Classification of Dragon Fruit Varieties Based on Morphological Properties: Multi-Class Classification Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning
2.1.1. Random Forests
2.1.2. Gradient Boosting
2.1.3. Support Vector Classification
3. Results and Discussion
3.1. Statistical Analysis
3.2. Evaluation Metrics
3.2.1. Based on Machine Learning Method
3.2.2. Based on Evaluation Metrics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, M.; Zhao, J. Recent Advances in Postharvest Storage and Preservation Technology of Pitaya (Dragon Fruit). J. Hortic. Sci. Biotechnol. 2024, 99, 115–129. [Google Scholar] [CrossRef]
- Attar, Ş.H.; Gündeşli, M.A.; Urün, I.; Kafkas, S.; Kafkas, N.E.; Ercisli, S.; Ge, C.; Mlcek, J.; Adamkova, A. Nutritional Analysis of Red-Purple and White-Fleshed Pitaya (Hylocereus) Species. Molecules 2022, 27, 808. [Google Scholar] [CrossRef]
- Abirami, K.; Swain, S.; Baskaran, V.; Venkatesan, K.; Sakthivel, K.; Bommayasamy, N. Distinguishing Three Dragon Fruit (Hylocereus spp.) Species Grown in Andaman and Nicobar Islands of India Using Morphological, Biochemical and Molecular Traits. Sci. Rep. 2021, 11, 2894. [Google Scholar] [CrossRef] [PubMed]
- Trindade, A.R.; Paiva, P.; Lacerda, V.; Marques, N.; Neto, L.; Duarte, A. Pitaya as a New Alternative Crop for Iberian Peninsula: Biology and Edaphoclimatic Requirements. Plants 2023, 12, 3212. [Google Scholar] [CrossRef] [PubMed]
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Massa, D.; Orlando, M.; Incrocci, L.; Mensuali-Sodi, A. Pitaya, an Attractive Alternative Crop for Mediterranean Region. Agronomy 2020, 10, 1065. [Google Scholar] [CrossRef]
- Becerra, J.A.; Lacerda, V.R. Cultivo Da Pitaia Na Espanha, Importância Da Pitaia Orgânica e Futuro Da Comercialização Da Pitaia No Mundo. In I Circuito Internacional de Pitaia: Tendências e Projeções Latino-Americanas Para a Cultura da Pitaia; Lacerda, V.R., Almeida, S., Eds.; FEPAF: Botucatu, Brazil, 2022; pp. 33–35. [Google Scholar]
- Castillo Martínez, M.; Muñoz, L.; Guzmán, M. Caracterización Morfológica y Compatibilidad Sexual de Cinco Genotipos de Pitahaya (Hylocereus undatus). Agrociencia 2005, 39, 183–194. [Google Scholar]
- Tel-Zur, N.; Mizrahi, Y.; Cisneros, A.; Mouyal, J.; Schneider, B.; Doyle, J.J. Phenotypic and Genomic Characterization of Vine Cactus Collection (Cactaceae). Genet. Resour. Crop. Evol. 2011, 58, 1075–1085. [Google Scholar] [CrossRef]
- Minh Trieu, N.; Truong Thinh, N.; Editors, A.; Biancolillo, A.; Graña, M. Quality Classification of Dragon Fruits Based on External Performance Using a Convolutional Neural Network. Appl. Sci. 2021, 11, 10558. [Google Scholar] [CrossRef]
- Tran, D.-H.; Yen, C.-R. Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.). Int. J. Agric. Biosyst. Eng. 2014, 8, 268–272. [Google Scholar] [CrossRef]
- Yusamran, N.; Hiransakolwong, N. DIP-CBML: A New Classification of Thai Dragon Fruit Species from Images. IJACSA Int. J. Adv. Comput. Sci. Appl. 2023, 14. [Google Scholar] [CrossRef]
- Fitri, Z.E.; Baskara, A.; Silvia, M.; Madjid, A.; Imron, A.M.N. Application of Backpropagation Method for Quality Sorting Classification System on White Dragon Fruit (Hylocereus Undatus). IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012085. [Google Scholar] [CrossRef]
- Trieu, N.M.; Thinh, N.T. Development of Grading System Based on Machine Learning for Dragon Fruit. In Proceedings of the AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering, Hanoi, Vietnam, 10–12 December 2021; Lecture Notes in Mechanical Engineering. Springer: Singapore, 2022; pp. 230–243. [Google Scholar] [CrossRef]
- Shaikh, H.; Wagh, Y.; Shinde, S.; Patil, S.M. Classification of Affected Fruits Using Machine Learning. Int. J. Eng. Res. Technol. 2021, 9, 519–524. [Google Scholar]
- Thanusri, R.; Vaishnavi, D.; Aranganathan, A. Detection of Quality Monitoring Using Deep Learning for Dragon Fruits. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 2384–2391. [Google Scholar]
- Kaur, A.; Kukreja, V.; Tiwari, P.; Manwal, M.; Sharma, R. Fruitful Fusion: An Accuracy-Boosting Ensemble of VGG19 and Convolutional Neural Networks for Dragon Fruit Classification. In Proceedings of the International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, Gwalior, India, 14–16 March 2024; IEEE: Gwalior, India, 2024; pp. 1–5. [Google Scholar]
- Jinpeng, W.; Kai, G.; Hongzhe, J.; Hongping, Z. Method for Detecting Dragon Fruit Based on Improved Lightweight Convolutional Neural Network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 218. [Google Scholar]
- Zhang, W.; Chen, K.; Zheng, C.; Liu, Y.; Guo, W. EasyDAM_V2: Efficient Data Labeling Method for Multishape, Cross-Species Fruit Detection. Plant Phenomics 2022, 2022, 9761674. [Google Scholar] [CrossRef] [PubMed]
- Khojastehnazhand, M.; Omid, M.; Tabatabaeefar, A. Development of a Lemon Sorting System Based on Color and Size. Afr. J. Plant Sci. 2010, 4, 122–127. [Google Scholar]
- Nandi, C.S.; Tudu, B.; Koley, C. Machine Vision Based Techniques for Automatic Mango Fruit Sorting and Grading Based on Maturity Level and Size. Smart Sens. Meas. Instrum. 2014, 8, 27–46. [Google Scholar] [CrossRef]
- Risdin, F.; Kumar Mondal, P.; Mahmudul Hassan, K. Convolutional Neural Networks (CNN) for Detecting Fruit Information Using Machine Learning Techniques. IOSR J. Comput. Eng. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Kumari Behera, S.; Kumar Rath, A.; Kumar Sethy, P. Fruit Recognition Using Support Vector Machine Based on Deep Features. Karbala Int. J. Mod. Sci. 2020, 6, 16. [Google Scholar] [CrossRef]
- Tho, T.P.; Thinh, N.T.; Bich, N.H. Design and Development of the Vision Sorting System. In Proceedings of the 3rd International Conference on Green Technology and Sustainable Development (GTSD), Kaohsiung, Taiwan, 24–25 November 2016; pp. 217–223. [Google Scholar] [CrossRef]
- Istiadi, A.; Sulistiyanti, S.R.; Herlinawati; Fitriawan, H. Model Design of Tomato Sorting Machine Based on Artificial Neural Network Method Using Node MCU Version 1.0. J. Phys. Conf. Ser. 2019, 1376, 012026. [Google Scholar] [CrossRef]
- Vijayakumar, T.; Vinothkanna, M.R. Mellowness Detection of Dragon Fruit Using Deep Learning Strategy. Artic. J. Innov. Image Process. 2020, 2, 35–43. [Google Scholar] [CrossRef]
- Hakim, L.; Kristanto, S.P.; Yusuf, D.; Shodiq, M.N.; Setiawan, W.A. Disease Detection of Dragon Fruit Stem Based on The Combined Features of Color and Texture. INTENSIF 2021, 5, 161–175. [Google Scholar] [CrossRef]
- Wulanningrum, R.; Vera, N.; Lelitavistara, W. Discrete Cosine Transform Untuk Identifikasi Citra Hylocereus Costaricensis. Simetris J. Tek. Mesin Elektro Ilmu Komput. 2015, 6, 353–360. [Google Scholar] [CrossRef]
- Bimantaka, R.D.M. Identifikasi Kematangan Buah Naga Merah Menggunakan Metode Backpropagation Berbasis Android; Universitas Teknologi Yogyakarta: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Le Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef]
- Tel-Zur, N.; Abbo, S.; Bar-Zvi, D.; Mizrahi, Y. Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): Evidence from hybridization and cytological studies. Ann. Bot. 2004, 94, 527–534. [Google Scholar] [CrossRef]
- Hoa, T.T.; Clark, C.J.; Waddell, B.C.; Woolf, A.B. Postharvest quality of dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biol. Technol. 2006, 41, 62–69. [Google Scholar] [CrossRef]
- Kabas, O.; Ozmerzi, A. Determining The Mechanical Properties of Cherry Tomato Varieties for Handling. J. Texture Stud. 2008, 39, 199–209. [Google Scholar] [CrossRef]
- Chandio, F.A.; Li, Y.; Ma, Z.; Ahmad, F.; Syed, T.N.; Shaikh, S.A.; Tunio, M.H. Influences of Moisture Content and Compressive Loading Speed on the Mechanical Properties of Maize Grain Orientations. Int. J. Agric. Biol. Eng. 2021, 14, 41–49. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Kitchaiya, P.; Pholpho, T.; Mahuttanyavanitch, W. Physical and Mechanical Properties of Jatropha curcas L. Fruits, Nuts and Kernels. Biosyst. Eng. 2007, 97, 201–207. [Google Scholar] [CrossRef]
- Ortiz, C.; Blanes, C.; Gonzalez-Planells, P.; Rovira-Más, F. Non-Destructive Evaluation of White-Flesh Dragon Fruit Decay with a Robot. Horticulturae 2023, 9, 1286. [Google Scholar] [CrossRef]
- Ecer, O.; Yetgin, Z.; Çelik, T. Air Write Letter Recognition Using Random Forest Classification on Arduino Dataset. Int. J. Sci. Technol. Res. 2018, 4, 1–9. [Google Scholar]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees Theory and Applications, 2nd ed.; World Scientific Publishing Co., Pte., Ltd.: Singapore, 2014. [Google Scholar]
- Sullivan, W. Machine Learning for Beginners Guide Algorithms; Healthy Pragmatic Solutions Inc.: Westlake Village, CA, USA, 2017; ISBN 2013206534. [Google Scholar]
- Akın, P.; Terzi, Y. Dengesiz Veri Setli Sağkalım Verilerinde Cox Regresyon ve Rastgele Orman Yöntemlerin Karşılaştırılması. Veri Bilim. 2020, 3, 21–25. [Google Scholar]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? In Proceedings of the Machine Learning and Data Mining in Pattern Recognition, Berlin, Germany, 13–20 July 2012; Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence. Springer: Berlin/Heidelberg, Germany; Volume 7376, pp. 154–168. [Google Scholar] [CrossRef]
- Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine Author. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Flores, V.; Keith, B. Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry. Complexity 2019, 2019, 1536716. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial. Front. Neurorobot. 2013, 7, 63623. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.; Saitta, L. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V.N. An Overview of Statistical Learning Theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Lu, W.; Wang, W.; Leung, A.Y.T.; Lo, S.M.; Yuen, R.K.K.; Xu, Z.; Fan, H. Air Pollutant Parameter Forecasting Using Support Vector Machines. Proc. Int. Jt. Conf. Neural Netw. 2002, 1, 630–635. [Google Scholar] [CrossRef]
- Hamel, L.H. Knowledge Discovery with Support Vector Machines; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kecman, V. Support Vector Machines—An Introduction. In Support Vector Machines: Theory and Application; Wang, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–47. [Google Scholar]
- Ding, Z. Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and Their Application in Bioinformatics; Georgia State University: Atlanta, GA, USA, 2011. [Google Scholar]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Bekkar, M.; Kheliouane Djemaa, D.; Akrouf Alitouche, D. Evaluation Measures for Models Assessment over Imbalanced Data Sets. J. Inf. Eng. Appl. 2013, 3, 27–38. [Google Scholar]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Farhadpour, S.; Warner, T.A.; Maxwell, A.E. Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices. Remote Sens. 2024, 16, 533. [Google Scholar] [CrossRef]
- Jurman, G.; Riccadonna, S.; Furlanello, C. A Comparison of MCC and CEN Error Measures in Multi-Class Prediction. PLoS ONE 2012, 7, e41882. [Google Scholar] [CrossRef] [PubMed]
- Tallón-Ballesteros, A.J.; Riquelme, J.C. Data Mining Methods Applied to a Digital Forensics Task for Supervised Machine Learning. Stud. Comput. Intell. 2014, 555, 413–428. [Google Scholar] [CrossRef]
- Delgado, R.; Tibau, X.A. Why Cohen’s Kappa Should Be Avoided as Performance Measure in Classification. PLoS ONE 2019, 14, e0222916. [Google Scholar] [CrossRef]
Stiffness Skin (N) | Deformation (mm) | Firmness (Nmm−1) | TSS (Brix) | Mass (g) | Sphericity (%) | Volume (mm3) | Area (mm2) | |
---|---|---|---|---|---|---|---|---|
Min | 6.10 | 2.46 | 1.36 | 6.80 | 85.86 | 62.91 | 1,369,561.85 | 14,932.41 |
Max | 41.39 | 15.40 | 8.98 | 20.27 | 336.50 | 93.32 | 6,950,278.72 | 44,709.63 |
Std Dev | 10.44 | 2.52 | 1.34 | 3.54 | 49.48 | 6.26 | 1,174,591.64 | 6107.63 |
Ave | 22.33 | 7.00 | 4.45 | 12.96 | 235.41 | 82.37 | 4,269,238.65 | 31,818.14 |
Skewness | −0.07 | 0.60 | 0.62 | 0.31 | 0.25 | −0.57 | 0.27 | −0.01 |
Curtosis | −1.09 | 0.27 | 0.27 | −1.16 | −0.22 | 0.07 | 0.01 | −0.13 |
Perimeter (mm) | Major Diagonal Diameter (mm) | Minor Diagonal Diameter (mm) | L | a | b | c | h | |
Min | 511.20 | 102.95 | 56.44 | 38.10 | 31.71 | 0.02 | 31.79 | 0.02 |
Max | 801.07 | 147.12 | 112.66 | 71.53 | 46.23 | 9.52 | 45.62 | 17.75 |
Std Dev | 58.29 | 9.80 | 11.34 | 6.20 | 3.73 | 2.31 | 3.73 | 3.93 |
Ave | 686.31 | 128.71 | 90.31 | 48.24 | 38.82 | 4.07 | 38.92 | 6.32 |
Skewness | 0.01 | 0.30 | −0.41 | 2.02 | −0.33 | 0.34 | −0.25 | 0.57 |
Curtosis | −0.24 | −0.48 | −0.06 | 5.34 | −0.99 | −0.72 | −1.10 | −0.29 |
Number of Observations: 224 |
Metrics | Random Forest | Gradient Boosting | Support Vector Machine |
---|---|---|---|
Accuracy | 0.9866 | 0.9727 | 0.9655 |
Accuracy (Balanced) | 0.9891 | 0.9756 | 0.9694 |
Recall (Macro) | 0.9891 | 0.9756 | 0.9694 |
Recall (Weighted) | 0.9866 | 0.9727 | 0.9655 |
Precision (Macro) | 0.9823 | 0.9610 | 0.9584 |
Precision (Weighted) | 0.9897 | 0.9814 | 0.9761 |
Cohen’s Kappa | 0.9809 | 0.9625 | 0.9516 |
F1-Score (Macro) | 0.9870 | 0.9745 | 0.9672 |
F1-Score (Weighted) | 0.9839 | 0.9625 | 0.9568 |
Matthews Correlation Coefficient | 0.9817 | 0.9640 | 0.9539 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ercan, U.; Kabas, O.; Kabaş, A.; Moiceanu, G. Classification of Dragon Fruit Varieties Based on Morphological Properties: Multi-Class Classification Approach. Sustainability 2025, 17, 2629. https://doi.org/10.3390/su17062629
Ercan U, Kabas O, Kabaş A, Moiceanu G. Classification of Dragon Fruit Varieties Based on Morphological Properties: Multi-Class Classification Approach. Sustainability. 2025; 17(6):2629. https://doi.org/10.3390/su17062629
Chicago/Turabian StyleErcan, Uğur, Onder Kabas, Aylin Kabaş, and Georgiana Moiceanu. 2025. "Classification of Dragon Fruit Varieties Based on Morphological Properties: Multi-Class Classification Approach" Sustainability 17, no. 6: 2629. https://doi.org/10.3390/su17062629
APA StyleErcan, U., Kabas, O., Kabaş, A., & Moiceanu, G. (2025). Classification of Dragon Fruit Varieties Based on Morphological Properties: Multi-Class Classification Approach. Sustainability, 17(6), 2629. https://doi.org/10.3390/su17062629