Predicting Energy-Based CO2 Emissions in the United States Using Machine Learning: A Path Toward Mitigating Climate Change
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. Principal Component Analysis
2.3. Methods for Calculating CO2 Emissions from Life Cycle Assessments (LCAs)
2.4. Machine Learning Models
2.5. Performance Metrics
2.6. Sensitivity Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Statistical Description of Energy Consumption
3.2. Results of Principal Component Analysis
3.3. CO2 Emissions from Life Cycle Assessment (LCA)
3.4. Performance and Results of the Machine Learning Regression Models
3.5. Comparing the Results of Sensitivity Analysis
3.6. Statistical Analysis on LCA CO2 Emissions, Test CO2 Emissions, and Predicted CO2 Emissions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Liu, J. Impact of climate change on green technology innovation—An examination based on microfirm data. Sustainability 2024, 16, 11206. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Hasnat, G.N.T.; Kabir, M.A.; Hossain, M.A. Major environmental issues and problems of south Asia, particularly Bangladesh. In Handbook of Environmental Materials Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–40. [Google Scholar] [CrossRef]
- Nyong, A. Climate change impacts in the developing world: Implications for sustainable development. 2009. In Climate Change and Global Poverty: A Billion Lives in the Balance? Brookings Institution Press: Washington, DC, USA, 2009; pp. 43–64. [Google Scholar]
- Wolf, J.; Moser, S.C. Individual understandings, perceptions, and engagement with climate change: Insights from in-depth studies across the world. WIREs Clim. Change 2011, 2, 547–569. [Google Scholar] [CrossRef]
- Akhmat, G.; Zaman, K.; Shukui, T.; Sajjad, F.; Khan, M.A.; Khan, M.Z. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: Evidence from a panel of developed countries. Environ. Sci. Pollut. Res. Int. 2014, 21, 7425–7435. [Google Scholar] [CrossRef]
- Olabemiwo, F.A.; Danmaliki, G.I.; Oyehan, T.A.; Tawabini, B.S. Forecasting CO2 emissions in the Persian gulf states. Glob. J. Environ. Sci. Manag. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Wróbel-Jędrzejewska, M.; Włodarczyk, E.; Przybysz, Ł. Analysis of greenhouse gas emissions of a mill according to the greenhouse gas protocol. Sustainability 2024, 16, 11214. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Le, H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the united states of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Ashraf, M.; Ayaz, M.; Khan, M.; Adil, S.F.; Farooq, W.; Ullah, N.; Nawaz Tahir, M. Recent trends in sustainable solar energy conversion technologies: Mechanisms, prospects, and challenges. Energy Fuels 2023, 37, 6283–6301. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.H.; Lau, C.K.M.; Xu, B. Implications of cryptocurrency energy usage on climate change. Technol. Forecast. Soc. Change 2023, 187, 122219. [Google Scholar] [CrossRef]
- Shi, X.; Wang, K.; Cheong, T.S.; Zhang, H. Prioritizing driving factors of household carbon emissions: An application of the lasso model with survey data. Energy Econ. 2020, 92, 104942. [Google Scholar] [CrossRef]
- Christin, S.; Hervet, É.; Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, R.; Wang, X.; Chen, W. The development and application of machine learning in atmospheric environment studies. Remote Sens. 2021, 13, 4839. [Google Scholar] [CrossRef]
- Kumari, S.; Singh, S.K. Machine learning-based time series models for effective CO2 emission prediction in India. Environ. Sci. Pollut. Res. Int. 2023, 30, 116601–116616. [Google Scholar] [CrossRef]
- Ahmed, M.; Shuai, C.; Ahmed, M. Analysis of energy consumption and greenhouse gas emissions trend in China, India, the USA, and Russia. Int. J. Environ. Sci. Technol. 2023, 20, 2683–2698. [Google Scholar] [CrossRef]
- Yamaka, W.; Phadkantha, R.; Rakpho, P. Economic and energy impacts on greenhouse gas emissions: A case study of China and the USA. Energy Rep. 2021, 7, 240–247. [Google Scholar] [CrossRef]
- Mardani, A.; Liao, H.; Nilashi, M.; Alrasheedi, M.; Cavallaro, F. A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. J. Clean. Prod. 2020, 275, 122942. [Google Scholar] [CrossRef]
- Arshad, M.Y.; Saeed, S.; Raza, A.; Ahmad, A.S.; Urbanowska, A.; Jackowski, M.; Niedzwiecki, L. Integrating life cycle assessment and machine learning to enhance black soldier fly larvae-based composting of kitchen waste. Sustainability 2023, 15, 12475. [Google Scholar] [CrossRef]
- Ghoroghi, A.; Rezgui, Y.; Petri, I.; Beach, T. Advances in application of machine learning to life cycle assessment: A literature review. Int. J. Life Cycle Assess. 2022, 27, 433–456. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine learning: New ideas and tools in environmental science and engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef]
- Bormpoudakis, D.; Sueur, J.; Pantis, J.D. Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landsc. Ecol. 2013, 28, 495–506. [Google Scholar] [CrossRef]
- Ajala, A.A.; Adeoye, O.L.; Salami, O.M.; Jimoh, A.Y. An examination of daily co2 emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models. Environ. Sci. Pollut. Res. Int. 2025, 32, 2510–2535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhong, W.; Liu, Y.; Lu, R.; Peng, X. Incorporating Large-Scale Economic-Environmental-Energy Coupling Assessment and Collaborative Optimization into Sustainable Product Footprint Management: A Graph-Assisted Life Cycle Energy Efficiency Enhancement Approach. Energy Convers. Manag. 2025, 329, 119616. [Google Scholar] [CrossRef]
- Kluyver, T.; Ragan Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter notebooks—A publishing format for reproducible computational workflows. Position. Power Acad. Publ. Play. Agents Agendas 2016, 0, 87–90. [Google Scholar] [CrossRef]
- EPA. Emission Factors for Greenhouse Gas Inventories. 2023. Available online: https://www.epa.gov/climateleadership/ghg-emission-factors-hub (accessed on 10 March 2025).
- EIA. How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? 2022. Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 (accessed on 10 March 2025).
- EIA. Monthly Energy Review. 2016. Available online: https://www.eia.gov/totalenergy/data/monthly/ (accessed on 10 March 2025).
- Allgaier, J.; Neff, P.; Schlee, W.; Schoisswohl, S.; Pryss, R. Deep learning end-to-end approach for the prediction of tinnitus based on eeg data. In Proceeding of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Online Conference, 1–5 November 2021; pp. 816–819. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Dhriti, D.; Kaur, M. K-nearest neighbor classification approach for face and fingerprint at feature level fusion. Int. J. Comput. Appl. 2012, 60, 13–17. [Google Scholar] [CrossRef]
- Song, G.; Rochas, J.; Beze, L.E.; Huet, F.; Magoulès, F. K nearest neighbour joins for big data on mapreduce: A theoretical and experimental analysis. IEEE Trans. Knowl. Data Eng. 2016, 28, 2376–2392. [Google Scholar] [CrossRef]
Coal | Natural Gas | Electricity | Petroleum (Commercial Sector) | Petroleum (Residential Sector) | Petroleum (Industrial Sector) | Petroleum (Transportation Sector) | Petroleum (Electric Power Sector) | |
---|---|---|---|---|---|---|---|---|
Thousand Short Tons | Billion Cubic Feet | Million Kilowatt Hours | Thousand Barrels per Day | Thousand Barrels per Day | Thousand Barrels per Day | Thousand Barrels per Day | Thousand Barrels per Day | |
Count | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 |
Mean | 7.09 × 104 | 1.87 × 103 | 2.75 × 105 | 4.79 × 102 | 8.12 × 102 | 4.67 × 103 | 1.18 × 104 | 5.65 × 102 |
Median | 7.26 × 104 | 1.81 × 103 | 2.90 × 105 | 4.45 × 102 | 7.23 × 102 | 4.67 × 103 | 1.21× 104 | 4.49 × 102 |
Standard deviation | 1.72 × 104 | 4.90 × 102 | 7.17 × 104 | 1.90 × 102 | 4.26 × 102 | 4.67 × 102 | 1.81 × 103 | 4.83 × 102 |
Standard error | 7.01× 102 | 0.20 × 102 | 2.93 × 103 | 0.08× 102 | 0.17 × 102 | 0.19 × 102 | 0.74 × 102 | 0.20 × 102 |
Minimum | 2.68 × 104 | 9.40 × 102 | 1.39 × 105 | 1.73 × 102 | 2.07 × 102 | 3.50 × 103 | 8.14 × 103 | 0.60 × 102 |
Maximum | 1.06 × 105 | 3.59 × 103 | 4.24 × 105 | 1.45 × 103 | 2.95 × 103 | 6.06 × 103 | 1.50 × 104 | 2.45 × 103 |
Energy | Emission Factor | Unit |
---|---|---|
Anthracite Coal | 2602 | kg CO2 per short ton |
Natural Gas (per scf) | 0.054 | kg CO2 per standard cubic foot (scf) |
Motor Gasoline | 8.78 | kg CO2 per gallon |
Distillate Fuel Oil No. 1 | 10.18 | kg CO2 per gallon |
Aviation Gasoline | 8.31 | kg CO2 per gallon |
Jet Fuel (kerosene type) | 9.75 | kg CO2 per gallon |
Butane | 6.67 | kg CO2 per gallon |
Ethane | 4.05 | kg CO2 per gallon |
Propane | 5.72 | kg CO2 per gallon |
Pentanes | 7.7 | kg CO2 per gallon |
Other Oil (>401 deg F) | 10.59 | kg CO2 per gallon |
Electricity | 0.388 | kg CO2 per kWh |
Petroleum Consumed by the Residential Sector | 8.054 | kg CO2 per gallon |
Petroleum Consumed by the Commercial Sector | 8.054 | kg CO2 per gallon |
Petroleum Consumed by the Industrial Sector | 8.095 | kg CO2 per gallon |
Petroleum Consumed by the Transportation Sector | 9.226 | kg CO2 per gallon |
Petroleum Consumed by the Electric Power Sector | 8.054 | kg CO2 per gallon |
R²Training | R²Testing | Mean Absolute Error | Mean Squared Error | Root Mean Squared Error | Mean 5-Fold Cross-Validation R² | Mean 5-Fold Cross-Validation MSE | |
---|---|---|---|---|---|---|---|
Decision tree | 0.96 | 0.91 | 12.35 | 232.86 | 15.26 | 0.88 | 284.33 |
Random forest | 0.99 | 0.96 | 7.78 | 102.27 | 10.11 | 0.93 | 151.23 |
Multiple linear regression | 0.98 | 0.99 | 4.64 | 38.14 | 6.18 | 0.98 | 39.07 |
K-nearest neighbors | 0.97 | 0.94 | 8.89 | 132.92 | 11.53 | 0.93 | 172.73 |
Gradient boosting | 1.00 | 0.96 | 7.78 | 102.03 | 10.10 | 0.95 | 124.9 |
Support vector regression | 0.98 | 0.98 | 5.38 | 56.48 | 7.52 | 0.97 | 58.52 |
CO2 from LCA vs. CO2 from Training Data | p-Value | CO2 from Testing Data vs. CO2 from Training Data | p-Value | |
---|---|---|---|---|
Decision tree | 7100 | 3.06 × 10−20 | 15,887 | 0.75 |
Random forest | 7100 | 3.06 × 10−20 | 16,144 | 0.96 |
Multiple linear regression | 7100 | 3.06 × 10−20 | 16,211 | 0.99 |
K-nearest neighbors | 7100 | 3.06 × 10−20 | 2288 | 6.08 × 10−47 |
Gradient boosting | 7100 | 3.06 × 10−20 | 16,280 | 0.94 |
Support vector regression | 7100 | 3.06 × 10−20 | 16,185 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Zhang, Z.; He, Z.; Yuan, C.; Xie, Y.; Zhang, K.; Jing, R. Predicting Energy-Based CO2 Emissions in the United States Using Machine Learning: A Path Toward Mitigating Climate Change. Sustainability 2025, 17, 2843. https://doi.org/10.3390/su17072843
Tian L, Zhang Z, He Z, Yuan C, Xie Y, Zhang K, Jing R. Predicting Energy-Based CO2 Emissions in the United States Using Machine Learning: A Path Toward Mitigating Climate Change. Sustainability. 2025; 17(7):2843. https://doi.org/10.3390/su17072843
Chicago/Turabian StyleTian, Longfei, Zhen Zhang, Zhiru He, Chen Yuan, Yinghui Xie, Kun Zhang, and Ran Jing. 2025. "Predicting Energy-Based CO2 Emissions in the United States Using Machine Learning: A Path Toward Mitigating Climate Change" Sustainability 17, no. 7: 2843. https://doi.org/10.3390/su17072843
APA StyleTian, L., Zhang, Z., He, Z., Yuan, C., Xie, Y., Zhang, K., & Jing, R. (2025). Predicting Energy-Based CO2 Emissions in the United States Using Machine Learning: A Path Toward Mitigating Climate Change. Sustainability, 17(7), 2843. https://doi.org/10.3390/su17072843