Coupling Coordination Analysis of Water, Energy, and Carbon Footprints for Wastewater Treatment Plants
Abstract
:1. Introduction
2. Methods and Data Sources
2.1. Environmental Footprint Evaluation
2.1.1. System Boundary
2.1.2. Water Footprints
2.1.3. Energy and Carbon Footprints
2.2. Water–Energy–Carbon Coupling Indicator
2.3. Life Cycle Inventory and Data Sources
3. Results
3.1. Environmental Footprints
3.2. Water–Energy–Carbon Coupling
3.3. Regional Disparity of Electricity-Related Carbon and Energy Footprints
4. Policy Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Zhang, Q.; Hu, L.; Geng, Y.; Liu, C. Understanding the greenhouse gas emissions from China’s wastewater treatment plants: Based on life cycle assessment coupled with statistical data. Ecotoxicol. Environ. Saf. 2023, 259, 115007. [Google Scholar] [CrossRef] [PubMed]
- Obaideen, K.; Shehata, N.; Sayed, E.; Abdelkareem, M.; Mahmoud, M.; Olabi, A. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Taweesan, A.; Kanabkaew, T.; Surinkul, N.; Polprasert, C. Convenient solutions to inconvenient truth: Domestic wastewater management-based approaches to sustainable development goal no. 6. Environ. Sustain. Indic. 2023, 18, 100255. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 30 September 2024).
- Koutsou, O.; Gatidou, G.; Stasinakis, A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. J. Clean. Prod. 2018, 188, 851–859. [Google Scholar] [CrossRef]
- Yan, X.; Qiu, D.; Zheng, S.; Cheng, K.; Han, Y.; Sun, J.; Su, X. Spatial and temporal distribution of greenhouse gas emissions from municipal wastewater treatment plants in China from 2005 to 2014. Earth’s Future 2019, 7, 340–350. [Google Scholar] [CrossRef]
- Capodaglio, A. Energy use and decarbonisation of the water sector: A comprehensive review of issues, approaches, and technological options. Environ. Technol. Rev. 2025, 14, 40–68. [Google Scholar] [CrossRef]
- Knappe, J.; Somlai, C.; Gill, L. Assessing the spatial and temporal variability of greenhouse gas emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement. Biogeosciences 2022, 19, 1067–1085. [Google Scholar] [CrossRef]
- Dickin, S.; Bayoumi, M.; Giné, R.; Andersson, K.; Jiménez, A. Sustainable sanitation and gaps in global climate policy and financing. npj Clean Water 2020, 3, 24. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, X.; Dong, X.; Liu, Y. Efficiency assessment of urban wastewater treatment plants in China: Considering greenhouse gas emissions. Resources. Conserv. Recycl. 2017, 120, 157–165. [Google Scholar] [CrossRef]
- Liao, X.; Tian, Y.; Gan, Y.; Ji, J. Quantifying urban wastewater treatment sector’s greenhouse gas emissions using a hybrid life cycle analysis method–An application on Shenzhen city in China. Sci. Total Environ. 2020, 745, 141176. [Google Scholar] [CrossRef]
- UN-WATER. Progress on Wastewater Treatment–2024 Update. Available online: https://www.unwater.org/publications/progress-wastewater-treatment-2024-update (accessed on 30 September 2024).
- Wang, C.; Miao, Z.; Chen, X.; Cheng, Y. Factors affecting changes of greenhouse gas emissions in Belt and Road countries. Renew. Sustain. Energy Rev. 2021, 147, 111220. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Li, M.; Wang, Q.; Dong, S.; Zhao, W.; Tran, L.-S.P.; Sun, Y.; et al. Effects of agricultural activities on energy-carbon-water nexus of the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 331, 129995. [Google Scholar] [CrossRef]
- Hoekstra, A.; Chapagain, A.; Aldaya, M.; Mekonnen, M. The Water Footprint Assessment Manual: Setting the Global Standard. Available online: https://waterfootprint.org/resources/TheWaterFootprintAssessmentManual_English.pdf (accessed on 30 September 2024).
- Chen, W.; Hong, J.; Wang, C.; Sun, L.; Zhang, T.; Zhai, Y.; Zhang, Q. Water footprint assessment of gold refining: Case study based on life cycle assessment. Ecol. Indic. 2021, 122, 107319. [Google Scholar] [CrossRef]
- Shao, L.; Chen, G. Water footprint assessment for wastewater treatment: Method, indicator, and application. Environ. Sci. Technol. 2013, 47, 7787–7794. [Google Scholar] [CrossRef] [PubMed]
- Morera, S.; Corominas, L.; Poch, M.; Aldaya, M.; Comas, J. Water footprint assessment in wastewater treatment plants. J. Clean. Prod. 2016, 112, 4741–4748. [Google Scholar] [CrossRef]
- Teodosiu, C.; Barjoveanu, G.; Sluser, B.; Popa, S.; Trofin, O. Environmental assessment of municipal wastewater discharges: A comparative study of evaluation methods. Int. J. Life Cycle Assess. 2016, 21, 395–411. [Google Scholar] [CrossRef]
- Gu, Y.; Dong, Y.N.; Wang, H.; Keller, A.; Xu, J.; Chiramba, T.; Li, F. Quantification of the water.; energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecol. Indic. 2016, 60, 402–409. [Google Scholar] [CrossRef]
- Gómez-Llanos, E.; Durán-Barroso, P.; Matías-Sánchez, A. Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator. J. Clean. Prod. 2018, 198, 463–471. [Google Scholar] [CrossRef]
- Gómez-Llanos, E.; Matías-Sánchez, A.; Durán-Barroso, P. Wastewater treatment plant assessment by quantifying the carbon and water footprint. Water 2020, 12, 3204. [Google Scholar] [CrossRef]
- ISO 14067; Greenhouse Gases-Carbon Footprint of Products-Requirements and Guidelines for Quantification. ISO: Geneva, Switzerland, 2018.
- Zhou, X.; Yang, F.; Yang, F.; Feng, D.; Pan, T.; Liao, H. Analyzing greenhouse gas emissions from municipal wastewater treatment plants using pollutants parameter normalizing method: A case study of Beijing. J. Clean. Prod. 2022, 376, 134093. [Google Scholar] [CrossRef]
- Shrestha, A.; Bhattarai, T.; Ghimire, S.; Mainali, B.; Treichel, H.; Paudel, S. Estimation of greenhouse gases emission from domestic wastewater in Nepal: A scenario-based analysis applicable for developing countries. Chemosphere 2022, 300, 134501. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ye, W.; Wu, G.; Li, R.; Guan, Y.; Zhang, W.; Wang, J.; Shan, Y.; Hubacek, K. Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019. Sci. Data 2022, 9, 317. [Google Scholar] [CrossRef]
- Xi, J.; Gong, H.; Zhang, Y.; Da, X.; Chen, L. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM). Sci. Total Environ. 2021, 797, 148967. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.L.; Ngo, H.H.; Guo, W.; Nghiem, L.D.; Qian, G.; Liu, Q.; Liu, J.; Chen, Z.; Bui, X.T.; Mainali, B. Assessing the environmental impacts and greenhouse gas emissions from the common municipal wastewater treatment systems. Sci. Total Environ. 2021, 801, 149676. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Keller, A.A.; Li, X.; Feng, S.; Dong, Y.-N.; Li, F. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA.; Germany.; China and South Africa. Appl. Energy 2016, 184, 873–881. [Google Scholar] [CrossRef]
- Elshkaki, A. The impacts of material-energy-water-carbon nexus on the sustainability of lighting technologies. ACS Sustain. Chem. Eng. 2021, 9, 4224–4233. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Kandpal, B.K.; Babu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.; Mohapatra, K.; et al. The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sustain. Energy Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Gómez-Gardars, E.; Rodríguez-Macias, A.; Tena-García, J.; Fuentes-Cortés, L. Assessment of the water-energy-carbon nexus in energy systems: A multi-objective approach. Appl. Energy 2022, 305, 117872. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Han, J.; Liu, W.; Cheng, H.; Liang, B.; Wang, A. The application of footprints for assessing the sustainability of wastewater treatment plants: A review. J. Clean. Prod. 2020, 277, 124053. [Google Scholar] [CrossRef]
- Ni, X.; Huang, X.; Guo, R.; Wang, J.; Peng, K.; Zhang, W.; Zhu, Y.; Yang, W.; Wang, L.; Cai, C.; et al. Water-energy-carbon synergies and trade-offs: A daily nexus analysis for wastewater treatment plants. Resour. Conserv. Recycl. 2023, 188, 106712. [Google Scholar] [CrossRef]
- Maktabifard, M.; Awaitey, A.; Merta, E.; Haimi, H.; Zaborowska, E.; Mikola, A.; Mąkinia, J. Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region. Sci. Total Environ. 2022, 806, 150436. [Google Scholar] [CrossRef] [PubMed]
- Čuček, L.; Klemeš, J.; Kravanja, Z. A review of footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. 2012, 34, 9–20. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, the People’s Republic of China. Technical Guide for Greenhouse Gas Accounting for Collaborative Control of Pollutant Removal in Urban Sewage Treatment Plants. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201804/W020180926550238576829.pdf (accessed on 30 September 2024).
- Xiong, Y.; Zhang, J.; Chen, Y.; Guo, J.; Fang, F.; Yan, P. Geographic distribution of net-zero energy wastewater treatment in China. Renew. Sustain. Energy Rev. 2021, 150, 111462. [Google Scholar] [CrossRef]
- Anthropogenic and Natural Radiative Forcing. In Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Intergovernmental Panel on Climate Change) 659–740; Cambridge University Press: Cambridge, UK, 2014.
- Bauduin, T.; Gypens, N.; Borges, A. Seasonal and spatial variations of greenhouse gas (CO2.; CH4 and N2O) emissions from urban ponds in Brussels. Water Res. 2024, 253, 121257. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hong, J.; Xu, C. Pollutants generated by cement production in China.; their impacts.; and the potential for environmental improvement. J. Clean. Prod. 2015, 103, 61–69. [Google Scholar] [CrossRef]
- Han, D.; Yu, D.; Cao, Q. Assessment on the features of coupling interaction of the food-energy-water nexus in China. J. Clean. Prod. 2020, 249, 119379. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, M.; Long, A.; Deng, X.; Wang, H.; Hai, Y.; Wang, J.; Liu, Y. Coupling analysis of social-economic water consumption and its effects on the arid environments in Xinjiang of China based on the water and ecological footprints. J. Arid. Land 2020, 12, 73–89. [Google Scholar] [CrossRef]
- Ecology and Environment Bureau of Shandong, 2022. Available online: http://fb.sdem.org.cn:8801/zxjc/index.htm (accessed on 30 September 2024).
- Ecoinventcentre, 2024. Swiss Centre for Life Cycle Inventories. Available online: https://support.ecoinvent.org/ecoinvent-version-3.10 (accessed on 30 September 2024).
- China Urban Water Supply and Drainage Association. Urban Drainage Statistical Yearbook 2018; China Urban Water Supply and Drainage Association Press: Beijing, China, 2018. [Google Scholar]
- Ministry of Housing and Urban-Rural Development, The People’s Republic of China. China Urban-Rural Construction Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2022.
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment, The People’s Republic of China: Beijing, China, 2002. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/W020061027509896672057.pdf (accessed on 30 September 2024).
- Yapıcıoğlu, P. Grey water footprint assessment for a dye industry wastewater treatment plant using Monte Carlo simulation: Influence of reuse on minimisation of the GWF. Int. J. Glob. Warm. 2020, 21, 199–213. [Google Scholar] [CrossRef]
- Ansorge, L.; Stejskalová, L.; Dlabal, J. Effect of WWTP size on grey water footprint—Czech Republic case study. Environ. Res. Lett. 2020, 15, 104020. [Google Scholar] [CrossRef]
- Niero, M.; Pizzol, M.; Bruun, H.; Thomsen, M. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J. Clean. Prod. 2014, 68, 25–35. [Google Scholar] [CrossRef]
- Abyar, H.; Younesi, H.; Nowrouzi, M. Life cycle assessment of A2O bioreactor for meat processing wastewater treatment: An endeavor toward the achievement of environmental sustainable development. J. Clean. Prod. 2020, 257, 120575. [Google Scholar] [CrossRef]
- Shahabadi, M.; Yerushalmi, L.; Haghighat, F. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Res. 2009, 43, 2679–2687. [Google Scholar] [CrossRef]
- Bao, Z.; Sun, S.; Sun, D. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China. Int. Biodeterior. Biodegrad. 2016, 108, 108–114. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Yang, Z. Improved gray water footprint calculation method based on a mass-balance model and on fuzzy synthetic evaluation. J. Clean. Prod. 2019, 219, 377–390. [Google Scholar] [CrossRef]
- National Bureau of Statistics, People’s Republic of China. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2022.
- Smith, K.; Guo, S.; Zhu, Q.; Dong, X.; Liu, S. An evaluation of the environmental benefit and energy footprint of China’s stricter wastewater standards: Can benefit be increased? J. Clean. Prod. 2019, 219, 723–733. [Google Scholar] [CrossRef]
- Yan, P.; Qin, R.; Guo, J.; Yu, Q.; Li, Z.; Chen, Y.; Shen, Y.; Fang, F. Net-zero-energy model for sustainable wastewater treatment. Environ. Sci. Technol. 2017, 51, 1017–1023. [Google Scholar] [CrossRef]
- Hong, J.; Li, X.; Cui, Z. Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag. 2010, 30, 2362–2369. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, H.; Wu, J.; Wang, X.; Li, F. Exploring the feasibility of energy self-sufficient wastewater treatment plants: A case study in eastern China. Energy Procedia 2017, 142, 3055–3061. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W. Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China. Renew. Energy 2022, 191, 852–867. [Google Scholar] [CrossRef]
- Hao, X.; Liu, R.; Huang, X. Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res. 2015, 87, 424–431. [Google Scholar] [CrossRef] [PubMed]
P-1 | P-2 | P-3 | P-4 | P-5 | P-6 | ||
---|---|---|---|---|---|---|---|
Energy and chemical consumption a | Electricity (kWh) | 0.48 | 0.35 | 0.36 | 0.33 | 0.39 | 0.39 |
Sodium acetate (kg) | 0.24 | 1.55 × 10−2 | 0.26 | 0.36 | |||
Methanol (kg) | 9.07 × 10−2 | 6.20 × 10−2 | |||||
Polyacrylamide (g) | 2.26 | 1.37 | 1.36 | 0.94 | 1.36 | 61.64 | |
Polyferric chloride (kg) | 0.14 | 6.69 × 10−2 | 0.15 | ||||
Polymeric ferric sulfate (kg) | 8.58 × 10−2 | ||||||
Polyaluminum chloride (g) | 0.16 | 0.11 | |||||
Emissions to water a | Chemical oxygen demand (g) | 20.52 | 28.03 | 36.91 | 18.57 | 17.18 | 20.32 |
Biochemical oxygen demand (g) | 6.12 | 4.73 | 5.28 | 4.86 | 2.03 | 1.58 | |
Ammonia nitrogen (g) | 0.47 | 2.44 | 1.29 | 0.44 | 0.26 | 0.28 | |
Total nitrogen (g) | 10.95 | 9.91 | 11.32 | 8.94 | 8.66 | 9.73 | |
Total phosphorus (g) | 0.3 | 0.27 | 0.2 | 0.10 | 0.17 | 0.13 | |
Suspended solids (g) | 4.25 | 6.64 | 6.05 | 6.91 | 3.47 | 3.88 | |
Animal and vegetable oils (g) | 0.34 | 0.2 | 0.4 | 0.43 | - | - | |
Petroleum (g) | 0.13 | 0.21 | 0.39 | 0.47 | - | - | |
Anion active agent (LAS) (g) | 0.10 | - | 0.32 | - | - | - | |
Zinc (g) | - | - | - | - | 5.47 × 10−2 | 1.70 × 10−2 | |
Fluoride (g) | - | 0.56 | - | - | - | - | |
Emissions to air | Methane b (g) | 2.48 | 1.37 | 9.22 | 3.54 | 5.16 | 11.58 |
Nitrous oxide b (g) | 0.54 | 0.24 | 0.29 | 0.31 | 0.23 | 0.34 | |
Ammonia c (g) | 0.16 | 8.33 × 10−2 | - | - | - | - | |
Hydrogen sulfide c (g) | 7.00 × 10−3 | 5.67 × 10−3 |
Removal of Pollutants (g/m3) | Treatment Capacity (104 m3/d) | Dry Sludge Yield (g/m3) | |||
---|---|---|---|---|---|
Biochemical Oxygen Demand | Chemical Oxygen Demand | Total Nitrogen | |||
P-1 | 131.26 | 226.74 | 66.59 | 4 | 272.03 |
P-2 | 82.89 | 221.71 | 30.09 | 2 | 271.34 |
P-3 | 95.60 | 275.69 | 37.34 | 5 | 203.73 |
P-4 | 87.78 | 244.46 | 39.30 | 4 | 263.09 |
P-5 | 91.13 | 179.34 | 28.74 | 6 | 147.43 |
P-6 | 121.41 | 294.79 | 43.85 | 20 | 187.14 |
Removal of Pollutants (g/m3) | Electricity (kWh/m3) | ||||||
---|---|---|---|---|---|---|---|
Biochemical Oxygen Demand | Chemical Oxygen Demand | Ammonia Nitrogen | Total Phosphorous | Total Nitrogen | |||
Jinan (N = 9) | Max | 168.78 | 391.80 | 50.82 | 6.51 | 52.60 | 0.53 |
Min | 21.34 | 82.80 | 14.85 | 1.75 | 10.78 | 0.24 | |
Mean | 124.42 | 308.25 | 33.89 | 5.17 | 33.81 | 0.28 | |
Qingdao (N = 11) | Max | 151.22 | 502.50 | 44.68 | 16.43 | 47.34 | 0.95 |
Min | 39.60 | 166.30 | 8.74 | 1.57 | 4.49 | 0.22 | |
Mean | 117.44 | 347.30 | 32.89 | 8.38 | 37.15 | 0.36 | |
Zibo (N = 5) | Max | 119.79 | 296.90 | 38.63 | 3.71 | 54.48 | 0.55 |
Min | 66.05 | 247.70 | 18.22 | 1.81 | 20.69 | 0.21 | |
Mean | 90.68 | 265.72 | 28.90 | 3.08 | 18.42 | 0.39 | |
Zaozhuang (N = 6) | Max | 150.23 | 455.20 | 27.58 | 5.74 | 31.26 | 0.55 |
Min | 47.18 | 150.00 | 18.95 | 0.81 | 14.98 | 0.21 | |
Mean | 82.72 | 234.84 | 21.67 | 3.71 | 23.26 | 0.35 | |
Dongying (N = 4) | Max | 140.51 | 337.80 | 34.20 | 4.46 | 28.58 | 0.35 |
Min | 36.88 | 241.30 | 17.56 | 2.01 | 14.81 | 0.21 | |
Mean | 105.44 | 282.93 | 25.53 | 3.40 | 25.15 | 0.29 | |
Yantai (N = 12) | Max | 240.96 | 402.10 | 57.42 | 11.74 | 59.18 | 1.66 |
Min | 46.75 | 195.80 | 14.35 | 1.34 | 12.43 | 0.25 | |
Mean | 139.81 | 313.62 | 33.34 | 5.03 | 40.85 | 0.44 | |
Weifang (N = 11) | Max | 314.13 | 852.60 | 49.82 | 5.14 | 55.21 | 0.43 |
Min | 44.87 | 192.80 | 20.61 | 1.81 | 20.09 | 0.25 | |
Mean | 143.74 | 381.03 | 30.83 | 3.32 | 31.28 | 0.33 | |
Jining (N = 8) | Max | 111.00 | 322.40 | 31.33 | 2.45 | 30.02 | 0.35 |
Min | 25.61 | 62.60 | 10.16 | 1.30 | 10.63 | 0.18 | |
Mean | 75.79 | 175.87 | 19.81 | 1.79 | 19.45 | 0.28 | |
Taian (N = 5) | Max | 131.90 | 322.10 | 47.07 | 7.05 | 57.53 | 0.46 |
Min | 71.95 | 212.20 | 23.27 | 1.74 | 18.69 | 0.25 | |
Mean | 102.34 | 286.40 | 32.04 | 4.16 | 33.12 | 0.33 | |
Weihai (N = 4) | Max | 146.60 | 366.90 | 34.06 | 4.76 | 44.74 | 0.53 |
Min | 74.54 | 170.70 | 24.09 | 2.13 | 30.00 | 0.33 | |
Mean | 101.45 | 267.32 | 30.34 | 3.85 | 37.05 | 0.41 | |
Rizhao (N = 10) | Max | 111.63 | 588.80 | 33.21 | 4.77 | 34.30 | 0.68 |
Min | 9.81 | 140.90 | 5.79 | 1.00 | 13.07 | 0.29 | |
Mean | 84.89 | 222.68 | 20.37 | 2.57 | 23.59 | 0.36 | |
Linyi (N = 10) | Max | 183.63 | 495.10 | 46.60 | 6.93 | 44.82 | 0.53 |
Min | 48.12 | 129.10 | 21.22 | 2.15 | 18.22 | 0.00 | |
Mean | 134.51 | 287.78 | 28.53 | 3.76 | 27.47 | 0.28 | |
Dezhou (N = 13) | Max | 144.94 | 251.50 | 39.21 | 4.51 | 37.05 | 0.60 |
Min | 24.42 | 86.30 | 12.88 | 1.55 | 12.62 | 0.19 | |
Mean | 69.81 | 183.70 | 24.71 | 2.83 | 27.66 | 0.36 | |
Liaocheng (N = 15) | Max | 490.25 | 1971.70 | 46.51 | 22.46 | 75.73 | 1.53 |
Min | 63.94 | 124.20 | 9.67 | 2.04 | 17.41 | 0.20 | |
Mean | 107.51 | 264.42 | 26.80 | 3.85 | 29.44 | 0.33 | |
Binzhou (N = 10) | Max | 156.18 | 427.90 | 50.01 | 5.29 | 49.42 | 0.67 |
Min | 71.58 | 156.20 | 18.50 | 1.00 | 12.19 | 0.23 | |
Mean | 87.03 | 291.04 | 29.46 | 3.33 | 28.18 | 0.29 | |
Heze (N = 7) | Max | 139.39 | 285.60 | 32.05 | 3.38 | 31.59 | 0.35 |
Min | 22.88 | 113.40 | 20.49 | 2.10 | 22.94 | 0.21 | |
Mean | 93.66 | 252.82 | 28.03 | 2.80 | 26.65 | 0.27 |
Environmental Footprints | Amount | Key Factors | |
---|---|---|---|
P-1 | Water footprint (m3) | 12.44 | Water footprintgrey(TN) |
Energy footprint (kg oil eq) | 0.16 | Electricity (70.73%) + sodium acetate (17.65%) | |
Carbon footprint (kg CO2 eq) | 0.93 | Electricity (62.84%) + direct GHG emissions (22.93%) + sodium acetate (7.97%) | |
P-2 | Water footprint (m3) | 11.14 | Water footprintgrey(TN) |
Energy footprint (kg oil eq) | 9.42 × 10−2 | Electricity (88.36%) | |
Carbon footprint (kg CO2 eq) | 0.58 | Electricity (73.99%) + direct GHG emissions (20.29%) | |
P-3 | Water footprint (m3) | 12.9 | Water footprintgrey(TN) |
Energy footprint (kg oil eq) | 0.13 | Electricity (64.73%) + methanol (22.48%) | |
Carbon footprint (kg CO2 eq) | 0.93 | Electricity (47.83%) + direct GHG emissions (41.13%) | |
P-4 | Water footprint (m3) | 9.93 | Water footprintgrey(TN) |
Energy footprint (kg oil eq) | 0.16 | Electricity (50.57%) + sodium acetate (39.09%) | |
Carbon footprint (kg CO2 eq) | 0.82 | Electricity (49.49%) + direct GHG emissions (25.78%) + sodium acetate (19.45%) | |
P-5 | Water footprint (m3) | 9.58 | Water footprintgrey(TN) |
Energy footprint (kg oil eq) | 0.20 | Electricity (47.15%) + sodium acetate (36.87%) | |
Carbon footprint (kg CO2 eq) | 1.02 | Electricity (46.92%) + direct GHG emissions (23.69%) + sodium acetate (18.65%) | |
P-6 | Water footprint (m3) | 10.91 | Water footprintgrey(TN) |
Energy footprint (kg oil eq) | 0.22 | Electricity (42.40%) + polyacrylamide (40.74%) + methanol (9.19%) | |
Carbon footprint (kg CO2 eq) | 1.27 | Direct GHG emissions (39.19%) + electricity (38.36%) + polyacrylamide (16.07%) |
Coupling Indicator (C) | Comprehensive Development Indicator (T) | Coupling Coordination Indicator (D) | |
---|---|---|---|
Jinan | 0.9726 | 0.7797 | 0.8708 |
Qingdao | 0.9832 | 0.8305 | 0.9036 |
Zibo | 0.9370 | 0.6118 | 0.7571 |
Zaozhuang | 0.9724 | 0.7381 | 0.8472 |
Dongying | 0.9900 | 0.7963 | 0.8879 |
Yantai | 0.9817 | 0.8097 | 0.8915 |
Weifang | 0.9935 | 0.7987 | 0.8908 |
Jining | 0.9700 | 0.5997 | 0.7627 |
Taian | 0.9893 | 0.8269 | 0.9044 |
Weihai | 0.9614 | 0.7991 | 0.8765 |
Rizhao | 0.9829 | 0.7713 | 0.8707 |
Linyi | 0.9888 | 0.7790 | 0.8776 |
Dezhou | 0.9657 | 0.6525 | 0.7938 |
Liaocheng | 0.9738 | 0.7032 | 0.8275 |
Binzhou | 0.9945 | 0.8684 | 0.9293 |
Heze | 0.9917 | 0.6606 | 0.8094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Xie, Y.; Wang, C.; Geng, Y.; Tan, X. Coupling Coordination Analysis of Water, Energy, and Carbon Footprints for Wastewater Treatment Plants. Sustainability 2025, 17, 2594. https://doi.org/10.3390/su17062594
Chen W, Xie Y, Wang C, Geng Y, Tan X. Coupling Coordination Analysis of Water, Energy, and Carbon Footprints for Wastewater Treatment Plants. Sustainability. 2025; 17(6):2594. https://doi.org/10.3390/su17062594
Chicago/Turabian StyleChen, Wei, Yuhui Xie, Chengxin Wang, Yong Geng, and Xueping Tan. 2025. "Coupling Coordination Analysis of Water, Energy, and Carbon Footprints for Wastewater Treatment Plants" Sustainability 17, no. 6: 2594. https://doi.org/10.3390/su17062594
APA StyleChen, W., Xie, Y., Wang, C., Geng, Y., & Tan, X. (2025). Coupling Coordination Analysis of Water, Energy, and Carbon Footprints for Wastewater Treatment Plants. Sustainability, 17(6), 2594. https://doi.org/10.3390/su17062594