Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Influencing Factors of Carbon Emission
2.2. Financial Agglomeration and Carbon Emissions
2.3. Green Technical Innovation and Carbon Emissions
2.4. Financial Agglomeration, Green Technology Innovation and Carbon Emission
2.5. Evaluation of Existing Research Literature
2.6. Theoretical Analysis and Research Hypothesis
3. Analysis of Level Measurement of Financial Agglomeration, Green Technological Innovation, and Carbon Emission
3.1. Analysis of Financial Agglomeration Level Measurement
3.1.1. Measurement Method
3.1.2. Evaluation of Financial Agglomeration Level
3.2. Analysis of Green Technological Innovation Level Measurement
3.2.1. Measurement Method for Green Technological Innovation
3.2.2. Green Technological Innovation Level and Dynamic Analysis
3.3. Analysis of Carbon Emission Level Measurement
3.3.1. Measurement and Analysis Method of Carbon Emission
3.3.2. Measurement of per Capita Carbon Emission Level
4. Baseline Regression Analysis
4.1. Research Design
4.1.1. Variable Selection
- (1)
- Industry structure (a1): The main component of the social and economic system is industry structure. The main factor affecting regional carbon emissions and the key direction of pollution control is the secondary industry, so the resource allocation of industrial structures can affect carbon emissions [89].
- (2)
- Urbanization rate (a2): Different urban agglomerations’ carbon emissions rise as the urbanization rate rises, but the increase rate is different, so urbanization rate and carbon emissions are inextricably linked [90].
- (3)
- Foreign direct investment (a3): Malik et al. [91] believe that foreign direct investment (FDI) can support various nations’ economic advancement. However, the impact of FDI on the environment is also rising due to climate change. Hence, it is essential to further research and analyze their relationship in more detail.
- (4)
- Environmental regulation (a4): Reasonable implementation of environmental regulations and efforts to improve carbon productivity are realistic choices for China to cope with climate change. At present, environmental regulation and carbon emission interact and influence each other. Consequently, while examining the factors influencing carbon emissions, the importance of environmental regulation cannot be disregarded [92].
- (5)
- Government intervention (a5): To fulfill the objectives of the “double carbon” strategy and foster green economic growth, it is not only possible to rely on the free market to address the issue of carbon emission and global warming but also the coordination and control of the government. Therefore, this paper also sets government intervention as a control variable to research its effect on carbon emissions.
4.1.2. Data Sources
4.1.3. Descriptive Statistics
4.1.4. Model Establishment
4.1.5. Model Test
4.2. Baseline Regression
4.2.1. Results of Baseline Regression
4.2.2. Robustness Test of Baseline Regression
5. Spatial Econometric Analysis
5.1. Model Selection
5.1.1. Spatial Autocorrelation
5.1.2. Spatial Model Selection
5.2. Spatial Autocorrelation Test
5.3. Analysis of Regressive Results
5.4. Robustness Test of Spatial Regression
5.5. Heterogeneity Analysis
6. Discussion
7. Conclusions and Policy Recommendations
7.1. Conclusions
7.2. Policy Recommendations
7.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, X.; Shen, L.; Ren, X. The Role of Clothing Technology in Supporting Sustainable Fashion in the Post-COVID-19 Era. Sustainability 2024, 16, 8287. [Google Scholar] [CrossRef]
- Sun, H.; Li, W.; Guo, X.; Wu, Z.; Mao, Z.; Feng, J. How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China. Sustainability 2025, 17, 1449. [Google Scholar] [CrossRef]
- Wei, L.; Zeng, B. Research on the Effects of Carbon Emissions from China’s Technology Transfer: Domestic and International Perspectives. Economies 2025, 13, 44. [Google Scholar] [CrossRef]
- Nie, J.; Shen, J.; Ren, X. Digital Infrastructure, New Digital Infrastructure, and Urban Carbon Emissions: Evidence from China. Atmosphere 2025, 16, 199. [Google Scholar] [CrossRef]
- Do, M.-H.; Huang, Y.-F.; Hoang, T.-T. Blockchain Adoption in Green Supply Chains: Analyzing Key Drivers, Green Innovation, and Expected Benefits. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 39. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Zhao, L.; Zhang, H.; Chen, M.-n.; Fang, R.-y.; Yao, Y.; Zhang, Q.-p.; Wang, Q. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China. Ecol. Indic. 2022, 136, 108623. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Zhao, S.; Tang, T. Does green finance agglomeration improve carbon emission performance in China? A perspective of spatial spillover. Appl. Energy 2024, 358, 122561. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, Z. Digital Innovations Driving Urban Sustainability: Key Factors in Reducing Carbon Emissions. Sustainability 2025, 17, 2186. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X. Industrial agglomeration, technological innovation and carbon productivity: Evidence from China. Resour. Conserv. Recycl. 2021, 166, 105330. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Guo, F. Does carbon emissions trading promote green technology innovation in China? Appl. Energy 2022, 315, 119012. [Google Scholar] [CrossRef]
- Qian, L.; Xu, X.; Sun, Y.; Zhou, Y. Carbon emission reduction effects of eco-industrial park policy in China. Energy 2022, 261, 125315. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Cai, X.; Yu, J. The Dual Carbon Emission Effects of Digital Economy: Evidence from China. Heliyon 2025, 11, e42554. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cheng, Z.; Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in China? J. Clean. Prod. 2017, 164, 30–37. [Google Scholar] [CrossRef]
- Li, X.; Ma, D. Financial agglomeration, technological innovation, and green total factor energy efficiency. Alex. Eng. J. 2021, 60, 4085–4095. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Li, B.; Wang, Y.; Wang, M. Can financial agglomeration curb carbon emissions reduction from agricultural sector in China? Analyzing the role of industrial structure and digital finance. J. Clean. Prod. 2024, 440, 140862. [Google Scholar] [CrossRef]
- Li, S.; Yao, L.; Zhang, Y.; Zhao, Y.; Sun, L. China's provincial carbon emission driving factors analysis and scenario forecasting. Environ. Sustain. Indic. 2024, 22, 100390. [Google Scholar] [CrossRef]
- Ding, N.; Guo, P.; Xi, Y.; Zhang, A.; Lei, X. Low-carbon development in power systems based on carbon emission analysis models: A comprehensive review. Sustain. Energy Technol. Assess. 2024, 65, 103774. [Google Scholar] [CrossRef]
- Shangguan, D.; Yang, L.; Wang, J.; Li, D.; Li, P.; Zhang, Y.; Zhou, X. Case study on carbon emission of a traditional Chinese medicine pharmaceutical enterprise toward carbon neutrality. J. Clean. Prod. 2024, 450, 141600. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, C.; Wang, Q.; Yang, C.; Suo, X.; Zhang, Q. Climate extremes and land use carbon emissions: Insight from the perspective of sustainable land use in the eastern coast of China. J. Clean. Prod. 2024, 452, 142219. [Google Scholar] [CrossRef]
- Ming, L.; Wang, Y.; Chen, X.; Meng, L. Dynamics of urban expansion and form changes impacting carbon emissions in the Guangdong-Hong Kong-Macao Greater Bay Area counties. Heliyon 2024, 10, e29647. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C. Does Urban Sprawl Lead to Carbon Emission Growth?—Empirical evidence based on the perspective of local land transfer in China. J. Clean. Prod. 2024, 455, 142319. [Google Scholar] [CrossRef]
- Farid, S.; Zafar, Q. Impact of Economic Policy Uncertainty on Global Carbon Emissions. Res. Econ. 2024, 78, 100961. [Google Scholar] [CrossRef]
- Ahmed, K.; Rehman, M.U.; Ozturk, I. What drives carbon dioxide emissions in the long-run? Evidence from selected South Asian Countries. Renew. Sustain. Energy Rev. 2017, 70, 1142–1153. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Peng, W.; Zhang, L. Analyzing carbon emissions and influencing factors in Chengdu-Chongqing urban agglomeration counties. J. Environ. Sci. 2024, 151, 640–651. [Google Scholar] [CrossRef]
- Liao, K.; Liu, J. Digital infrastructure empowerment and urban carbon emissions: Evidence from China. Telecommun. Policy 2024, 48, 102764. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Ma, S. The impact of different transportation infrastructures on urban carbon emissions: Evidence from China. Energy 2024, 295, 131041. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Yang, R. Low carbon finance drives corporate carbon emissions reduction: A perspective from issuing carbon neutral bonds. Technol. Forecast. Soc. Chang. 2024, 203, 123404. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, S.; Han, J.; Tan, Z.; Mu, S.; Jiayi, W. The carbon emission reduction effect of renewable resource utilization: From the perspective of green innovation. Atmos. Pollut. Res. 2024, 15, 102121. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Y.; Yan, R. Does carbon emission trading policy has emission reduction effect?—An empirical study based on quasi-natural experiment method. J. Environ. Manag. 2024, 351, 119791. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Chen, Y. The impact of trans-provincial watershed eco-compensation policy on carbon emissions: Evidence from China. Econ. Anal. Policy 2024, 82, 784–802. [Google Scholar] [CrossRef]
- Derindag, O.F.; Maydybura, A.; Kalra, A.; Wong, W.-K.; Chang, B.H. Carbon emissions and the rising effect of trade openness and foreign direct investment: Evidence from a threshold regression model. Heliyon 2023, 9, e17448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, F.; Li, R.; Sun, J. Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. J. Clean. Prod. 2024, 447, 141298. [Google Scholar] [CrossRef]
- Tu, C.; Zang, C.; Wu, A.; Long, H.; Yu, C.; Liu, Y. Assessing the impact of industrial intelligence on urban carbon emission performance: Evidence from China. Heliyon 2024, 10, e30144. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Liu, L.; Luo, D.; Xing, K. The impact of green technology innovation on carbon dioxide emissions: The role of local environmental regulations. J. Environ. Manag. 2023, 340, 117990. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, T. The effects of farmer cooperatives on agricultural carbon emissions reduction: Evidence from rural China. J. Clean. Prod. 2024, 450, 141881. [Google Scholar] [CrossRef]
- Wang, C.; Liu, P.; Ibrahim, H.; Yuan, R. The temporal and spatial evolution of green finance and carbon emissions in the Pearl River Delta region: An analysis of impact pathways. J. Clean. Prod. 2024, 446, 141428. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Lei, Z. Research on the mechanisms of the digital transformation of manufacturing enterprises for carbon emissions reduction. J. Clean. Prod. 2024, 449, 141817. [Google Scholar] [CrossRef]
- Zhang, C.; Fang, J.; Ge, S.; Sun, G. Research on the impact of enterprise digital transformation on carbon emissions in the manufacturing industry. Int. Rev. Econ. Financ. 2024, 92, 211–227. [Google Scholar] [CrossRef]
- Tao, M.; Wen, L.; Sheng, M.S.; Yan, Z.J.; Poletti, S. Dynamics between energy intensity and carbon emissions: What does the clustering effect of labor and capital play? J. Clean. Prod. 2024, 452, 142223. [Google Scholar] [CrossRef]
- Bai, L.; Guo, T.; Xu, W.; Liu, Y.; Kuang, M.; Jiang, L. Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model. Energy Policy 2023, 183, 113792. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Z. The impact and transmission mechanisms of financial agglomeration on eco-efficiency: Evidence from the organization for economic co-operation and development economies. J. Clean. Prod. 2023, 392, 136219. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Wang, T.; Li, C. Impact of industrial agglomeration on carbon emissions from dairy farming—Empirical analysis based on life cycle assessmsent method and spatial durbin model. J. Clean. Prod. 2023, 406, 137081. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, S.; Fang, X.; Chen, W. Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China. Energy 2022, 241, 122519. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Li, Q.; Wang, Y.; Chen, W. Economic agglomeration and emissions reduction: Does high agglomeration in China’s urban clusters lead to higher carbon intensity? Urban Clim. 2022, 43, 101174. [Google Scholar] [CrossRef]
- Fan, W.; Wang, F.; Liu, S.; Chen, T.; Bai, X.; Zhang, Y. How does financial and manufacturing co-agglomeration affect environmental pollution? Evidence from China. J. Environ. Manag. 2023, 325, 116544. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L. Impacts of digital economy agglomeration on carbon emission: A two-tier stochastic frontier and spatial decomposition analysis of China. Sustain. Cities Soc. 2023, 95, 104624. [Google Scholar] [CrossRef]
- Liu, K.; Dong, S.; Han, M. Exploring the impact of green innovation on carbon emission intensity in Chinese metropolitan areas. Ecol. Indic. 2023, 156, 111115. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, R.; Liu, L.; Ren, Y. A spatial effect study on financial agglomeration promoting the green development of urban agglomerations. Sustain. Cities Soc. 2021, 70, 102900. [Google Scholar] [CrossRef]
- Yan, B.; Wang, F.; Dong, M.; Ren, J.; Liu, J.; Shan, J. How do financial spatial structure and economic agglomeration affect carbon emission intensity? Theory extension and evidence from China. Econ. Model. 2022, 108, 105745. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, T.; Hu, K.; Feng, Y.; Feng, C.; Jia, P. Influences and transmission mechanisms of financial agglomeration on environmental pollution. J. Environ. Manag. 2022, 303, 114136. [Google Scholar] [CrossRef]
- Chen, S.; Ding, D.; Shi, G.; Chen, G. Digital economy, industrial structure, and carbon emissions: An empirical study based on a provincial panel data set from China. Chin. J. Popul. Resour. Environ. 2022, 20, 316–323. [Google Scholar] [CrossRef]
- Wang, Z.; Sami, F.; Khan, S.; Alamri, A.M.; Zaidan, A.M. Green innovation and low carbon emission in OECD economies: Sustainable energy technology role in carbon neutrality target. Sustain. Energy Technol. Assess. 2023, 59, 103401. [Google Scholar] [CrossRef]
- Khattak, S.I.; Ahmad, M.; Haq, Z.U.; Shaofu, G.; Hang, J. On the goals of sustainable production and the conditions of environmental sustainability: Does cyclical innovation in green and sustainable technologies determine carbon dioxide emissions in G-7 economies. Sustain. Prod. Consum. 2022, 29, 406–420. [Google Scholar] [CrossRef]
- Kuang, H.; Akmal, Z.; Li, F. Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China. Renew. Energy 2022, 197, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, S.; Long, X. A study on the measurement and influencing factors of carbon emissions in China’s construction sector. Build. Environ. 2023, 229, 109912. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Razzaq, A.; Wang, Y.; Chupradit, S.; Suksatan, W.; Shahzad, F. Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework. Technol. Soc. 2021, 66, 101656. [Google Scholar] [CrossRef]
- Habiba, U.; Xinbang, C.; Anwar, A. Do green technology innovations, financial development, and renewable energy use help to curb carbon emissions? Renew. Energy 2022, 193, 1082–1093. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, H.; Wang, Y.; Duan, Y. International trade diversification, green innovation, and consumption-based carbon emissions: The role of renewable energy for sustainable development in BRICST countries. Renew. Energy 2022, 198, 1243–1253. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y. What is the role of green ICT innovation in lowering carbon emissions in China? A provincial-level analysis. Energy Econ. 2023, 127, 107112. [Google Scholar] [CrossRef]
- Fang, G.; Gao, Z.; Wang, L.; Tian, L. How does green innovation drive urban carbon emission efficiency? —Evidence from the Yangtze River Economic Belt. J. Clean. Prod. 2022, 375, 134196. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model. Technol. Forecast. Soc. Chang. 2022, 176, 121434. [Google Scholar] [CrossRef]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous green innovations and carbon emission performance: Evidence at China’s city level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Chen, Y. Research on innovative mechanisms of financial agglomeration enabling green coordinated development in the Yangtze River Delta of China. Heliyon 2023, 9, e14172. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.; Chen, S.; Chen, W.; Wan, K.; Wei, J. Riding the green rails: Exploring the nexus between high-speed trains, green innovation, and carbon emissions. Energy 2023, 282, 128955. [Google Scholar] [CrossRef]
- Cao, J.; Law, S.H.; Bin Abdul Samad, A.R.; Binti, W.; Mohamad, W.N.; Wang, J.; Yang, X. Effect of financial development and technological innovation on green growth—Analysis based on spatial Durbin model. J. Clean. Prod. 2022, 365, 132865. [Google Scholar] [CrossRef]
- Xie, R.; Fu, W.; Yao, S.; Zhang, Q. Effects of financial agglomeration on green total factor productivity in Chinese cities: Insights from an empirical spatial Durbin model. Energy Econ. 2021, 101, 105449. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Cheng, Y.; Lv, K.; Zhu, S. How does digital financial inclusion promote green total factor productivity in China? An empirical analysis from the perspectives of innovation and entrepreneurship. Process Saf. Environ. Prot. 2023, 174, 403–413. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, C.-s.; He, Z.; Xing, W.-w.; Wang, K. How does green finance affect energy efficiency? The role of green technology innovation and energy structure. Renew. Energy 2023, 219, 119417. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xu, J. Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China. Energy 2023, 284, 128667. [Google Scholar] [CrossRef]
- Ozkan, O.; Sharif, A.; Mey, L.S.; Tiwari, S. The dynamic role of green technological innovation, financial development and trade openness on urban environmental degradation in China: Fresh insights from carbon efficiency. Urban Clim. 2023, 52, 101679. [Google Scholar] [CrossRef]
- Chu, S.; Chen, L.; Liu, Y. Does industrial agglomeration curb corporate carbon emissions? A perspective of financial constraints. Int. Rev. Econ. Financ. 2024, 96, 103673. [Google Scholar] [CrossRef]
- Zhao, B.; Lv, L.; Luo, X.; Huang, X. The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation. Sustainability 2025, 17, 1655. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Wang, Y.; Qin, Y. Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework. Nat. Hazards 2017, 88, 1545–1564. [Google Scholar] [CrossRef]
- Chen, M.; Wang, K. The combining and cooperative effects of carbon price and technological innovation on carbon emission reduction: Evidence from China's industrial enterprises. J. Environ. Manag. 2023, 343, 118188. [Google Scholar] [CrossRef]
- Peng, D.; Li, R.; Shen, C.; Wong, Z. Industrial agglomeration, urban characteristics, and economic growth quality: The case of knowledge-intensive business services. Int. Rev. Econ. Financ. 2022, 81, 18–28. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Shi, Z. Does financial agglomeration promote the increase of energy efficiency in China? Energy Policy 2020, 146, 111810. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Quan, T.; Ran, R.; Hua, L. Influence and effect of industrial agglomeration on urban green total factor productivity—On the regulatory role of innovation agglomeration and institutional distance. Econ. Anal. Policy 2023, 78, 1158–1173. [Google Scholar] [CrossRef]
- Zhang, L.; He, X.; Jia, Z. Industrial agglomeration, public services and city size: Evidence from 286 cities in China. Land Use Policy 2023, 131, 106758. [Google Scholar] [CrossRef]
- Hara, K.; Kuroda, M.; Yabar, H.; Kimura, M.; Uwasu, M. Historical development of wastewater and sewage sludge treatment technologies in Japan—An analysis of patent data from the past 50 years. Environ. Dev. 2016, 19, 59–69. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q. Digital transformation, corporate social responsibility and green technology innovation- based on empirical evidence of listed companies in China. J. Clean. Prod. 2023, 424, 138805. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Chen, F.; Wang, Y.; Zhang, Y. Does Chinese companies' OFDI enhance their own green technology innovation? Financ. Res. Lett. 2023, 56, 104113. [Google Scholar] [CrossRef]
- Yabar, H.; Uwasu, M.; Hara, K. Tracking environmental innovations and policy regulations in Japan: Case studies on dioxin emissions and electric home appliances recycling. J. Clean. Prod. 2013, 44, 152–158. [Google Scholar] [CrossRef]
- Singh, R.K.; Yabar, H.; Nozaki, N.; Niraula, B.; Mizunoya, T. Comparative study of linkage between environmental policy instruments and technological innovation: Case study on end-of-life vehicles technologies in Japan and EU. Waste Manag. 2017, 66, 114–122. [Google Scholar] [CrossRef]
- Bai, C.; Feng, C.; Yan, H.; Yi, X.; Chen, Z.; Wei, W. Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions? J. Environ. Manag. 2020, 264, 110482. [Google Scholar] [CrossRef]
- Zhao, P.; Zeng, L.; Li, P.; Lu, H.; Hu, H.; Li, C.; Zheng, M.; Li, H.; Yu, Z.; Yuan, D.; et al. China’s transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model. Energy 2022, 238, 121934. [Google Scholar] [CrossRef]
- Hu, J.; Chen, H.; Dinis, F.; Xiang, G. Nexus among green finance, technological innovation, green fiscal policy and CO2 emissions: A conditional process analysis. Ecol. Indic. 2023, 154, 110706. [Google Scholar] [CrossRef]
- Shi, X.; Li, X. Research on three-stage dynamic relationship between carbon emission and urbanization rate in different city groups. Ecol. Indic. 2018, 91, 195–202. [Google Scholar] [CrossRef]
- Malik, M.Y.; Latif, K.; Khan, Z.; Butt, H.D.; Hussain, M.; Nadeem, M.A. Symmetric and asymmetric impact of oil price, FDI and economic growth on carbon emission in Pakistan: Evidence from ARDL and non-linear ARDL approach. Sci. Total Environ. 2020, 726, 138421. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, D. How does environmental regulation influence China’s carbon productivity? An empirical analysis based on the spatial spillover effect. J. Clean. Prod. 2020, 257, 120484. [Google Scholar] [CrossRef]
- Tang, D.; Li, J.; Zhao, Z.; Boamah, V.; Lansana, D.D. The influence of industrial structure transformation on urban resilience based on 110 prefecture-level cities in the Yangtze River. Sustain. Cities Soc. 2023, 96, 104621. [Google Scholar] [CrossRef]
- Wojewodzki, M.; Wei, Y.; Cheong, T.S.; Shi, X. Urbanisation, agriculture and convergence of carbon emissions nexus: Global distribution dynamics analysis. J. Clean. Prod. 2023, 385, 135697. [Google Scholar] [CrossRef]
- Zheng, H.; He, Y. How does industrial co-agglomeration affect high-quality economic development? Evidence from Chengdu-Chongqing Economic Circle in China. J. Clean. Prod. 2022, 371, 133485. [Google Scholar] [CrossRef]
- Mehmood, S.; Zaman, K.; Khan, S.; Ali, Z.; Khan, H.U.R. The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation. Energy Built Environ. 2023, 5, 464–479. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; He, Z. The impact of environmental pollution and green finance on the high-quality development of energy based on spatial Dubin model. Resour. Policy 2021, 74, 102451. [Google Scholar] [CrossRef]
- Hou, S.; Yu, K.; Fei, R. How does environmental regulation affect carbon productivity? The role of green technology progress and pollution transfer. J. Environ. Manag. 2023, 345, 118587. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, C.; Chen, Q.; Wu, L. Oil price distortion and its impact on green economic efficiency in China’s transportation: A spatial effect perspective. Renew. Sustain. Energy Rev. 2024, 191, 114148. [Google Scholar] [CrossRef]
- Rong, J.; Hong, J.; Guo, Q.; Fang, Z.; Chen, S. Path mechanism and spatial spillover effect of green technology innovation on agricultural CO2 emission intensity: A case study in Jiangsu Province, China. Ecol. Indic. 2023, 157, 111147. [Google Scholar] [CrossRef]
- Wang, B.-Q.; Yang, B.; Yang, H.-C.; Wang, J.-Y.; Hu, S.; Gao, Y.-S.; Bu, X.-Y. MicroRNA-499a decelerates glioma cell proliferation while accelerating apoptosis through the suppression of Notch1 and the MAPK signaling pathway. Brain Res. Bull. 2018, 142, 96–106. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Li, C.J.; Razzaq, A.; Irfan, M.; Luqman, A. Green innovation, environmental governance and green investment in China: Exploring the intrinsic mechanisms under the framework of COP26. Technol. Forecast. Soc. Chang. 2023, 194, 122708. [Google Scholar] [CrossRef]
- Wan, J.; Li, C.; Yang, Z.; Wu, L.; Yue, M. Dynamic spatial spillover effects of financial agglomeration on CO2 emissions: The case of China. Humanit. Soc. Sci. Commun. 2025, 12, 178. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, X.; Yu, M. Calculating carbon emissions and selecting carbon peak scheme for infrastructure construction in Liaoning Province, China. J. Clean. Prod. 2023, 420, 138396. [Google Scholar] [CrossRef]
- Di, K.; Chen, W.; Zhang, X.; Shi, Q.; Cai, Q.; Li, D.; Liu, C.; Di, Z. Regional unevenness and synergy of carbon emission reduction in China's green low-carbon circular economy. J. Clean. Prod. 2023, 420, 138436. [Google Scholar] [CrossRef]
- Lu, J.; Yang, R.; Chen, B.; Zhang, Y. Variation, Determinants and prediction of carbon emissions in Guizhou, a new economic growth pole in southwest China. J. Clean. Prod. 2023, 417, 138049. [Google Scholar] [CrossRef]
- Che, S.; Wang, J.; Chen, H. Can China’s decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities. Energy 2023, 284, 128665. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, M.; Zhang, Y.; Su, C.-W. Reducing carbon emissions: Can high-speed railway contribute? J. Clean. Prod. 2023, 413, 137524. [Google Scholar] [CrossRef]
- Yabar, H.; Hara, K.; Uwasu, M. Comparative assessment of the co-evolution of environmental indicator systems in Japan and China. Resour. Conserv. Recycl. 2012, 61, 43–51. [Google Scholar] [CrossRef]
- Wu, H.; Yabar, H. Impacts of additive manufacturing to sustainable urban—Rural interdependence through strategic control. Results Control. Optim. 2021, 5, 100066. [Google Scholar] [CrossRef]
- Zhou, Q.; Yabar, H.; Mizunoya, T.; Higano, Y. Exploring the potential of introducing technology innovation and regulations in the energy sector in China: A regional dynamic evaluation model. J. Clean. Prod. 2016, 112, 1537–1548. [Google Scholar] [CrossRef]
- Liao, T.; Yan, J.; Zhang, Q. The impact of green technology innovation on carbon emission efficiency: The intermediary role of intellectual capital. Int. Rev. Econ. Financ. 2024, 92, 520–532. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, K.; Cao, Y.; Sun, H. Digital inclusive finance and consumption-based embodied carbon emissions: A dual perspective of consumption and industry upgrading. J. Environ. Manag. 2023, 325, 116632. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, L.; Qi, P.; Ren, X.; Sun, X. Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions. Resour. Policy 2021, 74, 102329. [Google Scholar] [CrossRef]
- Li, Z.; Dai, H.; Sun, L.; Xie, Y.; Liu, Z.; Wang, P.; Yabar, H. Exploring the impacts of regional unbalanced carbon tax on CO2 emissions and industrial competitiveness in Liaoning province of China. Energy Policy 2018, 113, 9–19. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, Z.; Chen, H.; Wang, Z.; Yao, Y. Heterogeneity study on mechanisms influencing carbon emission intensity at the county level in the Yangtze River Delta urban Agglomeration: A perspective on main functional areas. Ecol. Indic. 2024, 159, 111597. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Hou, J.; Yu, B.; Pan, Y. The effect of economic growth pressure on green technology innovation: Do environmental regulation, government support, and financial development matter? J. Environ. Manag. 2023, 330, 117172. [Google Scholar] [CrossRef]
Energy Type | Average Low Calorific Value | Carbon Content per Unit Calorific Value | Carbon Oxidation Rate | Carbon Emission Coefficient |
---|---|---|---|---|
Coal | 20,908 kJ/kg | 26.37 tC/TJ | 0.94 | 1.9003 kgCO2/kg |
Coke | 28,435 kJ/kg | 29.5 tC/TJ | 0.93 | 2.8604 kgCO2/kg |
Crude oil | 41,816 kJ/kg | 20.1 tC/TJ | 0.98 | 3.0202 kgCO2/kg |
Gasoline | 43,070 kJ/kg | 18.9 tC/TJ | 0.98 | 2.9251 kgCO2/kg |
Kerosene | 43,070 kJ/kg | 19.5 tC/TJ | 0.98 | 3.0179 kgCO2/kg |
Diesel oil | 42,652 kJ/kg | 20.2 tC/TJ | 0.98 | 3.0959 kgCO2/kg |
Fuel oil | 41,816 kJ/kg | 21.1 tC/TJ | 0.98 | 3.1705 kgCO2/kg |
Natural gas | 38,931 kJ/m3 | 15.3 tC/TJ | 0.99 | 2.1622 kgCO2/m3 |
Control Variables | Calculation Formula |
---|---|
a1 | Tertiary Industry added value/Secondary Industry added value [89,93] |
a2 | Urban population/Total population [94] |
a3 | FDI/Gross domestic product [95,96] |
a4 | Amount of industrial environmental pollution control/Industrial added value |
a5 | Government expenditure/GDP |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
TC | 300 | 11.07 | 8.02 | 3.72 | 43.60 |
AGG | 300 | 1.01 | 0.44 | 0.39 | 2.74 |
GTECH | 300 | 0.9207 | 1.169 | 0.04 | 7.50 |
a1 | 300 | 1.22 | 0.70 | 0.52 | 5.30 |
a2 | 300 | 0.59 | 0.12 | 0.35 | 0.90 |
a3 | 300 | 0.02 | 0.02 | 0.00 | 0.12 |
a4 | 300 | 0.40 | 0.33 | 0.00 | 0.03 |
a5 | 300 | 0.25 | 0.10 | 0.11 | 0.64 |
Variables | Fixed Effect (b) | Random Effect (B) | Difference Value (b-B) | Sqrt (diag (V_b-V_B) S.E. |
---|---|---|---|---|
AGG | −1.3102 | −1.3924 | 0.0822 | 0.2047 |
GTECH | −0.8659 | −0.6757 | −0.1902 | 0.2705 |
a1 | −1.5961 | −1.0767 | −0.5193 | 0.6015 |
a2 | −7.6955 | 12.5717 | −20.2672 | 11.5700 |
a3 | 1.7298 | −7.8665 | 9.5963 | 3.2566 |
a4 | −1.3687 | −0.3043 | −1.0645 | 0.1185 |
a5 | −0.3210 | −0.6628 | 0.3418 | 0.3910 |
chi2(8) | 87.77 | |||
Prob>chi2 | 0.0000 |
Variables | Model |
---|---|
AGG | −1.3102 * (−1.9328) |
GTECH | −0.8659 *** (−2.5965) |
a1 | −1.5961 ** (−2.0761) |
a2 | −7.6955 (−0.7111) |
a3 | 1.7298 (0.1763) |
a4 | −1.3687 *** (−2.7773) |
a5 | −0.3210 (−0.1857) |
Constant | 20.2722 *** (2.8390) |
adj. R2 | 0.961 |
F-value | 132.21 |
Variables | Model |
---|---|
L.AGG | −2.2767 ** (−2.2467) |
L.GTECH | −0.9195 *** (−2.9262) |
L.a1 | −0.3325 (−0.4301) |
L.a2 | 16.0197 *** (−2.6248) |
L.a3 | −11.5456 (−1.0060) |
L.a4 | 0.9362 (−1.6207) |
L.a5 | −3.1114 (−1.4479) |
Constant | 5.6456 * (−1.7371) |
Years | Moran’s I | z-Value | p-Value |
---|---|---|---|
2011 | 0.202 *** | 2.641 | 0.008 |
2012 | 0.203 *** | 2.641 | 0.008 |
2013 | 0.200 *** | 2.583 | 0.010 |
2014 | 0.198 *** | 2.569 | 0.010 |
2015 | 0.188 ** | 2.459 | 0.014 |
2016 | 0.186 ** | 2.433 | 0.015 |
2017 | 0.174 ** | 2.318 | 0.020 |
2018 | 0.178 ** | 2.391 | 0.017 |
2019 | 0.169 ** | 2.302 | 0.021 |
2020 | 0.171 ** | 2.308 | 0.021 |
SEM | SAR | |
---|---|---|
LM | 11.592 *** | 38.514 *** |
Robust LM | 0.064 | 26.986 *** |
Variable | Fixed Effect (b) | Random Effect (B) | Difference Value (b-B) | Sqrt (diag(V_b-V_B)) S.E. |
---|---|---|---|---|
AGG | −1.44 | −1.58 | 0.14 | |
GTECH | −0.87 | −0.42 | −0.45 | 0.20 |
a1 | −1.69 | −0.57 | −1.12 | 0.49 |
a2 | −9.45 | 14.02 | −23.47 | 9.25 |
a3 | 1.47 | −7.83 | 9.30 | 1.32 |
a4 | −1.38 | −1.02 | −0.36 | 0.11 |
a5 | −0.23 | 0.17 | −0.40 | 0.87 |
chi2(7) | 17.18 | |||
Prob>chi2 | 0.0163 |
Double Fixed Model | Individual Fixed Model | Time-Fixed Model | |
---|---|---|---|
AGG | −1.4439 ** (−2.3334) | −1.5073 ** (−2.4469) | −4.5229 *** (−3.5608) |
GTECH | −0.8735 *** (−2.8814) | −0.3827 * (−1.7984) | −2.3560 *** (−4.7121) |
a1 | −1.6938 ** (−2.4195) | −0.5086 (−1.0677) | −1.1802 (−1.6291) |
a2 | −9.4575 (−0.9586) | 13.4607 *** (3.9933) | 49.8849 *** (10.5621) |
a3 | 1.4756 (0.1654) | −6.3465 (−0.7516) | −48.0730 ** (−2.5500) |
a4 | −1.3804 *** (−3.0810) | −1.1981 *** (−2.9243) | 15.2354 *** (15.1152) |
a5 | −0.2397 (−0.1525) | 0.1692 (0.1356) | −3.4582 (−1.0082) |
0.3878 ** (2.3710) | 0.4688 *** (3.5024) | 0.6507 *** (6.6915) | |
Error term | 2.0985 *** (12.1579) | 2.1420 *** (12.1468) | 26.3012 *** (12.0480) |
Log-likelihood | −538.2895 | −542.2693 | −921.4120 |
Yes | Yes | No | |
Yes | No | Yes | |
N | 300 | 300 | 300 |
Double Fixed Model | Individual Fixed Model | Time-Fixed Model | |
---|---|---|---|
AGG | −1.5836 ** (−2.4610) | −1.6748 *** (−2.6443) | −4.3378 *** (−3.5830) |
GTECH | −0.7594 ** (−2.5023) | −0.4484 ** (−2.0684) | −2.2706 *** (−4.8095) |
a1 | −1.0192 (−1.3792) | −0.3696 (−0.6923) | −1.7620 ** (−2.4875) |
a2 | 1.9589 (0.2156) | 14.1847 *** (−3.9957) | 52.2227 *** (−11.7393) |
a3 | −1.8639 (−0.2084) | −6.4276 (−0.7587) | −45.9669 ** (−2.5578) |
a4 | −0.7375 (−1.2872) | −0.7271 (−1.4215) | 19.5229 *** (−17.1973) |
a5 | −0.0776 (−0.0495) | 0.2869 (−0.2328) | −3.0569 (−0.9513) |
0.3479 ** (2.0327) | 0.4522 *** (−3.3082) | 0.6312 *** (−6.3028) | |
Error term | 2.0330 *** (12.1667) | 2.0445 *** (−12.1547) | 22.8319 *** (−12.0647) |
Log-likelihood | −533.1147 | −535.0878 | −899.7331 |
Yes | Yes | No | |
Yes | No | Yes | |
N | 300 | 300 | 300 |
Eastern Region | Central Region | Western Region | |
---|---|---|---|
AGG | −0.1662 (−0.5302) | −4.8292 *** (−4.9839) | −5.1368 *** (−3.3219) |
GTECH | −0.3658 *** (−2.7464) | −3.9287 *** (−2.7943) | 9.2982 *** (5.2176) |
a1 | −0.3696 (−1.1277) | −1.6188 * (−1.7643) | −2.1573 (−1.1901) |
a2 | 9.4964 ** (2.0306) | −18.0909 (−1.0435) | −1.5 × 102 *** (−6.2302) |
a3 | −2.2369 (−0.6358) | −35.5389 (−1.2332) | 107.1801 ** (2.4160) |
a4 | 0.1983 (0.6173) | 0.9292 (0.6295) | −1.5878 *** (−2.6423) |
a5 | 0.8827 (0.9122) | −0.1392 (−0.0659) | 6.7678 ** (2.4101) |
−0.7350 *** (−2.8883) | −0.9296 *** (−4.5801) | 0.2470 (1.2161) | |
Error term | 0.2050 *** (7.2989) | 0.7646 *** (5.5917) | 2.3700 *** (7.4120) |
Log-likelihood | −70.3419 | −109.5234 | −204.3413 |
Province | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
N | 110 | 80 | 110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Zhao, Z.; Pan, Z.; Tang, D.; Zhao, M.; Zhang, H. Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions. Sustainability 2025, 17, 2746. https://doi.org/10.3390/su17062746
Hao Z, Zhao Z, Pan Z, Tang D, Zhao M, Zhang H. Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions. Sustainability. 2025; 17(6):2746. https://doi.org/10.3390/su17062746
Chicago/Turabian StyleHao, Zhijie, Ziqian Zhao, Zhiwei Pan, Decai Tang, Meiling Zhao, and Hui Zhang. 2025. "Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions" Sustainability 17, no. 6: 2746. https://doi.org/10.3390/su17062746
APA StyleHao, Z., Zhao, Z., Pan, Z., Tang, D., Zhao, M., & Zhang, H. (2025). Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions. Sustainability, 17(6), 2746. https://doi.org/10.3390/su17062746