Economic and Energy Assessment of Emissions from European Agriculture: A Comparative Analysis of Regional Sustainability and Resilience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Materials for Analyzing Energy Sustainability and Resilience
- –
- Emissions per capita (t/capita): measures average emissions relative to the population in each region, reflecting the individual environmental impact [34];
- –
- Emissions per economic value (kg/Int$): measures emissions relative to the value of agricultural output, reflecting the economic efficiency of agricultural activities [35];
- –
- Emissions per hectare of agricultural land (t/ha): indicates the intensity of emissions in relation to the agricultural area used, providing information on pressure on natural resources [36].
2.2. Regional Comparative Analysis Methodology
3. Results
3.1. Regional Trends in Agricultural Emissions: Insights on Resilience and Sustainability
3.1.1. Regional Dynamics of CO2 Emissions: Practices and Intensity
3.1.2. Methane (CH4) Emissions and the Role of Animal Management
3.1.3. Nitrous Oxide (N2O) Emissions: Fertilizer and Soil Management Challenges
3.2. Regional Economic Perspectives on Agricultural Emissions: Efficiency, Sustainability and Resilience
3.2.1. Regional Trends and Their Contribution to Agricultural Resilience
3.2.2. Assessing the Economic and Energy Efficiency of Agricultural Emissions in European Regions
3.2.3. Regional Resilience in Relation to Agricultural Land Use and Emissions Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murawska, A.; Goryńska-Goldmann, E. Greenhouse Gas Emissions in the Agricultural and Industrial Sectors—Change Trends, Economic Conditions, and Country Classification: Evidence from the European Union. Agriculture 2023, 13, 1354. [Google Scholar] [CrossRef]
- Prigoreanu, I.; Ungureanu, B.A.; Ungureanu, G.; Ignat, G. Analysis of Sustainable Energy and Environmental Policies in Agriculture in the EU Regarding the European Green Deal. Energies 2024, 17, 6428. [Google Scholar] [CrossRef]
- Georgescu, P.-L.; Barbuta-Misu, N.; Zlati, M.L.; Fortea, C.; Antohi, V.M. Quantifying the Performance of European Agriculture Through the New European Sustainability Model. Agriculture 2025, 15, 210. [Google Scholar] [CrossRef]
- European Environment Agency. Greenhouse Gas Emissions from Agriculture; European Environment Agency: Copenhagen, Denmark, 2024; Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-agriculture (accessed on 4 September 2024).
- Eurostat. EU Economy Emissions in 2022: Down 22% Since 2008; Eurostat: Luxembourg, 2023; Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20231221-3 (accessed on 5 September 2024).
- IFOAM Organics Europe. Understanding agriculture’s share of greenhouse gas emissions and where they come from. In Organic Farming, Climate Change Mitigation and Beyond; IFOAM Organics Europe: Brussels, Belgium, 2024; Available online: https://read.organicseurope.bio/publication/organic-farming-climate-change-mitigation-and-beyond/understanding-agricultures-share-of-greenhouse-gas-emissions-and-where-they-come-from/ (accessed on 3 September 2024).
- European Parliament. Reducing Pollution from Industry and Large Livestock Farms; European Parliament: Strasbourg, France, 2024; Available online: https://www.europarl.europa.eu/news/en/press-room/20240308IPR19007/reducing-pollution-from-industry-and-large-livestock-farms (accessed on 7 September 2024).
- European Environment Agency (EEA). Total Greenhouse Gas Emission Trends and Projections in Europe; European Environment Agency (EEA): Copenhagen, Denmark, 2024; Available online: https://www.eea.europa.eu/en/analysis/indicators/total-greenhouse-gas-emission-trends (accessed on 4 September 2024).
- FAO. Emissions due to agriculture. In Global, Regional and Country Trends 2000–2018; FAOSTAT Analytical Brief Series No. 18; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/cc09fbbc-eb1d-436b-a88a-bed42a1f12f3/content (accessed on 5 September 2024).
- Benalcázar-Murillo, D.; Vilcekova, S.; Pardo, M.Á. Analysis of Equivalent CO2 Emissions of the Irrigation System—A Case Study. Sustainability 2023, 15, 16240. [Google Scholar] [CrossRef]
- Nuţă, F.M.; Sharafat, A.; Abban, O.J.; Khan, I.; Irfan, M.; Nuţă, A.C.; Dankyi, A.B.; Asghar, M. The relationship among urbanization, economic growth, renewable energy consumption, and environmental degradation: A comparative view of European and Asian emerging economies. Gondwana Res. 2024, 128, 325–339. [Google Scholar] [CrossRef]
- Nuta, A.C. The Significance of Economic Complexity and Renewable Energy for Decarbonization in Eastern European Countries. Energies 2024, 17, 5271. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Jun, P.; Gibbs, M.; Gaffney, K. CH4 and N2O Emissions from Livestock Manure. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; IPCC/OECD/IEA: Hayama, Japan, 2000. [Google Scholar]
- Rivera, J.E.; Chará, J. CH4 and N2O Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems. Front. Sustain. Food Syst. 2021, 5, 657936. [Google Scholar] [CrossRef]
- Forabosco, F.; Chitchyan, Z.; Mantovani, R. Methane, nitrous oxide emissions and mitigation strategies for livestock in developing countries: A review. S. Afr. J. Anim. Sci. 2017, 47, 268. [Google Scholar] [CrossRef]
- Petersen, S.O.; Blanchard, M.; Chadwick, D.; Del Prado, A.; Edouard, N.; Mosquera, J.; Sommer, S.G. Manure Management for Greenhouse Gas Mitigation. Animal 2013, 7 (Suppl. S2), 266–282. [Google Scholar] [CrossRef]
- Fanelli, R.M. Assessing the Convergence of Farming Systems towards a Reduction of Greenhouse Gas Emissions in European Union Countries. Agronomy 2023, 13, 1263. [Google Scholar] [CrossRef]
- Vărzaru, A.A. Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective. Agronomy 2024, 14, 821. [Google Scholar] [CrossRef]
- Hu, J.; Dong, J.; Xu, D.; Yang, Q.; Liang, J.; Li, N.; Wang, H. Trends in Global Agricultural Carbon Emission Research: A Bibliometric Analysis. Agronomy 2024, 14, 2617. [Google Scholar] [CrossRef]
- Mielcarek-Bocheńska, P.; Rzeźnik, W. Greenhouse Gas Emissions from Agriculture in EU Countries—State and Perspectives. Atmosphere 2021, 12, 1396. [Google Scholar] [CrossRef]
- Verschuuren, J.; Fleurke, F.; Leach, M.C. Integrating Agricultural Emissions into the European Union Emissions Trading System: Legal Design Considerations. Sustainability 2024, 16, 5091. [Google Scholar] [CrossRef]
- Bocean, C.G. The Role of Organic Farming in Reducing Greenhouse Gas Emissions from Agriculture in the European Union. Agronomy 2025, 15, 198. [Google Scholar] [CrossRef]
- Czyżewski, A.; Michałowska, M. The Impact of Agriculture on Greenhouse Gas Emissions in the Visegrad Group Countries after the World Economic Crisis of 2008. Comparative Study of the Researched Countries. Energies 2022, 15, 2268. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Mallidis, I.; Galanopoulos, K.; Arabatzis, G. Greenhouse Gas Emissions and Economic Performance in EU Agriculture: An Empirical Study in a Non-Linear Framework. Sustainability 2018, 10, 3837. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Pang, T.; Neokye, E.O. A Review of Greenhouse Gas Emissions from Agricultural Soil. Sustainability 2024, 16, 4789. [Google Scholar] [CrossRef]
- Lileikis, T.; Nainienė, R.; Bliznikas, S.; Uchockis, V. Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals 2023, 13, 2586. [Google Scholar] [CrossRef]
- Symeon, G.K.; Akamati, K.; Dotas, V.; Karatosidi, D.; Bizelis, I.; Laliotis, G.P. Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems. Sustainability 2025, 17, 586. [Google Scholar] [CrossRef]
- Řezbová, H.; Slaboch, J.; Mach, J. Emissions from Managed Agricultural Soils in Context of Consumption of Inorganic Nitrogen Fertilisers in Selected EU Countries. Agronomy 2023, 13, 159. [Google Scholar] [CrossRef]
- Oliveira, E.R.; Silva, B.T.; Lopes, D.; Corticeiro, S.; Alves, F.L.; Disperati, L.; Gama, C. The Detection of Small-Scale Open-Burning Agriculture Fires Through Remote Sensing. Remote Sens. 2025, 17, 51. [Google Scholar] [CrossRef]
- Harsányi, E.; Bashir, B.; Almhamad, G.; Hijazi, O.; Maze, M.; Elbeltagi, A.; Alsalman, A.; Enaruvbe, G.O.; Mohammed, S.; Szabó, S. GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach. Energies 2021, 14, 6495. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database: Emissions. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/EM (accessed on 1 October 2024).
- FAO. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; Food and Agriculture Organization of the United Nations: Roma, Italy, 2023; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f1ee0c49-04e7-43df-9b83-6820f4f37ca9/content/state-food-security-and-nutrition-2023/notes-on-geographic-regions.html (accessed on 11 October 2024).
- FAO. Pathways Towards Lower Emissions—A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2023; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/a06a30d3-6e9d-4e9c-b4b7-29a6cc307208/content (accessed on 7 October 2024).
- FAO. Greenhouse Gas Emissions from Agrifood Systems: Global, Regional and Country Trends, 2000–2020; FAOSTAT Analytical Brief Series No. 50; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2022; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/121cc613-3d0f-431c-b083-cc2031dd8826/content (accessed on 10 October 2024).
- FAO. Agrifood Systems and Land-Related Emissions: Global, Regional and Country Trends, 2001–2021; FAOSTAT Analytical Brief Series No. 73; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2023; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/487c7f4e-91ff-4d23-b1e4-f72dd867e939/content (accessed on 17 October 2024).
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- European Commission. Progress Report 2023: Shifting Gears—Increasing the Pace of Progress Towards a Green and Prosperous Future. Climate Action. 2023. Available online: https://climate.ec.europa.eu (accessed on 5 March 2025).
- Kausar, A.; Rasul, F.; Asghar, N. How to get green with agricultural footprint: A global analysis of carbon emissions, environmental taxes, and agrochemical use. J. Environ. Manag. 2024, 370, 122665. [Google Scholar] [CrossRef]
- Owolabi, O.; Ogundipe, D.; Makinde, P. Optimization of solar-powered waste-to-energy systems for agricultural food waste reduction. Int. J. Sci. Res. Arch. 2023, 10, 1105–1114. [Google Scholar] [CrossRef]
- Subbarao, P.M.V.; D’Silva, T.C.; Adlak, K.; Kumar, S.; Chandra, R.; Vijay, V.K. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environ. Res. 2023, 234, 116286. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Gobin, A.; Uljee, I. European Green Deal Strategies for Agriculture in Dynamic Urbanised Landscapes. Land 2025, 14, 424. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament and the Council on the Operation of Regulation (EU) 2018/841 (“LULUCF Regulation”) Pursuant to Article 17(2) as Amended by Regulation (EU) 2023/839. 2024. Available online: https://ec.europa.eu (accessed on 7 March 2025).
- Islam, N.F.; Gogoi, B.; Saikia, R.; Yousaf, B.; Narayan, M.; Sarma, H. Encouraging circular economy and sustainable environmental practices by addressing waste management and biomass energy production. Reg. Sustain. 2024, 5, 100174. [Google Scholar] [CrossRef]
- He, Z.; Ding, B.; Pei, S.; Cao, H.; Liang, J.; Li, Z. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Sci. Total Environ. 2023, 905, 166917. [Google Scholar] [CrossRef] [PubMed]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Wang, L. Assessment of land use change and carbon emission: A Log Mean Divisia (LMDI) approach. Heliyon 2024, 10, e25669. [Google Scholar] [CrossRef]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Organic Farming Climate Change Mitigation and Beyond. In Understanding Agriculture’s Share of Greenhouse Gas Emissions and Where They Come; IFOAM Organics Europe: Brussels, Belgium, 2024; Available online: https://read.organicseurope.bio/publication/organic-farming-climate-change-mitigation-and-beyond/understanding-agricultures-share-of-greenhouse-gas-emissions-and-where-they-come-from-2/ (accessed on 14 October 2024).
- European Commission. Common Agricultural Policy Performance: Programme Performance Statements. Available online: https://commission.europa.eu/strategy-and-policy/eu-budget/performance-and-reporting/programme-performance-statements/common-agricultural-policy-performance_en (accessed on 11 October 2024).
- Doukas, Y.E.; Salvati, L.; Vardopoulos, I. Unraveling the European Agricultural Policy Sustainable Development Trajectory. Land 2023, 12, 1749. [Google Scholar] [CrossRef]
- Frelih Larsen, A.; Riedel, A.; Scheid, A.; Jägle, J.; Springer, K.; Bognar, J.; Wiltshire, J.; Freeman, D.; Crotty, F.; Kiresiewa, Z.; et al. Towards Climate Friendly and Resilient Agri-Food Systems in Central Eastern Europe: The Role of Agroecological Practices, Sustainable Diets, and Holistic Policies; Ecologic Institute: Berlin, Germany, 2024. [Google Scholar]
- European Commission. Conditionality in the Common Agricultural Policy (CAP). Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/income-support/conditionality_en (accessed on 17 October 2024).
- FAO. Standards on Good Agricultural and Environmental Conditions of Land—Introductory Handbook; FAO Regional Office for Europe and Central Asia: Budapesta, Hungary, 2021; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/979b293d-264d-43c0-b2c8-3b076449814b/content (accessed on 21 October 2024).
- Angileri, V.; Loudjani, P.; Serafini, F. GAEC Implementation in the European Union: Situation and Perspectives. Ital. J. Agron. 2011, 6, e2. [Google Scholar] [CrossRef]
- Borrelli, P.; Paustian, K.; Panagos, P.; Jones, A.; Schütt, B.; Lugato, E. Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A national case study. Land Use Policy 2016, 50, 408–421. [Google Scholar] [CrossRef]
- Paraschivu, M.; Partal, E.; Sălceanu, C. Assessment of the Application Effects of the Derogation Covering GAEC 7 and 8 Standards on Agricultural and Environmental Condition, Food Security, Environmental Preservation, and Climate Change. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2023, 53, 139–143. [Google Scholar] [CrossRef]
- Poláková, J. Sustainability—Risk—Resilience: How Does the Case of the Good Agricultural and Environmental Conditions Measure up? Sustainability 2018, 10, 1614. [Google Scholar] [CrossRef]
- Abban, O.J.; Xing, Y.H.; Nuţă, A.C.; Nuţă, F.M.; Borah, P.S.; Ofori, C.; Jing, Y.J. Policies for carbon-zero targets: Examining the spillover effects of renewable energy and patent applications on environmental quality in Europe. Energy Econ. 2023, 126, 106954. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nuţă, A.C.; Mishra, P.; Ayad, H. The impact of informality and institutional quality on environmental footprint: The case of emerging economies in a comparative approach. J. Environ. Manag. 2023, 348, 119325. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Lorente, D.; Shahbaz, M.; Murshed, M.; Nuţă, F.M. Environmental impact of globalization: The case of central and Eastern European emerging economies. J. Environ. Manag. 2023, 341, 118018. [Google Scholar] [CrossRef]
- Kaufmann, J.; Cartsburg, M.; Staubach, L. Analyses of Socio-Economic and Environmental Effects of Agroecological Practices: A Methodological Guidance; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn and Eschborn, Germany, 2023. [Google Scholar]
- Abildtrup, J.; Audsley, E.; Fekete-Farkas, M.; Giupponi, C.; Gylling, M.; Rosato, P.; Rounsevell, M. Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: A pairwise comparison approach. Environ. Sci. Policy 2006, 9, 101–115. [Google Scholar] [CrossRef]
- Gómez, M.I.; Meemken, E.; Verteramo Chiu, L.J. Agricultural Value Chains and Social and Environmental Impacts: Trends, Challenges, and Policy Options. Background Paper for the State of Agricultural Commodity Markets (SOCO) 2020; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2020; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/d68206d0-c1e2-4b77-a113-1c4283dc8dda/content (accessed on 27 October 2024).
- Pylak, K.; Pizoń, J.; Łazuka, E. Evolution of Regional Innovation Strategies Towards the Transition to Green Energy in Europe 2014–2027. Energies 2024, 17, 5669. [Google Scholar] [CrossRef]
- Radlińska, K. Changes in the Structure of Agriculture in Central and Eastern Europe in the Light of the European Green Deal. Sustainability 2025, 17, 104. [Google Scholar] [CrossRef]
- Mincyte, D. Subsistence and Sustainability in Post-industrial Europe: The Politics of Small-Scale Farming in Europeanising Lithuania. Sociol. Rural. 2011, 51, 101–118. [Google Scholar] [CrossRef]
- Klikocka, H.; Zakrzewska, A.; Chojnacki, P. Characteristics of Models of Farms in the European Union. Sustainability 2021, 13, 4772. [Google Scholar] [CrossRef]
- European Environment Agency. Agriculture. In The European Environment—State and Outlook; European Environment Agency: Copenhagen, Denmark, 2015; Available online: https://www.eea.europa.eu/soer/2015/europe/agriculture (accessed on 1 October 2024).
- Stancu, V.; Pedersen, S.; Bech-Larsen, T.; Aschemann-Witzel, J. Food Sustainability Understanding in the Nordic-Baltic Countries. In Report of the Food Sustainability Understanding in the Nordic-Baltic Region as a Basis for a Labelling Framework in Europe Project; MAPP Centre; Aarhus University: Aarhus, Denmark, 2023. [Google Scholar]
- European Commission. EU Agricultural Outlook for the Agricultural Markets and Income 2017–2030; Directorate-General for Agriculture and Rural Development: Brussels, Belgium, 2017; Available online: https://agriculture.ec.europa.eu/system/files/2018-07/agricultural-outlook-2017-30_en_0.pdf (accessed on 11 September 2024).
- European Commission. EU Agricultural Outlook for the Agricultural Markets and Income 2023–2035; Directorate-General for Agriculture and Rural Development, Publications Office of the European Union: Luxembourg, 2023; Available online: https://agriculture.ec.europa.eu/system/files/2024-01/agricultural-outlook-2023-report_en_0.pdf (accessed on 21 October 2024).
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- FAO. The share of agriculture in total greenhouse gas emissions. In Global, Regional and Country Trends 1990–2017; FAOSTAT Analytical Brief Series No. 1; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/7fe33d41-3969-4f87-95c5-4b897229350b/content (accessed on 11 October 2024).
- Nuţă, F.M.; Nuţă, A.C.; Zamfir, C.G.; Petrea, S.-M.; Munteanu, D.; Cristea, D.S. National Carbon Accounting—Analyzing the Impact of Urbanization and Energy-Related Factors upon CO2 Emissions in Central–Eastern European Countries by Using Machine Learning Algorithms and Panel Data Analysis. Energies 2021, 14, 2775. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions in 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 9 October 2024).
- Valin, H.; Peters, D.; van den Berg, M.; Frank, S.; Havlik, P.; Forsell, N.; Hamelinck, C. The Land Use Change Impact of Biofuels Consumed in the EU: Quantification of Area and Greenhouse Gas Impacts; Ecofys Netherlands B.V.; IIASA; E4tech: Utrecht, The Netherlands, 2015; Available online: https://climate.ec.europa.eu/system/files/2016-11/finalreport_agricsoils_en.pdf (accessed on 21 January 2025).
- Nazarov, D.; Sulimin, V.; Shvedov, V.; Larionova, N. Renewable energy sources for the agricultural sector. E3S Web Conf. 2024, 541, 101002. [Google Scholar] [CrossRef]
- Lin, B.; Johnson-Chappell, M.J.; Vandermeer, J.; Smith, G.; Quintero, E.; Kerr, R.; Griffith, D.; Ketcham, S.; Latta, S.; McMichael, P.; et al. Effects of industrial agriculture on climate change and the mitigation potential of small-scale agro-ecological farms. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 1–18. [Google Scholar] [CrossRef]
- Flammini, A.; Pan, X.; Tubiello, F.N.; Qiu, S.Y.; Souza, L.R.; Quadrelli, R.; Bracco, S.; Benoit, P.; Sims, R. Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970–2019. Earth Syst. Sci. Data 2022, 14, 811–821. [Google Scholar] [CrossRef]
- Hristov, J.; Toreti, A.; Pérez Domínguez, I.; Dentener, F.; Fellmann, T.; Elleby, C.; Ceglar, A.; Fumagalli, D.; Niemeyer, S.; Cerrani, I.; et al. Analysis of Climate Change Impacts on EU Agriculture by 2050; JRC PESETA IV Project—Task 3; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Song, J.; Wei, J.; Zhou, W.; Zhang, J.; Liu, W.; Zhang, F.; Zhou, H. Assessing the Influence Factors of Agricultural Soils’ CH4/N2O Emissions Based on the Revised EDGAR Datasets over Hainan Island in China. Atmosphere 2023, 14, 1547. [Google Scholar] [CrossRef]
- Vaghar Seyedin, S.M.; Zeidi, A.; Chamanehpour, E.; Nasri, M.H.F.; Vargas-Bello-Pérez, E. Methane Emission: Strategies to Reduce Global Warming in Relation to Animal Husbandry Units with Emphasis on Ruminants. Sustainability 2022, 14, 16897. [Google Scholar] [CrossRef]
- Ghassemi Nejad, J.; Ju, M.-S.; Jo, J.-H.; Oh, K.-H.; Lee, Y.-S.; Lee, S.-D.; Kim, E.-J.; Roh, S.; Lee, H.-G. Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies. Animals 2024, 14, 435. [Google Scholar] [CrossRef]
- Bi, H.; Neethirajan, S. Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning. Climate 2024, 12, 223. [Google Scholar] [CrossRef]
- Evangelista, C.; Milanesi, M.; Pietrucci, D.; Chillemi, G.; Bernabucci, U. Enteric Methane Emission in Livestock Sector: Bibliometric Research from 1986 to 2024 with Text Mining and Topic Analysis Approach by Machine Learning Algorithms. Animals 2024, 14, 3158. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Mahmood, A.; Awan, M.I.; Barbanti, L.; Seleiman, M.F.; Bakhsh, G.; Alkharabsheh, H.M.; Babur, E.; Shao, J.; et al. Management Strategies to Mitigate N2O Emissions in Agriculture. Life 2022, 12, 439. [Google Scholar] [CrossRef]
- Tang, Y.; Qiao, Y.; Ma, Y.; Huang, W.; Komal, K.; Miao, S. Quantifying greenhouse gas emissions in agricultural systems: A comparative analysis of process models. Ecol. Model. 2024, 490, 110646. [Google Scholar] [CrossRef]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Climate Change Adaptation in the Agriculture Sector in Europe. EEA Report No 4/2019. Available online: https://www.eea.europa.eu/en/analysis/publications/cc-adaptation-agriculture (accessed on 9 November 2024).
- Verschuuren, J. Achieving agricultural greenhouse gas emission reductions in the EU post-2030: What options do we have? Rev. Eur. Comp. Int. Environ. Law 2022, 31, 246–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șargu, L.; Ignat, G.; Timuș, A.; Prigoreanu, I.; Șargu, N. Economic and Energy Assessment of Emissions from European Agriculture: A Comparative Analysis of Regional Sustainability and Resilience. Sustainability 2025, 17, 2582. https://doi.org/10.3390/su17062582
Șargu L, Ignat G, Timuș A, Prigoreanu I, Șargu N. Economic and Energy Assessment of Emissions from European Agriculture: A Comparative Analysis of Regional Sustainability and Resilience. Sustainability. 2025; 17(6):2582. https://doi.org/10.3390/su17062582
Chicago/Turabian StyleȘargu, Lilia, Gabriela Ignat, Angela Timuș, Ioan Prigoreanu, and Nicu Șargu. 2025. "Economic and Energy Assessment of Emissions from European Agriculture: A Comparative Analysis of Regional Sustainability and Resilience" Sustainability 17, no. 6: 2582. https://doi.org/10.3390/su17062582
APA StyleȘargu, L., Ignat, G., Timuș, A., Prigoreanu, I., & Șargu, N. (2025). Economic and Energy Assessment of Emissions from European Agriculture: A Comparative Analysis of Regional Sustainability and Resilience. Sustainability, 17(6), 2582. https://doi.org/10.3390/su17062582