marketing Capability. Sustainability 2023, 15, 16676. [Google Scholar] [CrossRef]
- Avramov, D.; Cheng, S.; Lioui, A.; Tarelli, A. Sustainable investing with ESG rating uncertainty. J. Financ. Econ. 2022, 145, 642–664. [Google Scholar] [CrossRef]
- Rau, P.R.; Yu, T. A Survey on ESG: Investors, Institutions and Firms. China Financ. Rev. Int. 2024, 14, 3–33. [Google Scholar] [CrossRef]
- Florian, B.; Julian, F.K.; Anna, P.; Roberto, R. ESG Confusion and Stock Returns: Tackling the Problem of Noise; National Bureau of Economic Research: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Giese, G.; Nagy, Z.; Lee, L.E. Deconstructing ESG Ratings Performance: Risk and Return for E, S, and G by Time Horizon, Sector, and Weighting. J. Portf. Manag. 2021, 47, 94–111. [Google Scholar] [CrossRef]
- Xue, R.; Wang, H.Q.; Yang, Y.H.; Linnenluecke, M.K.; Jin, K.F.; Cai, C.W. The Adverse Impact of Corporate ESG Controversies on Sustainable Investment. J. Clean. Prod. 2023, 427, 139237.1–139237.10. [Google Scholar] [CrossRef]
- Xia, X.F.; Wang, Y. ESG Investment, Institutional Investor Shareholding and Entity Investment Efficiency. J. Yantai Univ. (Philos. Soc. Sci. Ed.) 2024, 37, 111–124. [Google Scholar]
- Hu, C.L.; Guo, R.R. Research on Risk Contagion in ESG Industries: An Information Entropy-Based Network Approach. Entropy 2024, 26, 206. [Google Scholar] [CrossRef]
- Zhou, H.L.; Liu, J. Digitalization of the Economy and Resource Efficiency for Meeting the ESG Goals. Resour. Policy 2023, 86, 104199. [Google Scholar] [CrossRef]
- Egorova, A.A.; Grishunin, S.V.; Karminsky, A.M. The Impact of ESG Factors on the Performance of Information Technology Companies. Procedia Comput. Sci. 2022, 199, 339–345. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Liu, L.; Luo, S.M. Sustainable Development, ESG Performance and Company Market Value: Mediating Effect of Financial Performance. Bus. Strategy Environ. 2022, 31, 3371–3387. [Google Scholar] [CrossRef]
- Shanaev, S.G. When ESG Meets AAA: The Effect of ESG Rating Changes on Stock Returns. Financ. Res. Lett. 2022, 46, 102302. [Google Scholar] [CrossRef]
- Dai, Y.W. Can ESG Investing Beat the Market and Improve Portfolio Diversification? Evidence from China. Chin. Econ. 2020, 54, 272–285. [Google Scholar] [CrossRef]
- Chen, S.M.; Song, Y.; Gao, P. Environmental, Social, and Governance (ESG) Performance and Financial Outcomes: Analyzing the Impact of ESG on Financial Performance. J. Environ. Manag. 2023, 345, 118829. [Google Scholar] [CrossRef]
- Cornell, B. ESG Preferences, Risk and Return. Eur. Financ. Manag. 2021, 27, 12–19. [Google Scholar] [CrossRef]
- Roy, C.; Rocco, C.; Ambrogio, D.; Marco, N. ESG investing: A Chance to Reduce Systemic Risk. J. Financ. Stab. 2021, 54, 100887. [Google Scholar] [CrossRef]
- Tampakoudis, I.; Kiosses, N.; Petridis, K. The Impact of Mutual Funds’ ESG Scores on Their Financial Performance During the COVID-19 Pandemic. A Data Envelopment Analysis. Corp. Gov. Int. J. Bus. Soc. 2023, 23, 1457–1483. [Google Scholar] [CrossRef]
- Zhang, X.K.; Zhao, X.K.; Qu, L.S. Do Green Policies Catalyze Green Investment? Evidence from ESG Investing Developments in China. Econ. Lett. 2021, 207, 110028. [Google Scholar] [CrossRef]
- Sciarelli, M.; Cosimato, S.; Landi, G. Francesca Iandolo. Socially Responsible Investment Strategies for the Transition towards Sustainable Development: The Importance of Integrating and Communicating ESG. TQM J. 2021, 33, 39–56. [Google Scholar] [CrossRef]
- Park, S.R.; Jang, J.Y. The Impact of ESG Management on Investment Decision: Institutional Investors’ Perceptions of Country-specific ESG Criteria. Int. J. Financ. Stud. 2021, 9, 48. [Google Scholar] [CrossRef]
- Chiaramonte, L.; Dreassi, A.; Girardone, C.; Piserà, S. Do ESG Strategies Enhance Bank Stability during Financial Turmoil? Evidence from Europe. Eur. J. Financ. 2022, 28, 1173–1211. [Google Scholar] [CrossRef]
- Shi, D.; Li, S.L. Emissions Trading System and Energy Utilization Efficiency—Measurement and Empirical Evidence for Prefecture-level and above Cities. China Ind. Econ. 2020, 9, 5–23. [Google Scholar] [CrossRef]
- Zhang, R.X.; Guo, S.J.; Liu, D.L. ESG Performance and Corporate Leverage Manipulation. Financ. Account. Mon. 2024, 45, 28–34. [Google Scholar] [CrossRef]
- Broadstock, D.C.; Chan, K.; Cheng, L.T.W.; Wang, X.W. The Role of ESG Performance during Times of Financial Crisis: Evidence from COVID-19 in China. Financ. Res. Lett. 2021, 38, 101716. [Google Scholar] [CrossRef]
- Folger-Laronde, Z.; Pashang, S.; Feor, L.; ElAlfyb, A. ESG Ratings and Financial Performance of Exchange-traded Funds during the COVID-19 Pandemic. J. Sustain. Financ. Investig. 2022, 12, 490–496. [Google Scholar] [CrossRef]
- Xu, G.H.; Su, L.; Zhu, J.L. Age Heterogeneity of Executive Team and Corporate ESG Performance. Friends Account. 2024, 89–97. [Google Scholar] [CrossRef]
- Xu, N.R.; Zou, S.H.; Wu, Z.X. Local Government Environmental Attention and Corporate ESG Performance-Based on Environmental System Perspective. Friends Account. 2024, 61–68. [Google Scholar]
- Zhang, M.; Li, Y. Study on the Impact of the Establishment of National Big Data Comprehensive Experimental Zone on ESG Performance of Distribution Enterprises under the Background of “Double Carbon”. Bus. Econ. Res. 2024, 140–143. [Google Scholar]
- Qin, W.N. ESG Performance and Corporate Green Innovation “Increasing Quantity and Improving Quality”—Based on the Moderating Role of Environmental Regulation and Market Competition Pressure. Tech. Econ. Manag. Res. 2024, 139–144. [Google Scholar]
- Xu, Y.; Song, Y.J.; Shen, Y. Can Local Government Environmental Governance Target Constraints Enhance Corporate ESG Quality?—Empirical Evidence Based on Textual Analysis Method. China Popul. Resour. Environ. 2024, 34, 137–150. [Google Scholar]
- Xie, J.P.; Dong, Q.; Tan, W.J.; Xie, J.Q. Intensification or Networking: Media ESG Concerns and Supply Chain Configuration. Foreign Econ. Manag. 2024, 46, 101–118. [Google Scholar] [CrossRef]
- Xia, T.S.; Gao, J.R. ESG Performance, Media Attention and Corporate Information Transparency. Friends Account. 2024, 136–144. [Google Scholar]
Variable Type | Symbol | Variable Description |
---|---|---|
Dependent variable | SBM | Corporate energy efficiency, as defined in the text |
Independent variable | ESG | Corporate ESG performance assigned a value of 1 to 9 based on performance |
Control variables | size | Size of the corporate, natural logarithm of total assets |
lev | Gearing ratio, total liabilities/total assets | |
roe | Return on equity, net profit/total assets | |
cashflow | Cash flow, net cash flow from operating activities/total assets | |
top1 | Shareholding concentration, the proportion of shares held by the largest shareholder | |
dual | The general manager and the chairman of the board of directors are the same person, if so, assigned a value of 1, otherwise assigned a value of 0 | |
board | Size of the board of directors, natural logarithm of the number of board members | |
soe | Property rights, state-owned enterprises are assigned a value of 1; otherwise, 0 | |
big4 | Audit institutions, the international Big Four audit is assigned a value of 1 otherwise 0 | |
age | Age of business establishment in natural logarithms |
Sample | Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|---|
SBM | 26,532 | 0.451 | 0.216 | 0.178 | 1.053 |
ESG | 26,532 | 4.113 | 1.050 | 1.000 | 8.000 |
size | 26,532 | 22.420 | 1.393 | 19.774 | 26.762 |
lev | 26,532 | 0.450 | 0.203 | 0.064 | 0.907 |
roe | 26,532 | 0.067 | 0.130 | −0.632 | 0.387 |
cashflow | 26,532 | 0.050 | 0.069 | −0.157 | 0.243 |
top1 | 26,532 | 0.370 | 0.155 | 0.079 | 0.757 |
dual | 26,532 | 0.232 | 0.422 | 0.000 | 1.000 |
board | 26,532 | 2.146 | 0.202 | 1.609 | 2.708 |
soe | 26,532 | 0.476 | 0.499 | 0.000 | 1.000 |
big4 | 26,532 | 0.078 | 0.269 | 0.000 | 1.000 |
age | 26,532 | 18.803 | 6.140 | 5.000 | 34.000 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
SBM | SBM | SBM | SBM | |
ESG | 0.0044 *** | 0.0050 *** | 0.0050 *** | 0.0050 *** |
(5.1565) | (5.7922) | (5.8169) | (5.7613) | |
size | −0.0004 | −0.0003 | −0.0001 | |
(−0.2712) | (−0.1789) | (−0.0940) | ||
lev | 0.0270 *** | 0.0267 *** | 0.0250 *** | |
(3.9708) | (3.9280) | (3.6663) | ||
roe | −0.0292 *** | −0.0287 *** | −0.0280 *** | |
(−4.5616) | (−4.4717) | (−4.3693) | ||
cashflow | −0.0112 | −0.0114 | −0.0124 | |
(−0.9230) | (−0.9351) | (−1.0203) | ||
top1 | −0.0126 | −0.0097 | ||
(−1.3036) | (−1.0066) | |||
dual | −0.0000 | 0.0002 | ||
(−0.0093) | (0.0775) | |||
board | −0.0033 | −0.0036 | ||
(−0.5235) | (−0.5681) | |||
soe | 0.0085 * | |||
(1.8138) | ||||
big4 | −0.0038 | |||
(−0.6337) | ||||
age | −0.0106 *** | |||
(−4.7833) | ||||
_cons | 0.3022 *** | 0.2998 *** | 0.3090 *** | 0.4207 *** |
(63.9028) | (9.1418) | (8.9671) | (9.9240) | |
Corporate | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Observations | 26,532 | 26,532 | 26,532 | 26,532 |
R-squared | 0.4253 | 0.4266 | 0.4266 | 0.4273 |
Replacement of Dependent Variable | Replacement of Independent Variables | Excluding the Epidemic Factor | Exclusion of First-Tier Cities | Adding Control Variables | |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
CCR | SBM | SBM | SBM | SBM | |
ESG | 0.0037 *** | 0.0018 ** | 0.0015 ** | 0.0048 *** | |
(5.0185) | (2.4683) | (1.9632) | (5.6325) | ||
ESG_1 | 0.1135 *** | ||||
(6.3340) | |||||
size | −0.0045 *** | −0.0003 | −0.0016 | 0.0040 *** | 0.0003 |
(−3.2592) | (−0.1864) | (−1.1666) | (2.7475) | (0.1868) | |
lev | 0.0195 *** | 0.0258 *** | 0.0144 ** | 0.0102 * | 0.0242 *** |
(3.3352) | (3.7790) | (2.4670) | (1.7062) | (3.5475) | |
roe | −0.0105 * | −0.0282 *** | −0.0040 | −0.0097 * | −0.0284 *** |
(−1.9067) | (−4.3919) | (−0.7466) | (−1.7551) | (−4.4347) | |
cashflow | −0.0330 *** | −0.0126 | −0.0053 | −0.0048 | −0.0130 |
(−3.1554) | (−1.0351) | (−0.5055) | (−0.4691) | (−1.0687) | |
top1 | 0.0164 ** | −0.0099 | 0.0302 *** | 0.0115 | −0.0098 |
(1.9769) | (−1.0263) | (3.7126) | (1.3106) | (−1.0112) | |
dual | 0.0026 | 0.0002 | −0.0022 | −0.0011 | 0.0002 |
(1.2767) | (0.0684) | (−1.0844) | (−0.5058) | (0.0625) | |
board | 0.0067 | −0.0036 | −0.0019 | −0.0058 | −0.0009 |
(1.2225) | (−0.5689) | (−0.3455) | (−1.0194) | (−0.1448) | |
soe | 0.0035 | 0.0084 * | 0.0063 | 0.0121 *** | 0.0080 * |
(0.8787) | (1.7943) | (1.6358) | (2.6392) | (1.7019) | |
big4 | 0.0050 | −0.0037 | −0.0138 ** | −0.0133 ** | −0.0037 |
(0.9898) | (−0.6323) | (−2.4417) | (−2.3972) | (−0.6200) | |
age | −0.0030 | −0.0105 *** | 0.0054 ** | −0.0128 *** | −0.0104 *** |
(−1.5819) | (−4.7535) | (2.2978) | (−5.2405) | (−4.7210) | |
financialback | −0.0019 | ||||
(−1.0279) | |||||
overseaback | −0.0076 *** | ||||
(−3.9633) | |||||
eduback | −0.0102 *** | ||||
(−3.0928) | |||||
_cons | 0.6299 *** | 0.3602 *** | 0.2428 *** | 0.3740 *** | 0.4189 *** |
(17.2973) | (8.3032) | (6.1533) | (8.8637) | (9.8694) | |
Corporate | Control | Control | Control | Control | Control |
Year | Control | Control | Control | Control | Control |
Observations | 26,532 | 26,532 | 19,364 | 18,184 | 26,532 |
R-squared | 0.4655 | 0.4275 | 0.3341 | 0.3377 | 0.4280 |
Lag Effect | Two-Stage Least Squares, 2SLS | ||
---|---|---|---|
(1) | (2) | (3) | |
SBM | ESG | SBM | |
ESGt−1 | 0.0048 *** | ||
(5.2538) | |||
iv | 0.3424 *** | ||
(6.4356) | |||
Fitted Value | 0.0692 *** | ||
(13.1108) | |||
size | −0.0004 | 0.2361 *** | −0.0158 *** |
(−0.2498) | (20.1593) | (−7.7779) | |
lev | 0.0275 *** | −0.9684 *** | 0.0877 *** |
(3.6979) | (−19.2979) | (10.3289) | |
roe | −0.0269 *** | 0.1302 *** | −0.0350 *** |
(−3.9136) | (2.7387) | (−5.4449) | |
cashflow | −0.0156 | −0.3138 *** | 0.0083 |
(−1.1704) | (−3.4787) | (0.6773) | |
top1 | −0.0191 * | 0.3256 *** | −0.0293 *** |
(−1.8252) | (4.5460) | (−2.9973) | |
dual | 0.0008 | 0.0064 | −0.0006 |
(0.3131) | (0.3603) | (−0.2685) | |
board | −0.0036 | −0.0940 ** | 0.0030 |
(−0.5288) | (−1.9932) | (0.4684) | |
soe | 0.0049 | 0.0471 | 0.0044 |
(0.9656) | (1.3555) | (0.9422) | |
big4 | −0.0039 | 0.0800 * | −0.0095 |
(−0.6072) | (1.8250) | (−1.6030) | |
age | −0.0093 *** | −0.0081 | −0.0091 *** |
(−3.5591) | (−0.4966) | (−4.1118) | |
_cons | 0.4462 *** | −4.2851 *** | 0.4414 *** |
(8.9672) | (−12.2279) | (10.4353) | |
Corporate | Control | Control | Control |
Year | Control | Control | Control |
Observations | 23,919 | 26,532 | 26,532 |
R-squared | 0.4183 | 0.0672 | 0.4306 |
(1) | (2) | (3) | |
---|---|---|---|
SBM | SBM | SBM | |
Strong | Medium | Weak | |
ESG | 0.0046 *** | 0.0042 *** | 0.0025 |
(2.6344) | (4.5814) | (1.2373) | |
size | −0.0016 | −0.0032 * | 0.0116 *** |
(−0.4668) | (−1.8720) | (2.8359) | |
lev | −0.0053 | 0.0272 *** | 0.0466 *** |
(−0.3761) | (3.7216) | (2.8052) | |
roe | −0.0309 ** | −0.0102 | −0.0219 |
(−2.3843) | (−1.5146) | (−1.5190) | |
cashflow | 0.0206 | −0.0041 | 0.0050 |
(0.8685) | (−0.3186) | (0.1792) | |
top1 | 0.0158 | −0.0024 | 0.0129 |
(0.7612) | (−0.2347) | (0.5750) | |
dual | 0.0000 | −0.0032 | 0.0001 |
(0.0001) | (−1.2044) | (0.0105) | |
board | −0.0133 | 0.0076 | −0.0276 * |
(−1.0143) | (1.1211) | (−1.8285) | |
soe | 0.0045 | 0.0187 *** | −0.0098 |
(0.4468) | (3.8017) | (−0.8572) | |
big4 | 0.0275 ** | −0.0125 ** | −0.0173 |
(2.0647) | (−2.0043) | (−1.2143) | |
age | −0.0141 ** | −0.0031 | −0.0113 *** |
(−2.2641) | (−1.0515) | (−3.1935) | |
_cons | 0.5452 *** | 0.3455 *** | 0.2948 *** |
(5.4201) | (7.1376) | (2.9437) | |
Corporate | Control | Control | Control |
Year | Control | Control | Control |
Observations | 6641 | 13,118 | 6773 |
R-squared | 0.5174 | 0.4611 | 0.4389 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
SBM | SBM | SBM | SBM | |
Higher Analyst Focus | Lower Analyst Focus | Higher Attention of Research Reports | Lower Attention of Research Reports | |
ESG | 0.0049 *** | 0.0039 *** | 0.0045 *** | 0.0041 *** |
(3.7317) | (3.3756) | (3.7036) | (3.4747) | |
size | −0.0126 *** | 0.0024 | −0.0095 *** | 0.0025 |
(−3.9135) | (1.1398) | (−3.0450) | (1.1634) | |
lev | 0.0411 *** | 0.0098 | 0.0408 *** | 0.0148 * |
(3.3104) | (1.1244) | (3.3560) | (1.6709) | |
roe | −0.0674 *** | −0.0153 ** | −0.0728 *** | −0.0112 |
(−5.0592) | (−2.0746) | (−5.6030) | (−1.4920) | |
cashflow | −0.0361 * | 0.0147 | −0.0300 | 0.0034 |
(−1.8156) | (0.9352) | (−1.5288) | (0.2115) | |
top1 | −0.0316 * | 0.0207 | −0.0280 * | 0.0196 |
(−1.9195) | (1.5815) | (−1.7399) | (1.4745) | |
dual | −0.0076 ** | −0.0002 | −0.0069 * | −0.0001 |
(−1.9672) | (−0.0567) | (−1.8138) | (−0.0260) | |
board | −0.0154 | −0.0100 | −0.0141 | −0.0057 |
(−1.5348) | (−1.1682) | (−1.4209) | (−0.6487) | |
soe | −0.0168 * | 0.0190 *** | −0.0154 * | 0.0171 *** |
(−1.7870) | (3.3218) | (−1.6893) | (2.9175) | |
big4 | −0.0067 | −0.0086 | −0.0094 | 0.0012 |
(−0.8659) | (−0.8454) | (−1.2359) | (0.1128) | |
age | −0.0077 ** | −0.0095 *** | −0.0089 *** | −0.0098 *** |
(−2.2201) | (−3.0393) | (−2.6266) | (−3.1423) | |
_cons | 0.7103 *** | 0.3582 *** | 0.6540 *** | 0.3519 *** |
(8.8763) | (6.1437) | (8.3972) | (5.9715) | |
Corporate | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Observations | 12,577 | 13,955 | 12,823 | 13,709 |
R-squared | 0.4393 | 0.4068 | 0.4348 | 0.4081 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
SBM | SBM | SBM | SBM | |
Low | High | Low | High | |
ESG | 0.0043 *** | 0.0065 *** | 0.0031 *** | 0.0051 *** |
(3.5441) | (5.3279) | (2.6539) | (4.2323) | |
size | −0.0028 | 0.0053 ** | 0.0014 | 0.0014 |
(−1.1808) | (2.1826) | (0.5959) | (0.6147) | |
lev | 0.0445 *** | 0.0186 * | 0.0364 *** | 0.0108 |
(4.4454) | (1.8522) | (3.6760) | (1.1103) | |
roe | −0.0204 ** | −0.0286 *** | −0.0198 ** | −0.0311 *** |
(−2.2215) | (−3.1342) | (−2.2082) | (−3.4919) | |
cashflow | −0.0036 | −0.0339 * | 0.0040 | −0.0340 ** |
(−0.2109) | (−1.9123) | (0.2381) | (−1.9924) | |
top1 | 0.0087 | −0.0349 ** | −0.0106 | −0.0156 |
(0.6005) | (−2.4357) | (−0.7513) | (−1.0989) | |
dual | −0.0004 | −0.0030 | −0.0022 | −0.0001 |
(−0.1047) | (−0.8919) | (−0.6149) | (−0.0203) | |
board | −0.0142 | 0.0117 | −0.0208 ** | −0.0014 |
(−1.5759) | (1.2617) | (−2.3505) | (−0.1478) | |
soe | 0.0367 *** | −0.0151 ** | 0.0353 *** | −0.0141 ** |
(5.1052) | (−2.2546) | (4.8674) | (−2.1763) | |
big4 | 0.0149 * | −0.0182 ** | 0.0123 | −0.0151 * |
(1.8612) | (−1.9841) | (1.5022) | (−1.6682) | |
age | −0.0146 *** | −0.0096 *** | −0.0161 *** | −0.0070 ** |
(−4.2761) | (−3.2789) | (−4.7398) | (−2.4252) | |
_cons | 0.5069 *** | 0.2910 *** | 0.4573 *** | 0.3716 *** |
(7.8943) | (4.6794) | (7.0901) | (6.2220) | |
Corporate | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Observations | 13,492 | 13,040 | 13,432 | 13,100 |
R-squared | 0.4398 | 0.4007 | 0.4242 | 0.4034 |
Financing Constraints | Agency Cost | Information Transparency | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
SA | KZ | Mfee | Opacity | |
ESG | −0.0042 *** | −0.0543 *** | −0.0025 *** | −0.0636 *** |
(−6.9566) | (−5.8157) | (−7.2819) | (−10.8197) | |
size | 0.0061 *** | −0.6606 *** | −0.0129 *** | −0.1356 *** |
(5.3514) | (−36.7808) | (−20.1086) | (−12.4482) | |
lev | 0.0101 ** | 7.2621 *** | −0.0203 *** | −0.1463 *** |
(2.0805) | (95.5645) | (−7.4632) | (−3.1364) | |
roe | 0.0150 *** | −1.4668 *** | −0.0872 *** | −0.3857 *** |
(3.2826) | (−20.3909) | (−34.1659) | (−8.7941) | |
cashflow | 0.0029 | −14.4327 *** | −0.0574 *** | −0.0585 |
(0.3332) | (−107.7777) | (−11.6710) | (−0.7030) | |
top1 | −0.0073 | −1.3115 *** | −0.0131 *** | 0.3069 *** |
(−1.0600) | (−12.5429) | (−3.4040) | (4.6435) | |
dual | −0.0032 * | −0.0643 ** | −0.0009 | 0.0612 *** |
(−1.8492) | (−2.4805) | (−0.9256) | (3.7274) | |
board | 0.0203 *** | −0.2372 *** | 0.0040 | −0.0589 |
(4.4804) | (−3.4694) | (1.5672) | (−1.3547) | |
soe | 0.0201 *** | 0.1916 *** | −0.0040 ** | −0.2175 *** |
(6.0472) | (3.7379) | (−2.1388) | (−6.7877) | |
big4 | −0.0370 *** | 0.2070 *** | 0.0022 | 0.0032 |
(−8.7896) | (3.2109) | (0.9129) | (0.0782) | |
age | 0.0041 *** | −0.1429 *** | 0.0004 | 0.0441 *** |
(2.6231) | (−5.7969) | (0.4880) | (2.9216) | |
_cons | 3.3027 *** | 16.6055 *** | 0.3893 *** | 3.9149 *** |
(109.6291) | (34.6438) | (22.9610) | (13.5092) | |
Corporate | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Observations | 26,532 | 24,068 | 26,134 | 26,532 |
R-squared | 0.8034 | 0.6097 | 0.1555 | 0.2905 |
Enterprise Value | Growth Potential | Risk-Taking | |
---|---|---|---|
(1) | (2) | (3) | |
tobinq | agrowth | sd | |
SBM | 2.0999 ** | 0.1072 ** | 0.0148 *** |
(2.1132) | (2.0767) | (3.1066) | |
ESG | −0.1871 * | 0.0037 | −0.0028 *** |
(−1.7330) | (0.6680) | (−5.2827) | |
jc | 0.4565 ** | −0.0115 | −0.0040 *** |
(2.1271) | (−1.0307) | (−3.6149) | |
size | −1.2514 *** | 0.1186 *** | −0.0034 *** |
(−13.3038) | (24.6059) | (−13.8103) | |
lev | 1.5975 *** | 0.0228 | −0.0078 *** |
(3.9840) | (1.1072) | (−5.3749) | |
roe | 1.1276 *** | 0.7186 *** | −0.0513 *** |
(3.0005) | (37.0318) | (−24.9493) | |
cashflow | −0.9599 | −0.4407 *** | 0.0196 *** |
(−1.3495) | (−11.9720) | (5.2370) | |
top1 | −0.6694 | 0.2889 *** | −0.0155 *** |
(−1.1806) | (9.8790) | (−9.5905) | |
dual | −0.2657 * | 0.0220 *** | 0.0008 |
(−1.8962) | (3.0310) | (1.3586) | |
board | −0.2198 | 0.0006 | −0.0109 *** |
(−0.5924) | (0.0308) | (−8.5248) | |
soe | −0.2406 | −0.0528 *** | −0.0097 *** |
(−0.8768) | (−3.7269) | (−17.4862) | |
big4 | 0.5031 | −0.0945 *** | 0.0023 ** |
(1.4612) | (−5.2693) | (2.3445) | |
age | −0.0719 | 0.0410 *** | 0.0004 *** |
(−0.5636) | (6.1195) | (8.8032) | |
_cons | 31.1492 *** | −2.9236 *** | 0.1689 *** |
(12.3618) | (−22.5163) | (30.2726) | |
Corporate | Control | Control | Control |
Year | Control | Control | Control |
Observations | 26,134 | 26,527 | 26,466 |
R-squared | 0.0145 | 0.1407 | 0.1190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, R.; Zhao, R. The Impact of Corporate ESG Performance on Regional Energy Efficiency in China from the Perspective of Green Development. Sustainability 2025, 17, 2465. https://doi.org/10.3390/su17062465
Wang L, Li R, Zhao R. The Impact of Corporate ESG Performance on Regional Energy Efficiency in China from the Perspective of Green Development. Sustainability. 2025; 17(6):2465. https://doi.org/10.3390/su17062465
Chicago/Turabian StyleWang, Linan, Rixin Li, and Ruotong Zhao. 2025. "The Impact of Corporate ESG Performance on Regional Energy Efficiency in China from the Perspective of Green Development" Sustainability 17, no. 6: 2465. https://doi.org/10.3390/su17062465
APA StyleWang, L., Li, R., & Zhao, R. (2025). The Impact of Corporate ESG Performance on Regional Energy Efficiency in China from the Perspective of Green Development. Sustainability, 17(6), 2465. https://doi.org/10.3390/su17062465