Geothermal Water Component of Land-Based Fish Farm—A Case Study of the Sustainable Blue Economy Architecture
Abstract
:1. Introduction
1.1. The World’s First Indoor Salmon Farm Based on Geothermal Resources—The Case Study from an Architectural Perspective
1.2. The Main Research Problem and Related Open-Ended Questions for Investigation
2. Materials and Methods
2.1. The Field of the Study and Methods
2.1.1. Aquatic Environment Transformed by Architecture—Design Inspired by Water
2.1.2. Inclusive Concepts for a Sustainable Blue Economy in the Context of Geothermal Resources
2.2. Location of a Coastal Geothermal Development, Its Implications, and Background
3. Findings
3.1. Specification and Evaluation of Geothermal Resources in Trzęsacz
3.2. Transfer of Geothermal Resources and Capital from Trzęsacz to the Salmon Farm in Janowo
3.3. Life Support Environment Based on Geothermal Water for Indoor Fish Farming
3.4. Monitoring the Water Resources of the Jurassic Salmon Farm—Water 4.0 on the Basis of Industry 4.0
3.5. Local Communities and Partnerships in the Enhancement of Water Initiatives
4. Discussion
4.1. Aquaculture Based on Geothermal Resources as Part of the Energy-Water-Food Nexus from an Urban Planning Perspective
4.2. Benefits of Using Geothermal Water in Indoor Fish Farm
4.3. Lessons Learned from the Demonstration Project
5. Conclusions
5.1. Key Conclusions
5.2. Future Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sowiżdżał, A. Geothermal energy resources in Poland—Overview of the current state of knowledge, Renewable and Sustainable. Energy Rev. 2018, 82, 4020–4027. [Google Scholar] [CrossRef]
- Tyszer, M.; Bujakowski, W.; Tomaszewska, B.; Bielec, B. Geothermal Water Management Using the Example of the Polish Lowland (Poland)—Key Aspects Related to Co-Management of Drinking and Geothermal Water. Energies 2020, 13, 2412. [Google Scholar] [CrossRef]
- Mollison, B. Permaculture—A Practical Guide for a Sustainable Future; Island Press: Washington, DC, USA, 1991. [Google Scholar]
- Pellizzone, A.; Manzella, A.; Allansdottir, A. Geothermal Energy and Public Engagement: A Comparative Analysis; European Geothermal Congress: Den Haag, The Netherlands, 2019. [Google Scholar]
- Dickson, M.H.; Fanelli, M. (Eds.) Geothermal Energy: Utilization and Technology; UNESCO: Paris, France, 2003. [Google Scholar]
- Bošnjaković, M.; Stojkov, M.; Jurjević, M. Environmental Impact of Geothermal Power Plants. Teh. Vjesnik. 2019, 26, 1515–1522. [Google Scholar] [CrossRef]
- Brawne, M. Architectural Thought: The Design Process and the Expectant Eye; Architectural Press: Oxford, UK, 2003; p. 25. [Google Scholar]
- Boguniewicz-Zabłocka, J.; Łukasiewicz, E.; Guida, D. Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland. Sustainability 2019, 11, 6730. [Google Scholar] [CrossRef]
- Bellini, E. Photovoltaics, Heat Pumps to Rescue Failed Geothermal Project in Poland—Pv Magazine International. 2021. Available online: https://www.pv-magazine.com/2021/06/08/photovoltaics-heat-pumps-to-rescue-failed-geothermal-project-in-poland (accessed on 15 October 2021).
- Zapytanie w Sprawie Prawidłowości Przeprowadzenia Inwestycji pn. “Termy Warmińskie” Realizowanej Przez Starostwo Powiatowe w Lidzbarku Warmińskim Przy Wsparciu Zarządu Województwa Warmińsko-Mazurskiego. Available online: http://orka2.sejm.gov.pl/IZ6.nsf/main/3F4C3F1E (accessed on 10 May 2017).
- van Wees, J.D.; Veldkamp, H.; Brunner, L.; Vrijlandt, M.; de Jong, S.; Heijnen, N.; van Langen, C.; Peijster, J. Accelerating geothermal development with a play-based portfolio approach. Neth. J. Geosci. 2020, 99, e5. [Google Scholar] [CrossRef]
- Seghezzo, L. The five dimensions of sustainability. Environ. Politics 2009, 4, 539–556. [Google Scholar] [CrossRef]
- Giddings, B.; Hopwood, B.; O’Brien, G. Environment, Economy and Society: Fitting them together into Sustainable Development. Sust. Dev. 2002, 10, 187–196. [Google Scholar] [CrossRef]
- Kawahara, Y. Speculative engineering technology and future insight. Electr. Eng. Jpn. 2019, 207, 71–75. [Google Scholar] [CrossRef]
- NEA. Available online: https://nea.is/geothermal/direct-utilization/fish-farming/ (accessed on 9 December 2021).
- Dictionary. Available online: https://www.dictionary.com/browse/architecture (accessed on 12 May 2021).
- ArchDaily. 121 Definitions of Architecture. Available online: https://www.archdaily.com/773971/architecture-is-121-definitions-of-architecture (accessed on 8 April 2021).
- Noble, C.; Gismervik, K.; Iversen, M.H.; Kolarevic, J.; Nilsson, J.; Stien, L.H.; AS, N. (Eds.) Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare; Nofima: Tromso, Norway, 2018; p. 351. [Google Scholar]
- Easterling, K. Organization Space: Landscapes, Highways, and Houses in America; MIT Press: Cambridge, UK, 2001. [Google Scholar]
- Nichols, W.J. Blue Mind. In How Water Makes You Happier, More Connected and Better at What You Do; Abacus: London, UK, 2014. [Google Scholar]
- Rogers, R. Cities for a Small Planet; Faber and Faber: London, UK, 1997. [Google Scholar]
- Mau, B. The Institute without Boundaries, Massive Change; Phaidon Press Limited: London, UK, 2010. [Google Scholar]
- Thackara, J. How to Thrive in The Next Economy. In Designing Tomorrow’s World Today; Thames & Hudson: London, UK, 2017. [Google Scholar]
- Kellert, S.R. Nature by Design. In The Practice of Biophilic Design; Yale University Press: New Haven, CT, USA; London, UK, 2018. [Google Scholar]
- Brownell, B.; Swackhamer, M. Hypernatural: Architecture’s New Relationship with Nature; Princeton Architectural Press: New York, NY, USA, 2015. [Google Scholar]
- WBCSD. Available online: https://archive.wbcsd.org/Imperatives/Nature-Action/Water-Stewardship/Valuing-Water (accessed on 9 July 2021).
- France, R.L. (Ed.) Handbook of Water Sensitive Planning and Design; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 1–9. [Google Scholar]
- Wong, T.H.F.; Eadie, M.L. Water Sensitive Urban Design—A Paradigm Shift in Urban Design. In Proceedings of the 10th World Water Congress, Melbourne, Australia, 18–25 May 2000. [Google Scholar]
- McDonough, W.; Braungart, M. The Upcycle. Beyond Sustainability—Designing for Abundance; North Point Press: New York, NY, USA, 2013. [Google Scholar]
- Mishra, G.S.; Glassley, W.E.; Yeh, S. Realizing the geothermal electricity potential—Water use and consequences. Environ. Res. Lett. 2011, 6, 034023. [Google Scholar] [CrossRef]
- Pauli, G.A. The Blue Economy: 10 Years—100 Innovations—100 Million Jobs; Paradigm Publications: Taos, NM, USA, 2010. [Google Scholar]
- University of Waterloo. Blue Economy, Water Institute. Available online: https://uwaterloo.ca/water-institute/blue-economy (accessed on 12 February 2020).
- Sun, C.; Nijhuis, S.; Bracken, G. Learning from Agri-Aquaculture for Multiscale Water-Sensitive Design in the Pearl River Delta. Landsc. Archit. 2019, 26, 31–44. [Google Scholar] [CrossRef]
- Roadmap 2050 a Practical Guide to a Prosperous, Low-Carbon Europe. Available online: https://www.oma.com/publications/roadmap-2050-a-practical-guide-to-a-prosperous-low-carbon-europe (accessed on 12 May 2018).
- Polish Geological Institute—National Research Institute. Ciepłownie Geotermalne w Polsce. Available online: https://www.pgi.gov.pl/en (accessed on 15 October 2021).
- Geotermia Pyrzyce. Available online: http://geotermia.inet.pl (accessed on 14 October 2021).
- G-Term. Available online: http://www.gterm.pl (accessed on 14 October 2021).
- Tomaszewska, B. (Ed.) Pozyskanie Wód Przeznaczonych do Spożycia Oraz Cieczy i Substancji Balneologicznych w Procesie Uzdatniania Wód Geotermalnych; Wydawnictwo Instytutu GSMiE PAN: Kraków, Poland, 2018. [Google Scholar]
- Stożek, J.; Sosnowska, M.; Dudek, I. Od Zdrojowiska do Nowoczesnego Centrum Odnowy Biologicznej. Rozwój Uzdrowisk Geotermalnych w Polsce; The Health Resort to the Modern Wellness Center the Development of Geothermal Health Resort, Technika Poszukiwań Geologicznych Geotermia, Zrównoważony Rozwój: Kraków, Poland, 2018; p. 1. [Google Scholar]
- Hałaj, E. Kąpieliska i ośrodki wypoczynkowe na Podhalu i Niżu Polskim jako przykłady bezpośredniego wykorzystania wód geotermalnych w Polsce. In Swimming Pools and Aqua Parks in Podhale Region and in the Polish Lowlands as Examples of Direct Use of Geothermal Waters in Poland; Technika Poszukiwań Geologicznych Geotermia, Zrównoważony Rozwój: Kraków, Polan, 2012; p. 2. [Google Scholar]
- Money.pl. Inwestycja za 100 Mln na Sprzedaż. Available online: https://www.money.pl (accessed on 14 October 2021).
- Ministry of Climate and Environment. Available online: https://www.gov.pl/web/klimat/prawie-cwierc-miliarda-zlotych-z-nfosigw-na-odwierty-geotermalne-w-calej-polsce (accessed on 12 October 2021).
- Connolly, D.; Mathiesen, B.V.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Lund, H.; Persson, U.; Werner, S.; Grözinger, J.; Boermans, T.; et al. Heat Roadmap Europe: Second Pre-Study for the EU27. 2013. Available online: https://www.euroheat.org/wp-content/uploads/2013/05/Heat-Roadmap-Europe-II-2013.pdf (accessed on 10 May 2018).
- Górecki, W.; Sowiżdżał, A.; Hajto, M.; Wachowicz-Pyzik, A. Atlases of geothermal waters and energy resources in Poland. Environ. Earth Sci. 2015, 74, 7487–7495. [Google Scholar] [CrossRef]
- Geothermal Energy Utilisation Potential in Poland—Town Poddębice Study Visits’ Report; National Energy Authority, Iceland Mineral, and Energy Economy Research Institute, Polish Academy of Sciences, Poland AGH University of Science and Technology: Kraków, Poland, 2017.
- Ostsee Therme. Available online: www.ostseetherme-usedom.de (accessed on 15 June 2014).
- Kępińska, B. Przegląd stanu wykorzystania energii geotermalnej w Polsce w latach 2016–2018. Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2018, 1, 11–27. [Google Scholar]
- Świątek, L. Description for the Building Project of Pałac Trzęsacz—Kompleks Rehabilitacji i Relaksu: I etap—Aquapark; AKCENT Design Studio: Szczecin, Poland, 2010. [Google Scholar]
- Lund, J.W. Direct Heat Utilisation of Geothermal Energy. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; p. 172. [Google Scholar] [CrossRef]
- Skapare, I. Utilisation of Geothermal Water in The Riga/Jurmala Region of Latvia for Recreation and Health. Pre-Feasibility Study for An Outdoor Thermal Swimming Pool, Geothermal Training Programme; Reports; United Nations University: Tokyo, Japan, 2001; Volume 11, p. 240. [Google Scholar]
- Świątek, L. A Case Study of Geothermal Resources Use for the Innovative Aquaculture from Perspective of Syntropic Development Concept. Int. J. Energy Prod. Mgmt. 2020, 5, 60–69. [Google Scholar] [CrossRef]
- Kowalski, M. Land Based Salmons from Poland. Jurassic Salmon, Szczecin. 2015. Available online: http://www.ccb.se (accessed on 23 June 2016).
- Sadowski, J. The Use of Saline Geothermal Water for Fish Hatching and Ongrowing; Research Report; ZUT Szczecin: Szczecin, Poland, 2015. [Google Scholar]
- Jurassic Salmon sp. z o.o. Available online: http://jurassicsalmon.pl (accessed on 12 July 2016).
- Świątek, L. From Industry 4.0 to Nature 4.0—Sustainable Infrastructure Evolution by Design. In Advances in Human Factors, Sustainable Urban Planning and Infrastructure, Proceedings of the AHFE 2018 International Conference on Human Factors, Sustainable Urban Planning and Infrastructure, Orlando, FL, USA, 21–25 July 2018; Advances in Intelligent Systems and Computing; Charytonowicz, J., Falcão, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 788. [Google Scholar] [CrossRef]
- Świątek, L. Akwakultura Miejska—Model integracji kapitału i wiedzy w przestrzeni komunalnej—Natura 4.0. The City Aquaculture—Capital and Knowledge Integration Model in Municipal Development—Nature 4.0. PUA Przestrz. Urban. Archit. 2017, 1, 317–327. [Google Scholar] [CrossRef]
- Świątek, L. Description and Technical Specification for the Building Project of the Production Hall in Janowo for the Company Jurassic Salmon; AKCENT Design Studio: Szczecin, Poland, 2013. [Google Scholar]
- Piątek, Z. Czym Jest Przemysł 4.0.? Available online: http://przemysl-40.pl (accessed on 28 March 2017).
- German Water Partnership. Available online: https://germanwaterpartnership.de/en/water-4-0-2/ (accessed on 12 July 2016).
- Omotayo, A.; Telukdarie, A.; Rensburg, N. Water 4.0: An Integrated Business Model from an Industry 4.0 Approach. In Proceedings of the 2019 IEEE International Conference on Industrial Engineering and Engineering Management, Macao, China, 15–18 December 2019; pp. 1364–1369. [Google Scholar] [CrossRef]
- Bregnballe, J.A. Guide to Recirculation Aquaculture. An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; Food and Agriculture Organization of the United Nations: Rome, Italy; Eurofish International Organisation: Copenhagen, Danmark, 2015. [Google Scholar]
- Neudörfer, F. Sustainable Fish Aquaculture. In Submariner Compendium. An Assessment of Innovative and Sustainable Uses of Baltic Marine Resources; Schultz-Zehden, A., Matczak, M., Eds.; Maritime Institute in Gdańsk: Gdansk, Poland, 2012; pp. 204–230. [Google Scholar]
- Wirdheim, A.; Chojnacki, C.J. Co Się Dzieje z Morzem Bałtyckim; Naturskyddsforeningen: Stockholm, Sweden, 1992. [Google Scholar]
- Vinci, B.J. North American Perspective on Land Based Aquaculture: Past Present & Future; The Conservation Fund Freshwater Institute: Shepherdstown, WV, USA, 2015. [Google Scholar]
- Viljoen, A.; Bohn, K.; Howe, J. Continous Productive Urban Landscapes; Architectural Press: Burlington, NJ, USA, 2005; pp. 19–30. [Google Scholar]
- Philips, A. (Ed.) Designing Urban Agriculture: A Complete Guide to the Planning, Design, Construction, Maintenance and Management of Edible Landscapes; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 5–40. [Google Scholar]
- Costa-Pierce, B.; Desbonnet, A.; Edwards, P.; Baker, D. (Eds.) Urban Aquaculture; CABI Publishing: Wallingford, UK, 2005; pp. 267–277. [Google Scholar]
- Graber, A.; Schönborn, A.; Junge, R. Closing water, nutrient and energy cycles within cities by urban farms for fish and vegetable production. In IWA Specialist Group on Use of Macrophytes in Water Pollution control; International Water Association: London, UK, Newsletter; 2011; Volume 37, pp. 37–41. [Google Scholar]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Mayer, A.; Mubako, S.; Ruddell, B.L. Developing the greatest Blue Economy: Water productivity, freshwater depletion, and virtual water trade in the Great Lakes basin. Earth’s Future 2016, 4, 282–297. [Google Scholar] [CrossRef]
- Lowe, E.A.; Warren, J.L.; Moran, S.R. Discovering Industrial Ecology. In An Executive Briefing and Sourcebook; Battelle Press: Columbus, OH, USA, 1997; pp. 3–5. [Google Scholar]
- Dońca, A. (Ed.) Symbioza i Parki Ekoprzemysłowe; Wolters Kluwert Polska Sp. z o.o.: Warszawa, Poland, 2011; pp. 14–16. [Google Scholar]
- Kaczmarczyk, M.; Tomaszewska, B.; Operacz, A. Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System. Energies 2020, 13, 2495. [Google Scholar] [CrossRef]
Sequence Number | Parameters | Values |
---|---|---|
1 | Temperature | 25.4 °C |
2 | Salinity | 16‰ |
3 | Self-Outflow Rate | 180 m3/h |
4 | pH | 7.7 |
5 | Nitrites | 0.05 mg/L |
6 | Nitrates | 2 mg/L |
7 | Ammonia | 1.85 mg/L |
8 | Manganese | 0.06 mg/L |
9 | Iron (total) | 1.32 mg/L |
10 | CO2 | 20.7 mg/L |
11 | Phosphates | <0.15 mg/L |
12 | Alkalinity | 8.10 mmol/L |
Rural Areas Investment | Urban Areas Investment |
---|---|
PROS | CONS |
Less bureaucracy and more friendly investment support from local authorities | More bureaucracy and routine support of the investment process by local authorities |
Rapid decision-making at administrative level | Risk of increased decision-making time at administrative level |
Less complicated investment process | A more complicated investment process |
Low cost of land | High cost of land |
More attractive investment for small municipalities in terms of tax revenue and employment | Mostly business as usual |
Higher level of biosecurity as isolation is easier due to distance | Lower level of biosecurity due to density of settlement and lack of isolation due to shorter distance |
CONS | PROS |
Lack or weakness of local economic activity | Diversity and richness of local economic activities |
Longer transports to logistics hubs or directly accessible local markets | Shorter transports to logistics hubs or directly accessible local markets |
Mainly greenfield investments | Potential for development of brownfield, post-industrial sites as part of space recycling and urban regeneration |
Lower potential for cascading use of geothermal waters due to lack of existing activation of the local economy and low entrepreneurial dynamism, where the need for new investments requires time and capital | Higher potential for cascading use of geothermal water due to existing activation of the local economy and business dynamics |
Not easy access to specialized services | Easy access to specialized services |
Longer distance to business and universities | Shorter distance to business and academia |
Lack of traffic jams | Risk of traffic jams |
Accommodation problems for skilled workers | No accommodation problems for skilled workers |
Due to the location in not very densely populated areas, limited public access and less potential to build awareness of the use of geothermal waters and promote fish farming. | Due to the location in densely populated areas, easier public access and potential to build awareness of the use of geothermal waters and promote fish farming |
Low potential for synergies in the use and effectiveness of geothermal water | High potential for synergies in the use and effectiveness of geothermal water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątek, L. Geothermal Water Component of Land-Based Fish Farm—A Case Study of the Sustainable Blue Economy Architecture. Sustainability 2025, 17, 2693. https://doi.org/10.3390/su17062693
Świątek L. Geothermal Water Component of Land-Based Fish Farm—A Case Study of the Sustainable Blue Economy Architecture. Sustainability. 2025; 17(6):2693. https://doi.org/10.3390/su17062693
Chicago/Turabian StyleŚwiątek, Leszek. 2025. "Geothermal Water Component of Land-Based Fish Farm—A Case Study of the Sustainable Blue Economy Architecture" Sustainability 17, no. 6: 2693. https://doi.org/10.3390/su17062693
APA StyleŚwiątek, L. (2025). Geothermal Water Component of Land-Based Fish Farm—A Case Study of the Sustainable Blue Economy Architecture. Sustainability, 17(6), 2693. https://doi.org/10.3390/su17062693