Reducing Carbon Emissions: A Multi-Objective Approach to the Hydropower Operation of Mega Reservoirs
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Collection
3. Methods
3.1. Joint Drawdown Operation Model
3.1.1. Operation Objective
3.1.2. Constraints
- (1)
- Water balance:
- (2)
- Water level constraints of reservoirs:
- (3)
- Hydropower generation limitation:
- (4)
- Limitations of reservoir outflow:
- (5)
- Limitations of the start and end-of-operation water levels:
- (6)
- Constraints of hydraulic connections:
- (7)
- Constraints of the SNWDP water diversion:
3.2. Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
4. Results and Discussion
4.1. Flood Risk Analysis of Reservoir Impoundment Operation
4.2. Assessment of the Comprehensive Benefits of Carbon Emission Reduction, Hydropower Production, and Water Release
4.3. Joint Drawdown Operation Processes of Mega Reservoirs Under the Dry Scenario
4.4. Discussion
5. Conclusions
- Hydropower generation and water release have a negative relationship, with increased water release leading to decreased hydropower output. Reservoir carbon emissions show a negative relationship with hydropower generation but no relationship with water release.
- The optimal solution reduced reservoir carbon emissions, with carbon intensity increasing as inflow decreased. Across three hydrological scenarios, the optimal solution surpassed the SOP outcome in terms of various indicators, where maximum improvement rates in water release and hydropower generation reached 6.2% and 8.3%, respectively, while carbon emissions and carbon intensity were reduced by up to 5.6% and 12.8%, respectively. Under the dry scenario, reservoir carbon emissions and intensity were higher, necessitating greater attention to carbon emission reduction in formulating operation rules.
- The optimal solution reduced reservoir carbon emissions by maintaining high water levels, thereby minimizing drawdown areas and subsequent carbon emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pathway | GHG | Means | Range | References |
---|---|---|---|---|
Water–air interface (Water surface) | (mg C/m2/d) | 1154 | 300–2100 | [38] |
(mg C/m2/d) | 4.14 | −1.8–40.13 | [35] | |
(mg N/m2/d) | 0.107 | 0.061–0.145 | [37] | |
Soil–air interface (Drawdown area) | (mg C/m2/d) | 1805 | ND a | [39] |
(mg C/m2/d) | 2.16 | 0.9–3.6 | [36] | |
(mg N/m2/d) | 0.107 | 0.061–0.145 | [37] |
Appendix B
Vlse Kriterijumska Optimizacija-Kompromisno Resenje (VIKOR)-Based Multi-Criteria Decision-Making Analysis
- (1)
- Construct evaluation indicators
- (2)
- Evaluation procedure
References
- Zhou, Y.; Ning, Z.; Huang, K.; Guo, S.; Xu, C.Y.; Chang, F.J. Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems. Renew. Sustain. Energy Rev. 2025, 210, 115175. [Google Scholar] [CrossRef]
- Rashid, M.U.; Abid, I.; Latif, A. Optimization of hydropower and related benefits through cascade reservoirs for sustainable economic growth. Renew. Energy 2022, 185, 241–254. [Google Scholar] [CrossRef]
- EPPEI. 2023 China Power Development Report; People’s Daily Press: Beijing, China, 2023; Available online: http://www.eppei.ceec.net.cn (accessed on 28 September 2023).
- Paredes, J.; Lund, J. Refill and Drawdown Rules for Parallel Reservoirs: Quantity and Quality. Water Resour. Manag. 2016, 20, 359–376. [Google Scholar] [CrossRef]
- Eum, H.; Kim, Y.; Palmer, R. Optimal Drought Management Using Sampling Stochastic Dynamic Programming with a Hedging Rule. J. Water Resour. Plan. Manag. 2011, 137, 113–122. [Google Scholar] [CrossRef]
- Isaac, N.; Eldho, T. Sediment management of run-of-river hydroelectric power project in the Himalayan region using hydraulic model studies. Sadhana Acad. Proc. Eng. Sci. 2017, 42, 1193–1201. [Google Scholar] [CrossRef]
- Beshavard, M.; Adib, A.; Ashrafi, S.; Kisi, O. Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition. Agric. Water Manag. 2022, 274, 107948. [Google Scholar] [CrossRef]
- Jurevicius, L.; Punys, P.; Kasiulis, E.; Silinis, L. Surveying Dewatered Areas in the Fish Spawning Sites During Short-Term Drawdown Operations: Case Study of a Large Hydropower Plant Reservoir in the Lowland Area, Lithuania. Energies 2022, 15, 8574. [Google Scholar] [CrossRef]
- Lin, F.; Zhou, Y.; Ning, Z.; Xiong, L.; Chen, H. Exploring a novel reservoir drawdown operation framework for boosting synergies of hydropower generation and drought defense. Sustain. Energy Technol. 2023, 60, 103562. [Google Scholar] [CrossRef]
- Ai, Y.; Huang, T.; Duan, C.; Huang, D.; Gong, Y.; Cheng, H. Knowledge domain of greenhouse gas emissions from hydropower reservoirs: Hotspots, frontiers and future perspectives. Front. Environ. Sci. 2022, 10, 1055891. [Google Scholar] [CrossRef]
- Saab, S.; Othman, F.; Tan, C.; Allawi, M.; El-Shafie, A. Review on generating optimal operation for dam and reservoir water system: Simulation models and optimization algorithms. Appl. Water Sci. 2022, 12, 73. [Google Scholar] [CrossRef]
- Ran, L.S.; Yue, R.; Shi, H.Y.; Meng, X.D.; Chan, C.N.; Fang, N.F.; Shi, Z.H. Seasonal and diel variability of CO2 emissions from a semiarid hard-water reservoir. J. Hydrol. 2022, 608, 127652. [Google Scholar] [CrossRef]
- Wang, X.F.; Liu, T.T.; He, Y.X.; Chen, H.; Wu, S.N.; Wang, J.L.; Li, H.; Que, Z.Y.; Yuan, X.Z. Greenhouse gases concentrations and emissions from a small subtropical cascaded river-reservoir system. J. Hydrol. 2022, 612, 128190. [Google Scholar] [CrossRef]
- Leng, P.F.; Li, Z.; Zhang, Q.Y.; Koschorreck, M.; Li, F.D.; Qiao, Y.F.; Xia, J. Deciphering large-scale spatial pattern and modulators of dissolved greenhouse gases (CO2, CH4, and N2O) along the Yangtze River, China. J. Hydrol. 2023, 623, 129710. [Google Scholar] [CrossRef]
- Haider, A. The Determinants of Greenhouse Gas Emissions: Empirical Evidence from Canadian Provinces. Sustainability 2024, 16, 2498. [Google Scholar] [CrossRef]
- Fearnside, P. Hydroelectric Dams in the Brazilian Amazon as sources of greenhouse gases. Environ. Conserv. 1995, 22, 7–19. [Google Scholar] [CrossRef]
- Prairie, Y.; Alm, J.; Beaulieu, J.; Barros, N.; Battin, T.; Cole, J. Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See? Ecosystems 2018, 21, 1058–1071. [Google Scholar] [CrossRef]
- Jiang, T.; Shen, Z.; Liu, Y.; Hou, Y. Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China. Sustainability 2018, 10, 2018. [Google Scholar] [CrossRef]
- Li, X.; Jiang, C.; Ni, X.; Chen, S.; Hao, Q. Diffusive greenhouse gases fluxes from the surface of the Three Gorges Reservoir: Study at a site in Fuling. Acta Ecol. Sin. 2021, 41, 79–87. [Google Scholar] [CrossRef]
- Li, X.; Gui, F.; Li, Q. Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China. Sustainability 2019, 11, 4261. [Google Scholar] [CrossRef]
- Ion, I.; Ene, A. Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review. Sustainability 2021, 13, 11621. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, S.; Pan, H.; Zheng, X.; Han, W.; Huang, C.; Deng, S. Optimizing hydropower plants based on carbon-water-energy-ecosystem nexus. Energy Convers. Manag. 2022, 270, 116191. [Google Scholar] [CrossRef]
- Ning, Z.; Zhou, Y.; Lin, F.; Zhou, Y.; Luo, Q. Exploring a Novel Reservoir Impoundment Operation Framework for Facilitating Hydropower Sustainability. Sustainability 2023, 15, 13400. [Google Scholar] [CrossRef]
- Liang, W.T.; Liu, X.Y.; Lu, X.X.; Yu, R.H.; Qi, Z.; Xue, H. Impact of dam decommissioning on greenhouse gas emissions from a reservoir: An example from the Inner Mongolia grassland region, China. J. Hydrol. 2024, 631, 130750. [Google Scholar] [CrossRef]
- Hansen, C.; Pilla, R.; Matson, P.; Skinner, B.; Griffiths, N.; Jager, H. Variability in modelled reservoir greenhouse gas emissions: Comparison of select US hydropower reservoirs against global estimates. Environ. Res. Commun. 2023, 4, 121008. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z. Carbon emissions affected by real-time reservoir operation: A hydrodynamic modeling approach coupled with air-water mass transfer. Water Res. 2023, 241, 120118. [Google Scholar] [CrossRef]
- Shi, W.; Maavara, T.; Chen, Q.; Zhang, J.; Ni, J.; Tonina, D. Spatial patterns of diffusive greenhouse gas emissions from cascade hydropower reservoirs. J. Hydrol. 2023, 619, 129343. [Google Scholar] [CrossRef]
- Deemer, B.; Harrison, J.; Li, S.; Beaulieu, J.; DelSontro, T.; Barros, N.; Neto, J.; Powers, S.; Santos, M.; Vonk, J. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. Bioscience 2016, 66, 949–964. [Google Scholar] [CrossRef]
- Keller, P.; Marcé, R.; Obrador, B.; Koschorreck, M. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 2021, 14, 402–408. [Google Scholar] [CrossRef]
- Harada, T. Parallel cooperative multiobjective coevolutionary algorithm for constrained multiobjective optimization problems. Appl. Soft Comput. 2024, 153, 111290. [Google Scholar] [CrossRef]
- Feng, Y.; Hong, Z.; Tian, G.; Li, Z.; Tan, J.; Hu, H. Environmentally friendly MCDM of reliability-based product optimisation combining DEMATEL-based ANP, interval uncertainty and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR). Inf. Sci. 2018, 442, 128–144. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Y.; Xu, C.Y.; Chang, F.J. Optimizing complementary operation of mega cascade reservoirs for boosting hydropower sustainability. Sustain. Energy Technol. Assess. 2024, 64, 103719. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S. Incorporating ecological requirement into multipurpose reservoir operating rule curves for adaptation to climate change. J. Hydrol. 2013, 498, 153–164. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, W.; Liu, Q.; Shen, H.; Cai, S.; Lei, X. Future runoff forecast in Hanjiang River Basin based on Wetspa model and CMIP6 model. Front. Environ. Sci. 2022, 10, 980949. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, X.; Chen, Z.; Wu, Y.; Liu, X.; Zhu, D.; Wu, N.; Zhu, Q.; Peng, C.; Li, W. Methane emissions from the surface of the Three Gorges Reservoir. J. Geophys. Res. 2011, 116, D21306. [Google Scholar] [CrossRef]
- Yang, L.; Lu, F.; Wang, X.; Duan, X.; Song, W.; Sun, B.; Chen, S.; Zhang, Q.; Hou, P.; Zheng, F.; et al. Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir. J. Geophys. Res. 2012, 117, D10109. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, H.; Yuan, X.; Wu, N.; Gao, Y.; Wu, Y.; Zhang, Y.; Peng, C.; Zhu, Q.; Yang, G.; et al. Nitrous oxide emissions from the surface of the Three Gorges Reservoir. Ecol. Eng. 2013, 60, 150–154. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, B.; Zeng, Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 2013, 10, 1219–1230. [Google Scholar] [CrossRef]
- Zhou, S.; He, Y.; Yuan, X.; Peng, S.; Yue, J. Greenhouse gas emissions from different land-use areas in the Littoral Zone of the Three Gorges Reservoir, China. Ecol. Eng. 2017, 100, 316–324. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, X.; Yin, X.; Su, M.; Wu, Y.; Yang, Z. Is water shortage risk decreased at the expense of deteriorating water quality in a large water supply reservoir? Water Res. 2019, 165, 114984. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Z.; Chen, Y.; Li, C.; Pan, Z.; Harby, A.; Lv, P.; Chen, D.; Guo, J. The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. J. Clean. Prod. 2020, 277, 123961. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Chang, F.; Xu, C. Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation. Appl. Energy 2018, 228, 1726–1739. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, L.; Uen, T.; Guo, S.; Xu, C.; Chang, F. Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Appl. Energy 2019, 238, 668–682. [Google Scholar] [CrossRef]
- EPA. AVERT, U.S. 2017 National Weighted Average CO2 Marginal Emission Rate, Year 2016 Data; U.S. Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/energy (accessed on 25 August 2017).
- Jager, H.I.; Griffiths, N.A.; Hansen, C.H.; King, A.W.; Matson, P.G.; Singh, D.; Pilla, R.M. Getting lost tracking the carbon footprint of hydropower. Renew. Sustain. Energy Rev. 2022, 162, 112408. [Google Scholar] [CrossRef]
- Barros, N.; Cole, J.; Tranvik, L. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 2011, 4, 593–596. [Google Scholar] [CrossRef]
- Kosten, S.; Van, S.; Mendonça, R.; Paranaíba, J.; Roland, F.; Sobek, S.; Hoek, J.; Barros, N. Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas. Inland Waters 2018, 8, 329–340. [Google Scholar] [CrossRef]
- Keller, P.S.; Catalán, N.; von Schiller, D.; Grossart, H.-P.; Koschorreck, M.; Obrador, B.; Frassl, M.A.; Karakaya, N.; Barros, N.; Howitt, J.A.; et al. Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nat. Commun. 2020, 11, 2126. [Google Scholar] [CrossRef]
- Aguirrezabala, T.; Gonzalez, R.; Cervantes, F.; Thalasso, F. Overall spatiotemporal dynamics of greenhouse gasses and oxygen in two subtropical reservoirs with contrasting trophic states. Water Res. 2021, 196, 117056. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.; Pace, M.; Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 2004, 18, GB4009. [Google Scholar] [CrossRef]
- Wik, M.; Thornton, B.; Bastviken, D.; Uhlbäck, J.; Crill, P. Biased sampling of methane release from northern lakes: A problem for extrapolation. Geophys. Res. Lett. 2016, 43, 1256–1262. [Google Scholar] [CrossRef]
- Resende, J.; Mannich, M.; Fernandes, C. Calibration of a management-oriented greenhouse gas emission model for lakes and reservoirs under different distribution of environmental data. Sci. Total Environ. 2020, 734, 138791. [Google Scholar] [CrossRef] [PubMed]
- Rust, F.; Bodmer, P.; Giorgio, P. Modeling the spatial and temporal variability in surface water CO2 and CH4 concentrations in a newly created complex of boreal hydroelectric reservoirs. Sci. Total Environ. 2022, 815, 152459. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.; Prairie, Y.; Mercier, S.; Soued, C. Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model. Glob. Biogeochem. Cycles 2021, 35, e2020GB006888. [Google Scholar] [CrossRef]
- Prairie, Y.; Mercier, S.; Harrison, J.; Soued, C.; Giorgio, P.; Harby, A.; Harrison, J.; Mercier-Blais, S.; Serça, D.; Sobek, S.; et al. A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool. Environ. Model. Softw. 2021, 143, 105117. [Google Scholar] [CrossRef]
- He, W.; Zhang, X.; Zhang, J.; Xu, H.; Zhou, H. Regulating outflow temperature for multi-objective operation of cascade reservoirs: A case study. Renew. Energy 2023, 211, 155–165. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, S.; Zhong, S.; He, Z.; Liu, P.; Zhou, Y. Optimal allocation of flood prevention storage and dynamic operation of water levels to increase cascade reservoir hydropower generation. Renew. Energy 2024, 228, 120676. [Google Scholar] [CrossRef]
- Stevens, K.A.; Tang, T.; Hittinger, E. Innovation in complementary energy technologies from renewable energy policies. Renew. Energy 2023, 209, 431–441. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, S.; Liu, B.; Cheng, C.; Zhao, H.; Fang, Z.; Lu, J. Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections. Renew. Energy 2024, 232, 121067. [Google Scholar] [CrossRef]
- Yang, S.; Wei, Y.; Chen, J.; Wang, Y.; Liang, R.; Li, K. Multi-objective optimization and coordination of power generation, ecological needs, and carbon emissions in reservoir operation. Water Resour. Manag. 2023, 38, 123–136. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chakraborty, S. A comparative analysis of VIKOR method and its variants. Decis. Sci. Lett. 2016, 5, 469–486. [Google Scholar] [CrossRef]
- Almeida, R.; Shi, Q.; Gomes-Selman, J.; Wu, X.; Xue, Y.; Angarita, H.; Barros, N.; Forsberg, B.; Villacorta, G.; Hamilton, S.; et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 2019, 10, 4281. [Google Scholar] [CrossRef] [PubMed]
Reservoir | Basin Area (km2) | Normal Water Level (m) | Total Storage (106 m3) | Flood-Limited Water Level (m) | Dead Water Level (m) | Dead Storage (106 m3) | Installed Capacity (MW) | Output Coefficient | Functions Besides Flood Control and Power Generation |
---|---|---|---|---|---|---|---|---|---|
Shiquan (SQ) | 23,400 | 410 | 324 | 405 | 400 | 140 | 225 | 8.5 | Ecological water supply |
Ankang (AK) | 35,700 | 330 | 2585 | 325 | 305 | 1113 | 850 | 8.4 | Ecological water supply |
Pankou (PK) | 8950 | 355 | 1970 | 347.6 | 330 | 850 | 500 | 7.9 | Ecological water supply |
Huanglongtan (HLT) | 11,140 | 247 | 787.2 | 247 | 226 | 344.1 | 510 | 7.6 | Ecological water supply |
Danjiangkou (DJK) | 95,200 | 170 | 29,050 | 160/163.5 | 145 | 12,690 | 900 | 7.6 | Water supply |
Yahekou (YHK) | 3030 | 179.5 | 1220 | 175.7 | 160 | 180 | 14 | 7.6 | Ecological water supply |
Sanliping (SLP) | 6497 | 416 | 472 | 403/412 | 392 | 262 | 70 | 8.5 | Ecological water supply |
Scenario | Indicators | Type | Improvement Rate (%) a | Reduction Rate (%) b |
---|---|---|---|---|
Wet year | Carbon emission (GgCO2e) | Cost | — | 5.6 |
Water release (108 m3) | Benefit | 6.2 | — | |
Hydropower generation (108 kW·h) | Benefit | 8.3 | — | |
Carbon intensity (kgCO2e/MW·h) | Cost | — | 12.8 | |
Normal year | Carbon emission (GgCO2e) | Cost | — | 5.4 |
Water release (108 m3) | Benefit | 5.5 | — | |
Hydropower generation (108 kW·h) | Benefit | 6.8 | — | |
Carbon intensity (kgCO2e/MW·h) | Cost | — | 11.4 | |
Dry year | Carbon emission (GgCO2e) | Cost | — | 5.3 |
Water release (108 m3) | Benefit | 5.6 | — | |
Hydropower generation (108 kW·h) | Benefit | 7.9 | — | |
Carbon intensity (kgCO2e/MW·h) | Cost | — | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Luo, Y.; Zhou, Y.; Zhu, D.; Chang, F.-J.; Xu, C.-Y. Reducing Carbon Emissions: A Multi-Objective Approach to the Hydropower Operation of Mega Reservoirs. Sustainability 2025, 17, 2770. https://doi.org/10.3390/su17062770
Luo Q, Luo Y, Zhou Y, Zhu D, Chang F-J, Xu C-Y. Reducing Carbon Emissions: A Multi-Objective Approach to the Hydropower Operation of Mega Reservoirs. Sustainability. 2025; 17(6):2770. https://doi.org/10.3390/su17062770
Chicago/Turabian StyleLuo, Qi, Yuxuan Luo, Yanlai Zhou, Di Zhu, Fi-John Chang, and Chong-Yu Xu. 2025. "Reducing Carbon Emissions: A Multi-Objective Approach to the Hydropower Operation of Mega Reservoirs" Sustainability 17, no. 6: 2770. https://doi.org/10.3390/su17062770
APA StyleLuo, Q., Luo, Y., Zhou, Y., Zhu, D., Chang, F.-J., & Xu, C.-Y. (2025). Reducing Carbon Emissions: A Multi-Objective Approach to the Hydropower Operation of Mega Reservoirs. Sustainability, 17(6), 2770. https://doi.org/10.3390/su17062770