Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject of the Study
2.2. Research Problem and Hypotheses
- What factors and to what extent influence the respondents’ opinion on Poland’s departure from coal?
- Do demographic and social factors, such as age, place of residence, type of housing, income, square footage and method of heating the house, as well as employment in mining, mining-related and energy companies, determine the opinion of Silesian residents about Poland’s departure from coal?
2.3. Research Tool
- confidence factor 1 − α = 0.95, thereby zα = 1.96,
- maximum error (statistical) d = 5%,
- p = 0.5.
2.4. Analysis Methods
- 1.
- —a stimulating effect of the independent variable under study on obtaining the highlighted value (1);
- 2.
- —a destimulating effect of the independent variable studied on obtaining the distinguished value (1);
- 3.
- —no influence of the independent variable studied on obtaining the distinguished value (1).
- -
- Hosmer–Lemeshow test—a statistical test for goodness of fit and calibration for logistic regression models. It compares the observed incidence counts of the distinguished value and the predicted probability. If these values are close enough, then it can be assumed that a well-fitting model has been built [97];
- -
- Analysis of the ROC curve—a graph built based on the value of the dependent variable and the predicted probability of occurrence of the dependent variable. This graph also allows the assessment of the ability of the built logistic regression model to classify cases into two groups: (1) and (0). The resulting curve, and in particular, the area under it, illustrates the classification quality of the model. When the ROC curve coincides with the diagonal y = x, then the decision to assign a case to the selected class (1) or (0) made on the basis of the model is as good as randomly dividing the studied cases into these groups. The classification quality of the model is good when the curve is well above the diagonal y = x, that is, when the area under the ROC curve is much greater than the area under the straight line y = x, i.e., greater than 0.5;
- -
- Analysis of a graph of observed values and expected probabilities, showing the results of the predicted probability of occurrence of an event and the true value. If the model predicts very well, the points will accumulate at the bottom near the left side of the graph and at the top near the right side of the graph.
3. Results
3.1. Characteristics of the Study Group and Descriptive Statistics of Survey Results
3.2. Analyzing the Factors Influencing Opinions on Poland’s Departure from Coal
3.3. The Evaluation of Factors Influencing Poland’s Decision to Depart from Coal
3.3.1. Selection of Variables and Final Model Format
3.3.2. Model Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamczewska, N.; Zajączkowska, M. Realizacja zrównoważonej polityki energetycznej Unii Europejskiej w kontekście Celów Zrównoważonego Rozwoju (SDG)–wybrane aspekty. Folia Iurid. Univ. Wratislav. 2022, 11, 9–25. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Assessing the Energy and Climate Sustainability of European Union Member States: An MCDM-Based Approach. Smart Cities 2023, 6, 339–367. [Google Scholar] [CrossRef]
- Jayanthakumaran, K.; Verma, R.; Liu, Y. CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India. Energy Policy 2012, 42, 450–460. [Google Scholar] [CrossRef]
- Hanif, I. Impact of fossil fuels energy consumption, energy policies, and urban sprawl on carbon emissions in East Asia and the Pacific: A panel investigation. Energy Strategy Rev. 2018, 21, 16–24. [Google Scholar] [CrossRef]
- Knopf, B.; Nahmmacher, P.; Schmid, E. The European renewable energy target for 2030—An impact assessment of the electricity sector. Energy Policy 2015, 85, 50–60. [Google Scholar] [CrossRef]
- Tian, J.F.; Yu, L.G.; Xue, R.; Zhuang, S.; Shan, Y.L. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, K.; Dong, X.; Shahbaz, M. How renewable energy alleviates energy poverty? A global analysis. Renew. Energy 2022, 186, 299–311. [Google Scholar] [CrossRef]
- Siuta-Tokarska, B.; Thier, A.; Hornicki, K. The Concept of Extended Producer Responsibility in the Field of Packaging Industry and the Energy Sector in the Light of the Circular Economy—The Example of Poland. Energies 2022, 15, 9060. [Google Scholar] [CrossRef]
- Bąk, I.; Wawrzyniak, K.; Oesterreich, M. Competitiveness of the Regions of the European Union in a Sustainable Knowledge-Based Economy. Sustainability 2022, 14, 378. [Google Scholar] [CrossRef]
- Stappen, R. Raport Brundtland; Brundtland Report; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Piontek, F.; Piontek, B. Alternatywne koncepcje wdrażania rozwoju i ich skutki dla kategorii kapitał. Nierówności Społeczne A Wzrost Gospod. 2005, 6, 70–71. [Google Scholar]
- Komiyama, H.; Takeuchi, K. Sustanability Science:building a new discipline. Sustanaibility Sci. 2006, 1, 1–6. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A.; Joostberens, J.; Pielot, J.; Toś, P. Analysis of the Impact of Clean Coal Technologies on the Share of Coal in Poland’s Energy Mix. Energies 2024, 17, 1394. [Google Scholar] [CrossRef]
- The Treaty on the Functioning of the European Union. The Treaty of Lisbon. 2018. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=LEGISSUM:ai0033 (accessed on 1 October 2024).
- Kyoto Protocol on Climate Change. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:l28060 (accessed on 1 October 2024).
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028 (accessed on 1 October 2024).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001 (accessed on 2 October 2024).
- Fetting, C. The European Green Deal; European Commission: Brussels, Belgium, 2020; Available online: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf (accessed on 2 October 2024).
- The European Green Deal COM/2019/640. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 10 October 2024).
- Strategia Ramowa na Rzecz Stabilnej unii Energetycznej Opartej na Przyszłościowej Polityce w Dziedzinie Klimatu. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:1bd46c90-bdd4-11e4-bbe1-01aa75ed71a1.0007.02/DOC_1&format=PDF (accessed on 10 October 2024).
- Schlacke, S.; Wentzien, H.; Thierjung, E.-M.; Köster, M. Implementing the EU Climate Law via the ‘Fit for 55’ package. Oxf. Open Energy 2022, 1, oiab002. [Google Scholar] [CrossRef]
- Opinion of the European Economic and Social Committee on Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality [COM(2021) 550 Final] EESC 2021/05481 Bruksela, 14.7.2021 r. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550 (accessed on 11 October 2024).
- Jastrzębski, M. Pakiet “Fit for 55”–dekarbonizacja Europy a europejski przemysł celulozowo-papierniczy. Przegląd Pap. 2022, 78, 25–26. [Google Scholar]
- Jędral, W. Energetyka w 2050 r.-tylko wiatr i słońce? Energetyka Ciepl. Zawodowa 2022, 1, 40–47. [Google Scholar]
- Oates, W.E. Green Taxes: Can We Protect the Environment and Improve the Tax System at the Same Time? South. Econ. J. 1995, 61, 915. [Google Scholar] [CrossRef]
- Ward, H.; Cao, X. Domestic and International Influences on Green Taxation. Comp. Political Stud. 2012, 45, 1075–1103. [Google Scholar] [CrossRef]
- Pigou, A.C. The Economics of Welfare 1938, 4th ed.; Weidenfeld and Nicolson: London, UK, 1920. [Google Scholar]
- Rybak, A.; Joostberens, J.; Manowska, A.; Pielot, J. The Impact of Environmental Taxes on the Level of Greenhouse Gas Emissions in Poland and Sweden. Energies 2022, 15, 4465. [Google Scholar] [CrossRef]
- Argantegui, R.L.; Jäger-Waldau, A. Photovoltaic energy and wind status in the European Union after the Paris Ageement. Renew. Sustain. Rev. 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A.; Joostberens, J.; Kolev, S.D. Cluster Analysis of the EU-27 Countries in Light of the Guiding Principles of the European Green Deal, with Particular Emphasis on Poland. Energies 2022, 15, 5082. [Google Scholar] [CrossRef]
- Rybak, A. Rola i Przyszłość Węgla w Zapewnieniu Bezpieczeństwa Energetycznego Polski; Monografia 865; Wydawnictwo Politechniki Śląskiej: Gliwice, Polska, 2020; pp. 157–161. [Google Scholar]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The Role of Natural Gas and its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- European Commission. European Community Gas Supply And Prospects-COM(95) 478 Final; European Commission: Brussels, Belgium, 1995; Available online: http://aei.pitt.edu/4999/1/4999.pdf (accessed on 11 October 2024).
- IPCC. Climate Change-Response Strategies; IPCC: Geneva, Switzerland, 1990; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_III_full_report.pdf (accessed on 11 October 2024).
- Kittner, N.; Fadadu, R.P.; Buckley, H.L.; Schwarzman, M.R.; Kammen, D.M. Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environ. Sci. Technol. 2018, 52, 2359–2367. [Google Scholar] [CrossRef]
- Vardar, S.; Demirel, B.; Onay, T.T. Impacts of coal-fired power plants for energy generation on environment and future implications of energy policy for Turkey. Environ. Sci. Pollut. Res. 2022, 29, 40302–40318. [Google Scholar] [CrossRef]
- Wu, B.; Liang, H.; Chan, S. Political Connections, Industry Entry Choice and Performance Volatility: Evidence from China. Emerg. Mark. Financ. Trade 2021, 58, 290–299. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M.; Grebski, W. Empirical Assessment of the Efficiency of Poland’s Energy Transition Process in the Context of Implementing the European Union’s Energy Policy. Energies 2024, 17, 2689. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Zhao, X.; Hu, Q.; Liu, D. Assessing fossil energy supply security in China using ecological network analysis from a supply chain perspective. Energy 2024, 288, 129772. [Google Scholar] [CrossRef]
- Jiaping, X.; Zhong, L.; Yu, X.; Ling, L.; Weisi, Z. Optimizing capacity investment on renewable energy source supply chain. Comput. Ind. Eng. 2017, 107, 57–73. [Google Scholar] [CrossRef]
- Cherp, A.; Jewell, J. The three perspectives on energy security: Intellectual history, disciplinary roots and the potential for integration, in current opinion. Environ. Sustain. 2011, 3, 202–212. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A.; Joostberens, J. The Impact of Removing Coal from Poland’s Energy Mix on Selected Aspects of the Country’s Energy Security. Sustainability 2023, 15, 3457. [Google Scholar] [CrossRef]
- Chester, L. Conceptualising energy security and making explicit its polysemic nature. Energy Policy 2010, 38, 887–895. [Google Scholar] [CrossRef]
- Goldthau, A. Governing global energy: Existing approaches and discourses. Curr. Opin. Environ. Sustain. 2011, 3, 213–217. [Google Scholar] [CrossRef]
- Cherp, A.; Jewell, J. The concept of energy security: Beyond the four as. Energy Policy J. 2014, 75, 415–421. [Google Scholar] [CrossRef]
- Mišík, M. The EU needs to improve its external energy security. Energy Policy 2022, 165, 112930. [Google Scholar] [CrossRef]
- Mara, D.; Nate, S.; Stavytskyy, A.; Kharlamova, G. The Place of Energy Security in the National Security Framework: An Assessment Approach. Energies 2022, 15, 658. [Google Scholar] [CrossRef]
- Belkin, P. The European Union’s energy security challenges. Connections 2008, 7, 76–102. [Google Scholar] [CrossRef]
- Jonsson, D.K.; Johansson, B.; Månsson, A.; Nilsson, L.J.; Nilsson, M.; Sonnsjö, H. Energy security matters in the EU Energy Roadmap. Energy Strat. Rev. 2015, 6, 48–56. [Google Scholar] [CrossRef]
- Prontera, A. The New Politics of Energy Security and the Rise of the Catalytic State in Southern Europe. J. Public Policy 2017, 38, 511–551. [Google Scholar] [CrossRef]
- Gasser, P. A Review on Energy Security Indices to Compare Country Performances. Energy Policy 2020, 139, 111339. [Google Scholar] [CrossRef]
- Jewell, J.; Cherp, A.; Riahi, K. Energy Security under De-Carbonization Scenarios: An Assessment Framework and Evaluation under Different Technology and Policy Choices. Energy Policy 2014, 65, 743–760. [Google Scholar] [CrossRef]
- Żuk, P.; Żuk, P. National Energy Security or Acceleration of Transition? Energy Policy after the War in Ukraine. Joule 2022, 6, 709–712. [Google Scholar] [CrossRef]
- Osička, J.; Černoch, F. European Energy Politics after Ukraine: The Road Ahead. Energy Res. Soc. Sci. 2022, 91, 102757. [Google Scholar] [CrossRef]
- Kuzemko, C.; Blondeel, M.; Dupont, C.; Brisbois, M.C. Russia’s war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Res. Soc. Sci. 2022, 93, 102842. [Google Scholar] [CrossRef]
- Borowski, P.F. Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022. Energies 2022, 15, 9289. [Google Scholar] [CrossRef]
- Božić, F.; Karasalihović Sedlar, D.; Smajla, I.; Ivančić, I. Analysis of Changes in Natural Gas Physical Flows for Europe via Ukraine in 2020. Energies 2021, 14, 5175. [Google Scholar] [CrossRef]
- Bijańska, J.; Wodarski, K. Hard coal production in Poland in the aspect of climate and energy policy of the European Union and the war in Ukraine. Investment case study. Resour. Policy 2024, 88, 104390. [Google Scholar] [CrossRef]
- Umbach, F. Global energy security and the implications for the EU. Energy Policy 2010, 38, 1229–1240. [Google Scholar] [CrossRef]
- Kaveshnikov, N. The issue of energy security in relations between Russia and the European Union. Eur. Secur. 2010, 19, 585–605. [Google Scholar] [CrossRef]
- Aalto, P. (Ed.) The EU-Russian Energy Dialogue: Europe’s Future Energy Security; Ashgate Publishing, Ltd.: Serrey, UK, 2008. [Google Scholar]
- Rybak, A.; Rybak, A.; Kolev, S.D. Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression. Energies 2023, 16, 7476. [Google Scholar] [CrossRef]
- Baran, Z. EU Energy Security: Time to End Russian Leverage. Wash. Q. 2007, 30, 131–144. [Google Scholar] [CrossRef]
- Augutis, J.; Krikstolaitis, R.; Martisauskas, L.; Peciulyte, S.; Žutautaitė, I. Integrated energy security assessment. Energy 2017, 138, 890–901. [Google Scholar] [CrossRef]
- Van de Graaf, T.; Colgan, J.D. Russian gas games or well-oiled conflict? Energy security and the 2014 Ukraine crisis. Energy Res. Soc. Sci. 2017, 24, 59–64. [Google Scholar] [CrossRef]
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Ürge-Vorsatz, D.; et al. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- PGI. Available online: https://www.pgi.gov.pl/psg-1/psg-2/informacja-i-szkolenia/wiadomosci-surowcowe/10420-czy-wiecie-ze-wegiel-kamienny.html (accessed on 12 October 2024).
- Energy Policy of Poland Until 2040. Available online: https://www.gov.pl/web/ia/polityka-energetyczna-polski-do-2040-r-EPP2040 (accessed on 12 October 2024). (In Polish)
- Update of the Polish Nuclear Power Programme. Available online: https://monitorpolski.gov.pl/M2020000094601.pdf (accessed on 12 October 2023). (In Polish)
- Sobolewski, M. Perspektywy energetyki jądrowej. Infos Zagadnienia Społeczno-Gospod. 2023, 1, 1–4. [Google Scholar]
- Report WIND EUROPE Published on 1 November 2019: Our Energy, Our Future. How Offshore Wind Will Help Europe Go Carbon-Neutral. Available online: https://windeurope.org/about-wind/reports/our-energy-our-future/ (accessed on 12 October 2023).
- Report October 2022 WIND EUROPE: Offshore Wind in EU Maritime Spatial Plans. Available online: https://windeurope.org/intelligence-platform/product/offshore-wind-in-eu-maritime-spatial-plans/ (accessed on 12 October 2024).
- The Spatial Information System of the Maritime Administration. Available online: https://sipam.gov.pl/geoportal do dnia 13.05.2022 (accessed on 12 October 2024).
- Report 2022 Polish Wind Energy Association. Available online: http://psew.pl/polska-energetyka-wiatrowa-4-0-nowy-raport-2022/ (accessed on 13 October 2024). (In Polish).
- Naworyta, W. Jeśli nie węgiel to co? Transformacja energetyczna w kontekście rosyjskiej agresji w Ukrainie. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2023, 1, 95–107. [Google Scholar]
- Dyka, I.; Harasymiuk, J. Legal barriers to the development of onshore wind power plants and the design of wind turbine tower pile foundation. Arch. Civ. Eng. 2024, LXX, 53–71. [Google Scholar] [CrossRef]
- Bulletin of the Energy Regulatory Authority (Biuletyn Urzędu Regulacji Energetyki). Available online: https://www.ure.gov.pl/download/9/12938/BURE1-2022.pdf (accessed on 13 October 2024). (In Polish)
- Report Institute for Renewable Energy (Instytut Energetyki Odnawialnej)—Rynek Fotowoltaiczny w Polsce 2023. Available online: https://ieo.pl/raport-rynek-fotowoltaiki-w-polsce-2023 (accessed on 13 October 2024). (In Polish).
- Włodarczyk, E. Survey of public sentiment among coal mine workers in connection with the Fit for 55 package being introduced. In Between Freedom and Security; Pituła, B., Wyganowska, M., Mocek, P., Eds.; V&R Unipress: Göttingen, Germany, 2023; pp. 237–250. [Google Scholar] [CrossRef]
- Drobniak, A. (Ed.) prawiedliwa Transformacja Regionów Węglowych w Polsce. Impulsy, Konteksty, Rekomendacje Strategiczne; Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach: Katowice, Poland, 2022; pp. 17–20. [Google Scholar] [CrossRef]
- Nowakowska, A.; Rzeńca, A.; Sobol, A. Place-Based Policy in the “Just Transition” Process: The Case of Polish Coal Regions. Land 2021, 10, 1072. [Google Scholar] [CrossRef]
- Gawlik, L.; Pepłowska, M. Zależność przedsiębiorstw okołogórniczych od sytuacji w górnictwie–badania ankietowe. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią PAN 2017, 97, 43–55. [Google Scholar]
- Kiewra, D.; Szpor, A.; Witajewski-Baltvilks, J. Sprawiedliwa Transformacja Węglowa w Regionie Śląskim Implikacje dla Rynku Pracy; Instytut Badań Strukturalnych: Warsaw, Poland, 2019; Available online: https://ibs.org.pl/publications/sprawiedliwa-transformacja-weglowa-w-regionie-slaskim-implikacje-dla-rynku-pracy/ (accessed on 14 October 2024).
- Frankowski, J.; Mazurkiewicz, J. Województwo Śląskie w Punkcie Zwrotnym Transformacji; Instytut Badań Strukturalnych: Warsaw, Poland, 2020; Available online: https://ibs.org.pl/publications/wojewodztwo-slaskie-w-punkcie-zwrotnym-transformacji/ (accessed on 14 October 2024).
- Puśledzki, W. Metody Badań Pedagogicznych: Obserwacja, Eksperyment, Test, Sondaż; Oddział Doskonalenia Nauczycieli w Kaliszu: Kalisz, Poland, 1985; pp. 30–100. [Google Scholar]
- Skarbek, W.W. Wybrane Zagadnienia Metodologii Nauk Społecznych; Naukowe Wydawnictwo Piotrkowskie: Piotrków Trybunalski, Poland, 2013; p. 53. [Google Scholar]
- Krok, E. Budowa kwestionariusza ankietowego a wyniki badań. Zesz. Nauk. Uniw. Szczecińskiego 874 Stud. Inform. 2015, 37, 55–73. [Google Scholar] [CrossRef]
- Couper, M.P. Web surveys: A review of issues and approaches. Public Opin. Q. 2000, 64, 464–494. [Google Scholar] [CrossRef]
- Berinsky, A.J. Measuring public opinion with surveys. Annu. Rev. Political Sci. 2017, 20, 309–329. [Google Scholar] [CrossRef]
- Maison, D. Jakościowe metody badań marketingowych. In Badania Marketingowe. Od Teorii do Praktyki; Maison, D., Noga-Bogomilski, A., Eds.; Gdańskie Wydawnictwo Psychologiczne: Gdańsk, Poland, 2007; pp. 83–110. [Google Scholar]
- Denzin, N.K.; Lincoln, Y.S. Wprowadzenia. Dziedzina i praktyka badań jakościowych. In Metody Badań Jakościowych, t. 1; Podemski, K., Ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2009; pp. 19–75. [Google Scholar]
- Krajewski, M. Badania Pedagogiczne—Wybór Bibliograficzny Druków Zwartych, Czasopism Pedagogiczno-Przedmiotowych i Witryn Internetowych z Wprowadzaniem; Szkoła Wyższa im. Pawła Włodkowica w Płocku, Wydawnictwo Naukowe “NOVUM” sp. z o. o.: Płock, Poland, 2006; pp. 12–32. [Google Scholar]
- Witaszek, Z. Miejsce i rola sondaży w badaniu opinii społecznej. Zesz. Nauk. Akad. Mar. Wojennej 2007, 48, 141–162. [Google Scholar]
- Babbie, E. Badania Społeczne w Praktyce; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; pp. 178–216. [Google Scholar]
- Keith, T.Z. Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling, 3rd ed.; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Ruengvirayudh, P.; Brooks, G.P. Comparing stepwise regression models to the best-subsets models, or, the art of stepwise. Gen. Linear Model J. 2016, 42, 1–14. [Google Scholar]
- Hosmer, D.W.; Hosmer, T.; Le Cessie, S.; Lemeshow, S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 1997, 16, 965–980. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Menard, S. Applied Logistic Regression Analysis; Sage: Newcastle upon Tyne, UK, 2002; Volume 106. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Bielacki, Ł.; Ingram, T.; Baron, M. Analiza Konsekwencji Likwidacji Górnictwa Węgla Kamiennego dla Polski i Przedsiębiorstw Sektora Okołogórniczego; CBIR & UE w Katowicach: Katowice, Poland, 2021; Available online: http://www.giph.com.pl/files/Publikacje/Ekspertyza_Cz_II.pdf (accessed on 2 March 2025).
- Potencjały i Wyzwania Rozwojowe Województwa Śląskiego W Kontekście Sprawiedliwej Transformacji”, Katowice. 2021. Available online: https://transformacja.slaskie.pl/images/Dokumenty/1646921120_za_C5_82.-2-potencja-c5-82y-i-wyzwania-rozwojowe.pdf (accessed on 2 March 2025).
- Statement by the Minister of Climate and Environment in Poland. Available online: https://nettg.pl/gornictwo/195698/anna-moskwa-polska-nie-zgodzi-sie-na-rozporzadzenie-metanowe-oznaczaloby-utrate-250-tys-miejsc-pracy (accessed on 2 March 2025).
- A Just Transition Can Revitalise Coal Regions, But Countries Must Start Planning Now. Available online: https://poweringpastcoal.org/insights/a-just-transition-can-revitalise-coal-regions-but-countries-must-start-planning-now/ (accessed on 3 March 2025).
- EU Cohesion Policy: €459 Million for a Just Climate Transition in Slovakia. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7086 (accessed on 3 March 2025).
- Slovakia’s Phase-Out Revitalises Former Coal Region. Available online: https://poweringpastcoal.org/news/slovakias-phase-out-revitalises-former-coal-region/ (accessed on 3 March 2025).
- U.S. Economic Development Administration-Coal Communities Commitment Frequently Asked Questions. Available online: https://www.eda.gov/funding/programs/american-rescue-plan/coal-communities-commitment/faq (accessed on 3 March 2025).
Are You in Favor of the Planned Departure from Coal in Poland’s Energy Transition? | |||||
---|---|---|---|---|---|
Characteristics | Yes | No | No opinion | Total | |
Total | 88 (22.9%) | 261 (67.8%) | 36 (9.4%) | 385 (100%) | |
Age | |||||
18–30 | 34 (38.6%) | 55 (21.1%) | 10 (27.8%) | 99 (25.7%) | |
31–40 | 22 (25.0%) | 98 (37.5%) | 8 (22.2%) | 128 (33.2%) | |
41–50 | 30 (34.1%) | 85 (32.6%) | 18 (50.0%) | 133 (34.5%) | |
Over 50 | 2 (2.3%) | 23 (8.8%) | 0 (0.0%) | 25 (6.5%) | |
Place of Residence | |||||
City of up to 20,000 inhabitants | 10 (11.4%) | 30 (11.5%) | 6 (16.7%) | 46 (11.9%) | |
City of 21,000–100,000 inhabitants | 20 (22.7%) | 101 (38.7%) | 8 (22.2%) | 129 (33.5%) | |
City of 101,000–200,000 inhabitants | 32 (36.4%) | 46 (17.6%) | 14 (38.9%) | 92 (23.9%) | |
City of more than 201,000 inhabitants | 10 (11.4%) | 48 (18.4%) | 4 (11.1%) | 62 (16.1%) | |
Rural | 16 (18.2%) | 36 (13.8%) | 4 (11.1%) | 56 (14.5%) | |
Building type | |||||
Multi-family apartment buildings | 33 (37.5%) | 83 (31.8%) | 22 (61.1%) | 138 (35.8%) | |
Single-family terraced or semi-detached houses | 13 (14.8%) | 32 (12.3%) | 0 (0.0%) | 45 (11.7%) | |
Detached single-family houses | 36 (40.9%) | 98 (37.5%) | 14 (38.9%) | 148 (38.4%) | |
Multi-family buildings—tenement houses | 6 (6.8%) | 48 (18.4%) | 0 (0.0%) | 54 (14.0%) | |
Income | |||||
Below 3500 PLN | 12 (13.6%) | 33 (12.6%) | 4 (11.1%) | 49 (12.7%) | |
3500.01–4500 PLN | 19 (21.6%) | 26 (10.0%) | 10 (27.8%) | 55 (14.3%) | |
4500.01–5500 PLN | 21 (23.9%) | 49 (18.8%) | 6 (16.7%) | 76 (19.7%) | |
5500.01–6500 PLN | 10 (11.4%) | 50 (19.2%) | 4 (11.1%) | 64 (16.6%) | |
6500.01–7500 PLN | 16 (18.2%) | 37 (14.2%) | 2 (5.6%) | 55 (14.3%) | |
Over 7500 PLN | 10 (11.4%) | 66 (25.3%) | 10 (27.8%) | 86 (22.3%) | |
Size | |||||
Under 60 m2 | 22 (25.0%) | 104 (39.8%) | 10 (27.8%) | 136 (35.3%) | |
60.01–90 m2 | 26 (29.5%) | 30 (11.5%) | 16 (44.4%) | 72 (18.7%) | |
90.01–120 m2 | 16 (18.2%) | 51 (19.5%) | 0 (0.0%) | 67 (17.4%) | |
120.01–150 m2 | 14 (15.9%) | 50 (19.2%) | 2 (5.6%) | 66 (17.1%) | |
Over 150 m2 | 10 (11.4%) | 26 (10.0%) | 8 (22.2%) | 44 (11.4%) | |
Heating source currently used | |||||
Electricity | 22 (25.0%) | 8 (3.1%) | 4 (11.1%) | 34 (8.8%) | |
Natural gas | 34 (38.6%) | 93 (35.6%) | 10 (27.8%) | 137 (35.6%) | |
Coal | 6 (6.8%) | 64 (24.5%) | 0 (0.0%) | 70 (18.2%) | |
Other | 8 (9.1%) | 8 (3.1%) | 4 (11.1%) | 20 (5.2%) | |
From the municipal mains network | 18 (20.5%) | 88 (33.7%) | 18 (50%) | 124 (32.2%) | |
Job | |||||
Mining | 2 (2.3%) | 118 (45.2%) | 0 (0.0%) | 120 (31.2%) | |
Mining-related | 2 (2.3%) | 9 (3.4%) | 0 (0.0%) | 11 (2.9%) | |
Power company | 18 (20.5%) | 7 (2.7%) | 0 (0.0%) | 25 (6.5%) | |
Gas company | 2 (2.3%) | 0 (0%) | 0 (0.0%) | 2 (0.5%) | |
Subsidy | |||||
Electricity | 14 (15.9%) | 4 (1.5%) | 0 (0.0%) | 18 (4.7%) | |
Coal | 0 (0.0%) | 100 (38.3%) | 0 (0.0%) | 100 (26.0%) |
Factor | Yes | No | No opinion | Total |
---|---|---|---|---|
I believe that once we move away from coal, air quality will improve | 60 (68.2%) | 14 (5.4%) | 20 (55.6%) | 94 (6.1%) |
I’m afraid of an increase in electricity prices after Poland’s departure from coal | 16 (18.2%) | 183 (70.1%) | 18 (50%) | 217 (14%) |
I think we should implement nuclear power in Poland | 54 (61.4%) | 53 (20.3%) | 8 (22.2%) | 115 (7.4%) |
I believe that nuclear power is not safe | 12 (13.6%) | 79 (30.3%) | 6 (16.7%) | 97 (6.3%) |
I am in favor of Poland meeting the EU’s green requirements | 14 (15.9%) | 2 (0.8%) | 10 (27.8%) | 26 (1.7%) |
I believe that Poland’s move away from coal will have a negative impact on the country’s energy security | 17 (19.3%) | 231 (88.5%) | 0 (0%) | 248 (16%) |
I’m worried about the impact of the closure of many mining and mining-related jobs on the labor market | 10 (11.4%) | 187 (71.6%) | 8 (22.2%) | 205 (13.2%) |
I believe that currently, Poland cannot afford the energy transition | 4 (4.5%) | 218 (83.5%) | 2 (5.6%) | 224 (14.5%) |
I believe that after Poland departs from coal, there will be a loss of energy independence | 10 (11.4%) | 239 (91.6%) | 8 (22.2%) | 257 (16.6%) |
I care about ecology, and coal is not an environmentally friendly resource | 44 (50%) | 4 (1.5%) | 18 (50%) | 66 (4.3%) |
Yes | No | No Opinion | Total | |
---|---|---|---|---|
Coal is not an environmentally friendly resource | 3.55 | 2.21 | 3.28 | 2.62 |
Air quality will improve after the departure from coal | 4.32 | 1.81 | 3.89 | 2.58 |
Poland’s departure from coal is important in meeting EU requirements | 3.82 | 1.68 | 3.44 | 2.34 |
After the departure from coal, Poland’s image in the international arena will improve | 3.66 | 1.41 | 3.22 | 2.10 |
Nuclear power plants in Poland should be launched as soon as possible | 4.00 | 2.82 | 3.00 | 3.11 |
Poland’s departure from coal will be followed by a loss of energy self-sufficiency | 2.68 | 4.56 | 2.89 | 3.98 |
Poland’s departure from coal will have a negative impact on the energy security of the country | 2.61 | 4.54 | 2.89 | 3.94 |
N = 349 | Constant B0 | Age | Energy Source | Air Quality | Energy Independence | Work in Mining |
---|---|---|---|---|---|---|
Assessment | 4.418 | −1.267 | −0.702 | 1.330 | −1.142 | −2.491 |
Standard error | 1.426 | 0.285 | 0.190 | 0.212 | 0.206 | 0.781 |
Student’s t-test (343) | 3.097 | −4.448 | −3.693 | 6.288 | −5.550 | −3.188 |
p-value | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 |
−95%CL | 1.612 | −1.827 | −1.075 | 0.914 | −1.547 | −4.028 |
+95%CL | 7.223 | −0.707 | −0.328 | 1.746 | −0.737 | −0.954 |
Wald Chi-squared test | 9.594 | 19.788 | 13.641 | 39.535 | 30.808 | 10.164 |
p-value | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
Odds ratio one unit | 82.903 | 0.282 | 0.496 | 3.781 | 0.319 | 0.083 |
−95%CL | 5.015 | 0.161 | 0.341 | 2.494 | 0.213 | 0.018 |
+95%CL | 1370.552 | 0.493 | 0.720 | 5.732 | 0.478 | 0.385 |
Odds ratio—range | 0.022 | 0.060 | 204.362 | 0.010 | 0.083 | |
−95%CL | 0.004 | 0.014 | 38.696 | 0.002 | 0.018 | |
+95%CL | 0.120 | 0.269 | 1079.275 | 0.052 | 0.385 |
Odds Ratio: 131.118881 Log of Odds Ratio: 4.876104 | Predicted: Yes | Predicted: No | Correct (%) |
---|---|---|---|
Observed: Yes | 75 | 13 | 85% |
Observed: No | 11 | 250 | 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarczyk, E.; Herczakowska, J. Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region. Sustainability 2025, 17, 2707. https://doi.org/10.3390/su17062707
Włodarczyk E, Herczakowska J. Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region. Sustainability. 2025; 17(6):2707. https://doi.org/10.3390/su17062707
Chicago/Turabian StyleWłodarczyk, Ewelina, and Joanna Herczakowska. 2025. "Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region" Sustainability 17, no. 6: 2707. https://doi.org/10.3390/su17062707
APA StyleWłodarczyk, E., & Herczakowska, J. (2025). Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region. Sustainability, 17(6), 2707. https://doi.org/10.3390/su17062707