Research on China’s Carbon Footprint Accounting Based on a High-Precision CO2 Emission Inventory
Abstract
:1. Introduction
2. Methods and Data
2.1. Input–Output (IO) Model
2.1.1. Single-Regional Input–Output (SRIO) Model
2.1.2. Multi-Regional Input–Output (MRIO) Model
2.1.3. Environmentally Extended Multi-Regional Input–Output (EE-MRIO) Model
2.2. Calculation of the Carbon Footprint
2.2.1. Calculation of the Carbon Footprint from a Production Responsibility Perspective
2.2.2. Calculation of the Carbon Footprint from a Consumption Responsibility Perspective
2.2.3. Calculation of the Carbon Footprint from a Shared Responsibility Perspective
2.2.4. Calculation of Carbon Footprint Transfer
2.3. Data
2.3.1. IO Table
2.3.2. CO2 Emission Inventory
3. Results and Discussion
3.1. Size of the Carbon Footprint
3.1.1. Carbon Footprint from a Production Responsibility Perspective
Regional Carbon Footprint
Sectoral Carbon Footprint
3.1.2. Carbon Footprint from a Consumption Responsibility Perspective
Regional Carbon Footprint
Sectoral Carbon Footprint
3.1.3. Carbon Footprint Under the Shared Responsibility Principle and Emission Reduction Suggestions
Regional Carbon Footprint
Sectoral Carbon Footprint
3.2. Transfer of the Carbon Footprint
3.2.1. Transfer of the Regional Carbon Footprint
3.2.2. Transfer of the Sectoral Carbon Footprint
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Output | Intermediate Use | Final Use | Total Output | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region 1 | Region 2 | … | Region m | Region 1 | Region 2 | … | Region m | ||||||||||
Input | Sector 1 | … | Sector n | Sector 1 | … | Sector n | … | Sector 1 | … | Sector n | |||||||
Intermediate input | Region 1 | Sector 1 | … | … | … | … | … | ||||||||||
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | ||
Sector n | … | … | … | … | |||||||||||||
Region 2 | Sector 1 | … | … | … | … | … | |||||||||||
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | ||
Sector n | … | … | … | … | … | ||||||||||||
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Region m | Sector 1 | … | … | … | … | … | |||||||||||
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | ||
Sector n | … | … | … | … | … | ||||||||||||
Initial input | … | … | … | … | |||||||||||||
Total input | … | … | … | … |
Sector Number | Sector Name |
---|---|
1 | Agriculture, forestry, animal husbandry, and fishery |
2 | Mining and washing of coal |
3 | Extraction of petroleum and natural gas |
4 | Mining and processing of metal ores |
5 | Mining and processing of nonmetal and other ores |
6 | Food and tobacco processing |
7 | Textile industry |
8 | Manufacture of leather, fur, feather, and related products |
9 | Processing of timber and furniture |
10 | Manufacture of paper, printing, and articles for culture, education, and sport activity |
11 | Processing of petroleum, coking, processing of nuclear fuel |
12 | Manufacture of chemical products |
13 | Manufacture of non-metallic mineral products |
14 | Smelting and processing of metals |
15 | Manufacture of metal products |
16 | Manufacture of general purpose machinery |
17 | Manufacture of special purpose machinery |
18 | Manufacture of transport equipment |
19 | Manufacture of electrical machinery and equipment |
20 | Manufacture of communication equipment, computers, and other electronic equipment |
21 | Manufacture of measuring instruments |
22 | Other manufacturing and waste resources |
23 | Repair of metal products, machinery, and equipment |
24 | Production and distribution of electric power and heat power |
25 | Production and distribution of gas |
26 | Production and distribution of tap water |
27 | Construction |
28 | Wholesale and retail trades |
29 | Transport, storage, and postal services |
30 | Accommodation and catering |
31 | Information transfer, software, and information technology services |
32 | Finance |
33 | Real estate |
34 | Leasing and commercial services |
35 | Scientific research |
36 | Polytechnic services |
37 | Administration of water, environment, and public facilities |
38 | Resident, repair, and other services |
39 | Education |
40 | Health care and social work |
41 | Culture, sports, and entertainment |
42 | Public administration, social insurance, and social organizations |
References
- Wackernagel, M.; Rees, W.E. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996. [Google Scholar]
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 1–11. [Google Scholar]
- Barthelmie, R.J.; Morris, S.D.; Schechter, P. Carbon neutral Biggar: Calculating the community carbon footprint and renewable energy options for footprint reduction. Sustain. Sci. 2008, 3, 267–282. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. The carbon footprint of UK households 1990–2004: A socio-economically disaggregated, quasi-multi-regional input–output model. Ecol. Econ. 2009, 68, 2066–2077. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Peters, G.P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Larsen, H.N.; Hertwich, E.G. The case for consumption-based accounting of greenhouse gas emissions to promote local climate action. Environ. Sci. Policy 2009, 12, 791–798. [Google Scholar] [CrossRef]
- Kitzes, J.; Galli, A.; Bagliani, M.; Barrett, J.; Dige, G.; Ede, S.; Erb, K.; Giljum, S.; Haberl, H.; Hails, C.; et al. A research agenda for improving national Ecological Footprint accounts. Ecol. Econ. 2009, 68, 1991–2007. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 6 March 2025).
- Kenny, T.; Gray, N.F. Comparative performance of six carbon footprint models for use in Ireland. Environ. Impact Assess. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- Padgett, J.P.; Steinemann, A.C.; Clarke, J.H.; Vandenbergh, M.P. A comparison of carbon calculators. Environ. Impact Assess. 2008, 28, 106–115. [Google Scholar] [CrossRef]
- Leontief, W.W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 1936, 18, 105–125. [Google Scholar] [CrossRef]
- Chen, G.; Hadjikakou, M.; Wiedmann, T. Urban carbon transformations: Unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis. J. Clean. Prod. 2016, 163, 224–240. [Google Scholar] [CrossRef]
- Kucukvar, M.; Samadi, H. Linking national food production to global supply chain impacts for the energy-climate challenge: The cases of the EU-27 and Turkey. J. Clean. Prod. 2015, 108, 395–408. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Weber, C.L.; Matthews, H.S. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 2008, 66, 379–391. [Google Scholar] [CrossRef]
- Friedrich, E.; Pillay, S.; Buckley, C.A. Carbon footprint analysis for increasing water supply and sanitation in South Africa: A case study. J. Clean. Prod. 2009, 17, 1–12. [Google Scholar] [CrossRef]
- Schmidt, H.-J. Carbon footprinting, labelling and life cycle assessment. Int. J. Life Cycle Assess. 2009, 14, 6–9. [Google Scholar] [CrossRef]
- Zawartka, P.; Burchart-Korol, D.; Blaut, A. Model of Carbon Footprint Assessment for the Life Cycle of the System of Wastewater Collection, Transport and Treatment. Sci. Rep. 2020, 10, 5799. [Google Scholar] [CrossRef] [PubMed]
- ISO 14067; Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication. International Organization for Standardization: Geneva, Switzerland, 2012.
- Minx, J.; Peters, G.; Wiedmann, T.; Barrett, J. GHG emissions in the global supply chain of food products. In Proceedings of the International Input–Output Meeting on Managing the Environment, Seville, Spain, 9–11 July 2008. [Google Scholar]
- Dong, X.; Jiang, Q.; Wang, J. Assessing Embodied Carbon Emission and Its Intensities in the ICT Industry: The Global Case. Front. Energy Res. 2021, 9, 685021. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Yu, P.; Zhang, L.; Pang, J. Calculation and Intensity Analysis of Logistics Industry Embodied CO2 Emissions in China. J. Green Econ. Low-Carbon Dev. 2023, 2, 27–35. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Wang, B. Carbon footprints and embodied CO2 transfers among provinces in China. Renew. Sust. Energy Rev. 2018, 82, 1068–1078. [Google Scholar] [CrossRef]
- Rypdal, K.; Winiwarter, W. Uncertainties in greenhouse gas emission inventories—Evaluation, comparability and implications. Environ. Sci. Policy 2001, 4, 107–116. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Guo, L.; Wang, D.; Miao, C.; Zhang, X. Ongoing CO2 monitoring verify CO2 emissions and sinks in China during 2018–2021. Sci. Bull. 2023, 68, 2467–2476. [Google Scholar] [CrossRef]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 6 March 2025).
- Guo, L.; Zhang, X.; Zhong, J.; Wang, D.; Miao, C.; Zhao, L.; Zhou, Z.; Liao, J.; Hu, B.; Zhu, L.; et al. Construction and Application of a Regional Kilometer-Scale Carbon Source and Sink Assimilation Inversion System (CCMVS-R). Engineering 2024, 33, 263–275. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Guo, L.; Zhong, J.; Wang, D.; Wu, C.; Jiang, L. If Some Critical Regions Achieve Carbon Neutrality, How Will the Global Atmospheric CO2 Concentration Change? Remote Sens. 2024, 16, 1486. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Guo, L.; Zhong, J.; Wang, D.; Wu, C.; Li, F.; Li, M. Invert global and China’s terrestrial carbon fluxes over 2019–2021 based on assimilating richer atmospheric CO2 observations. Sci. Total Environ. 2024, 929, 172320. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Zhang, X.-Y.; Guo, L.-F.; Zhong, J.-T.; Wang, D.-Y.; Miao, C.-H.; Gao, X.; Zhang, X.-L. An inversion model based on GEOS-Chem for estimating global and China’s terrestrial carbon fluxes in 2019. Adv. Clim. Change Res. 2023, 14, 49–61. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, L.; Behrens, P.; Wang, T.; Tang, Z.; Chen, D.; Yu, Y.; Ren, Z.; Zhu, S.; Tukker, A.; et al. Improving Subnational Input–Output Analyses Using Regional Trade Data: A Case-Study and Comparison. Environ. Sci. Technol. 2020, 54, 12732–12741. [Google Scholar] [CrossRef] [PubMed]
- Hubacek, K.; Giljum, S. Applying physical input–output analysis to estimate land appropriation (ecological footprints) of international trade activities. Ecol. Econ. 2003, 44, 137–151. [Google Scholar] [CrossRef]
- Weisz, H.; Duchin, F. Physical and monetary input–output analysis: What makes the difference? Ecol. Econ. 2006, 57, 534–541. [Google Scholar] [CrossRef]
- Hasegawa, R.; Kagawa, S.; Tsukui, M. Carbon footprint analysis through constructing a multi-region input–output table: A case study of Japan. J. Econ. Struct. 2015, 4, 5. [Google Scholar] [CrossRef]
- Sun, C.; Ding, D.; Yang, M. Estimating the complete CO2 emissions and the carbon intensity in India: From the carbon transfer perspective. Energy Policy 2017, 109, 418–427. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Moses, L.N. The stability of interregional trading patterns and input-output analysis. Am. Econ. Rev. 1955, 45, 803–826. [Google Scholar]
- Tukker, A.; Poliakov, E.; Heijungs, R.; Hawkins, T.; Neuwahl, F.; Rueda-Cantuche, J.M.; Giljum, S.; Moll, S.; Oosterhaven, J.; Bouwmeester, M. Towards a global multi-regional environmentally extended input–output database. Ecol. Econ. 2009, 68, 1928–1937. [Google Scholar] [CrossRef]
- Matthews, H.S.; Hendrickson, C.T.; Weber, C.L. The importance of carbon footprint estimation boundaries. Environ. Sci. Technol. 2008, 42, 5839–5842. [Google Scholar] [CrossRef] [PubMed]
- Munksgaard, J.; Pedersen, K.A. CO2 accounts for open economies: Producer or consumer responsibility? Energy Policy 2001, 29, 327–334. [Google Scholar] [CrossRef]
- Serrano, A.; Guan, D.; Duarte, R.; Paavola, J. Virtual Water Flows in the EU27: A Consumption-based Approach. J. Ind. Ecol. 2016, 20, 547–558. [Google Scholar] [CrossRef]
- Marques, A.; Rodrigues, J.; Lenzen, M.; Domingos, T. Income-based environmental responsibility. Ecol. Econ. 2012, 84, 57–65. [Google Scholar] [CrossRef]
- Serrano, M.; Dietzenbacher, E. Responsibility and trade emission balances: An evaluation of approaches. Ecol. Econ. 2010, 69, 2224–2232. [Google Scholar] [CrossRef]
- Grubb, M.; Jordan, N.D.; Hertwich, E.; Neuhoff, K.; Das, K.; Bandyopadhyay, K.R.; van Asselt, H.; Sato, M.; Wang, R.; Pizer, W.A. Carbon Leakage, Consumption, and Trade. Annu. Rev. Env. Resour. 2022, 47, 753–795. [Google Scholar] [CrossRef]
- Peters, G.P.; Hertwich, E.G. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 2008, 42, 1401–1407. [Google Scholar] [CrossRef]
- Peters, G.P.; Hertwich, E.G. Post-Kyoto greenhouse gas inventories: Production versus consumption. Clim. Change 2007, 86, 51–66. [Google Scholar] [CrossRef]
- Kondo, Y.; Moriguchi, Y.; Shimizu, H. CO2 emissions in Japan: Influences of imports and exports. Appl. Energy 1998, 59, 163–174. [Google Scholar] [CrossRef]
- Rodrigues, J.; Domingos, T.; Giljum, S.; Schneider, F. Designing an indicator of environmental responsibility. Ecol. Econ. 2006, 59, 256–266. [Google Scholar] [CrossRef]
- Rodrigues, J.; Domingos, T. Consumer and producer environmental responsibility: Comparing two approaches. Ecol. Econ. 2008, 66, 533–546. [Google Scholar] [CrossRef]
- Chen, H.; Wen, J.; Pang, J.; Chen, Z.; Wei, Y. Research on the carbon transfer and carbon equity at provincial level of China based on MRIO model of 31 provinces. China Environ. Sci. 2020, 40, 5540–5550. [Google Scholar] [CrossRef]
- Zou, X. Analysis on the Implied Carbon of China’s Inter Provincial Trade Based on LMID Model. Master’s Thesis, Southwestern University of Finance and Economics, Chengdu, China, 2021. [Google Scholar]
- Zheng, H.; Bai, Y.; Wei, W.; Meng, J.; Zhang, Z.; Song, M.; Guan, D. Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Sci. Data 2021, 8, 244. [Google Scholar] [CrossRef]
- Shi, M.; Wang, Y.; Zhang, Z.; Zhou, X. Regional Carbon Footprint and Interregional Transfer of Carbon Emissions in China. Acta Geogr. Sin. 2012, 67, 1327–1338. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Wang, W. Calculation on Net Value of Carbon Emission Transfer between China’s Provinces and Responsibility Sharing. J. Environ. Econ. 2018, 3, 19–36. [Google Scholar] [CrossRef]
- Liu, Z. A Multi-Regional Input–Output Analysis of Provincial Responsibility for Carbon Emissions and Carbon Equity of China. Master’s Thesis, Lanzhou University, Lanzhou, China, 2022. [Google Scholar]
- Wang, A.; Feng, Z.; Meng, B. Measure of Carbon Emissions and Carbon Transfers in 30 Provinces of China. J. Quant. Tech. Econ. 2017, 34, 89–104. [Google Scholar] [CrossRef]
- Ma, J.-J.; Du, G.; Xie, B.-C. CO2 emission changes of China’s power generation system: Input-output subsystem analysis. Energy Policy 2019, 124, 1–12. [Google Scholar] [CrossRef]
- Wei, W.; Hao, S.; Yao, M.; Chen, W.; Wang, S.; Wang, Z.; Wang, Y.; Zhang, P. Unbalanced economic benefits and the electricity-related carbon emissions embodied in China’s interprovincial trade. J. Environ. Manage. 2020, 263, 110390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Q.; Chen, B.; Liu, J.; Zheng, H.; Yao, H.; Zhang, C. Identifying hotspots of sectors and supply chain paths for electricity conservation in China. J. Clean. Prod. 2020, 251, 119653. [Google Scholar] [CrossRef]
- Xiao, H. A Comparative Study of Carbon Emission Performance of Secondary and Service Industries: An Empirical Study of Yangtze River Delta Cities. Master’s Thesis, Jinan University, Guangzhou, China, 2019. [Google Scholar]
- Xiao, S. The Research on Calculation and Influence Factors of Carbon Footprint in China’s 30 Provinces. Master’s Thesis, Jiangxi University of Finance and Economics, Nanchang, China, 2015. [Google Scholar]
- Wu, Q. Analysis of Embodied Carbon Emission Flow Network Among Provinces-Industries in China. Master’s Thesis, Xiamen University, Xiamen, China, 2022. [Google Scholar]
- Tian, X.; Chang, M.; Lin, C.; Tanikawa, H. China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns. Appl. Energy 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Li, C.; Ren, Z.; Wang, L. Research on the driving path of carbon inclusive system to green behavior of the public: Based on procedural grounded theory and multiple intermediary model. Environ. Sci. Pollut. Res. 2023, 30, 80393–80415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, M.; Su, C.; Zhang, X. Practical Experience and Development Suggestions for Carbon Inclusiveness Mechanism of China. Environ. Prot. 2023, 51, 55–59. [Google Scholar] [CrossRef]
- Min, W. Research on Inter-Provincial Coordinated Governance of China’s Energy Carbon Dioxide Emissions Under the Background of Carbon Neutrality. Ph.D. Thesis, Nanchang University, Nanchang, China, 2023. [Google Scholar]
- Xu, A.; Yang, X. Analysis of total carbon emission of the logistics industry in Guangdong and solutions to emission reduction. E3S Web Conf. 2021, 245, 01020. [Google Scholar] [CrossRef]
- Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Analyzing Drivers of Regional Carbon Dioxide Emissions for China. J. Ind. Ecol. 2012, 16, 600–611. [Google Scholar] [CrossRef]
Output | Intermediate Use | Final Use | Total Output | ||||
---|---|---|---|---|---|---|---|
Input | Sector 1 | Sector 2 | … | Sector n | |||
Intermediate input | Sector 1 | … | |||||
Sector 2 | … | ||||||
… | … | … | … | … | … | … | |
Sector n | … | ||||||
Initial input | … | ||||||
Total input | … |
Province | Per Capita Carbon Footprint | Province | Per Capita Carbon Footprint | Province | Per Capita Carbon Footprint | Province | Per Capita Carbon Footprint |
---|---|---|---|---|---|---|---|
Ningxia | 46.01 | Shandong | 11.01 | Gansu | 7.17 | Guangxi | 5.07 |
Nei Mongol | 32.22 | Qinghai | 10.65 | Shanghai | 6.83 | Sichuan | 4.93 |
Shanxi | 19.23 | Jilin | 9.98 | Hubei | 6.82 | Yunnan | 4.86 |
Tianjin | 12.55 | Anhui | 9.54 | Chongqing | 6.80 | Guangdong | 4.65 |
Xinjiang | 12.46 | Heilongjiang | 8.68 | Zhejiang | 6.49 | Hainan | 4.58 |
Liaoning | 12.04 | Jiangsu | 8.33 | Fujian | 6.06 | Hunan | 4.54 |
Hebei | 11.89 | Guizhou | 8.02 | Jiangxi | 5.74 | Xizang | 2.31 |
Shaanxi | 11.82 | Henan | 7.58 | Beijing | 5.29 |
Sector | Amount | Sector | Amount | Sector | Amount | Sector | Amount |
---|---|---|---|---|---|---|---|
24 | 6057.52 | 6 | 58.77 | 25 | 20.25 | 20 | 6.42 |
14 | 1955.97 | 3 | 54.74 | 36 | 19.91 | 31 | 5.87 |
13 | 1227.57 | 34 | 54.26 | 42 | 18.89 | 8 | 5.69 |
29 | 881.53 | 16 | 39.01 | 7 | 17.62 | 22 | 4.31 |
2 | 353.21 | 10 | 31.68 | 32 | 15.35 | 41 | 4.17 |
11 | 266.21 | 17 | 23.71 | 33 | 14.99 | 35 | 3.90 |
28 | 201.25 | 38 | 23.61 | 30 | 13.31 | 40 | 3.01 |
12 | 200.14 | 15 | 23.52 | 39 | 12.31 | 21 | 1.02 |
1 | 171.56 | 18 | 22.13 | 19 | 12.19 | 26 | 0.58 |
27 | 88.97 | 5 | 21.35 | 37 | 7.71 | ||
23 | 61.26 | 4 | 20.27 | 9 | 6.96 |
Province | Per Capita Carbon Footprint | Province | Per Capita Carbon Footprint | Province | Per Capita Carbon Footprint | Province | Per Capita Carbon Footprint |
---|---|---|---|---|---|---|---|
Ningxia | 23.92 | Shanxi | 10.27 | Xizang | 8.69 | Guizhou | 6.48 |
Nei Mongol | 14.44 | Xinjiang | 10.18 | Liaoning | 8.48 | Hunan | 6.34 |
Beijing | 12.97 | Shanghai | 10.07 | Henan | 8.32 | Sichuan | 5.40 |
Zhejiang | 12.91 | Shaanxi | 9.75 | Heilongjiang | 8.01 | Guangxi | 5.13 |
Qinghai | 11.29 | Jilin | 9.35 | Hubei | 7.85 | Fujian | 4.91 |
Tianjin | 11.02 | Guangdong | 9.07 | Yunnan | 7.76 | Hainan | 4.55 |
Chongqing | 10.67 | Shandong | 8.87 | Anhui | 6.93 | Gansu | 4.48 |
Jiangsu | 10.44 | Hebei | 8.78 | Jiangxi | 6.61 |
Sector | Amount | Sector | Amount | Sector | Amount | Sector | Amount |
---|---|---|---|---|---|---|---|
27 | 4563.86 | 14 | 270.10 | 10 | 131.48 | 21 | 33.07 |
24 | 763.90 | 42 | 225.76 | 7 | 111.76 | 25 | 24.84 |
19 | 428.14 | 15 | 216.15 | 11 | 105.08 | 2 | 19.84 |
6 | 425.11 | 1 | 213.68 | 35 | 98.05 | 22 | 9.98 |
18 | 422.72 | 28 | 213.04 | 9 | 95.89 | 26 | 7.96 |
16 | 404.04 | 8 | 209.64 | 32 | 94.22 | 3 | 4.58 |
17 | 399.25 | 33 | 207.17 | 37 | 74.71 | 5 | 2.93 |
20 | 374.51 | 31 | 162.24 | 38 | 69.21 | 4 | 1.65 |
29 | 366.56 | 13 | 160.00 | 34 | 59.55 | 24 | 0.11 |
40 | 352.20 | 39 | 144.27 | 36 | 53.13 | ||
12 | 321.72 | 30 | 139.31 | 41 | 51.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, X.; Guo, L.; Zhong, J.; Liu, L.; Wu, C.; Zhang, D.; Yu, F.; Peng, B. Research on China’s Carbon Footprint Accounting Based on a High-Precision CO2 Emission Inventory. Sustainability 2025, 17, 2647. https://doi.org/10.3390/su17062647
Li J, Zhang X, Guo L, Zhong J, Liu L, Wu C, Zhang D, Yu F, Peng B. Research on China’s Carbon Footprint Accounting Based on a High-Precision CO2 Emission Inventory. Sustainability. 2025; 17(6):2647. https://doi.org/10.3390/su17062647
Chicago/Turabian StyleLi, Jiaying, Xiaoye Zhang, Lifeng Guo, Junting Zhong, Liangke Liu, Chongyuan Wu, Da Zhang, Fei Yu, and Bo Peng. 2025. "Research on China’s Carbon Footprint Accounting Based on a High-Precision CO2 Emission Inventory" Sustainability 17, no. 6: 2647. https://doi.org/10.3390/su17062647
APA StyleLi, J., Zhang, X., Guo, L., Zhong, J., Liu, L., Wu, C., Zhang, D., Yu, F., & Peng, B. (2025). Research on China’s Carbon Footprint Accounting Based on a High-Precision CO2 Emission Inventory. Sustainability, 17(6), 2647. https://doi.org/10.3390/su17062647