How the Digital Intelligence Economy Can Promote Regional High-Quality Development Under the Influence of Economic Policy Uncertainty
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Literature Review
2.2. Theoretical Analysis and Hypotheses: Impact Mechanism Analysis
2.2.1. Digital Intelligence Economy and Regional High-Quality Development
2.2.2. The Regulatory Effect of Economic Policy Uncertainty
3. Research Methodology
3.1. Variables and Data
3.1.1. Independent Variable
3.1.2. Dependent Variable
3.1.3. Mediating Variables
3.1.4. Moderating Variables
3.1.5. Control Variables
3.1.6. Data
3.1.7. Descriptive Statistics and Correlation Test
3.2. Model Specification
4. Empirical Research
4.1. Benchmark Regression Results
4.2. Mechanism Test of DIE’s Impact on HQD
4.3. EPU’s Moderating Effect Test
4.4. Robustness Test
4.4.1. Adjustment of Sample Intervals
4.4.2. Instrumental Variables (IV)
4.4.3. Propensity Score Matching (PSM)
5. Further Research
5.1. Regional Heterogeneity
5.2. Spatial Spillover Effect
5.2.1. Spatial Weight Matrix and Spatial Econometric Model Specification
5.2.2. Spatial Autocorrelation and Model Selection
5.2.3. Regression Results of Spatial Econometric Model
5.3. Threshold Effect
6. Conclusions
6.1. Research Conclusions
6.2. Discussion: Contribution and Innovation
6.3. Policy Implications
- (1)
- Enhancing Support for the Digital Intelligence Economy: The government should adopt concrete measures to support the digital intelligence economy. For instance, it could provide targeted financial incentives and policy guidance to accelerate the construction of digital infrastructure, such as high-speed broadband networks and data centers. Additionally, investment in research and development (R&D) of intelligent technologies, including artificial intelligence and machine learning, should be increased to foster innovation and drive regional high-quality development. These actions can help leverage the efficiency and innovation gains from digital and intelligent technologies more effectively.
- (2)
- Ensuring Policy Stability and Adaptability: Given the negative impact of economic policy uncertainty on the relationship between the digital intelligence economy and regional high-quality development, the government should strive to balance policy stability with the need for regulatory adjustments in a fast-moving digital economy. While maintaining overall policy stability to reduce investment risks and innovation costs for businesses, the government should also establish flexible regulatory frameworks that can adapt to emerging technological trends and market changes. This approach can create a more conducive environment for enterprises to thrive in the digital intelligence sector.
- (3)
- Implementing Tailored Regional Policies: Considering the differences in development levels across regions, the government should adopt differentiated policies based on specific economic contexts. For regions with lower economic development levels, such as China’s central and western regions, the focus should be on strengthening digital infrastructure construction and talent training. This helps narrow the development gap between regions and ensures that all areas can benefit from the digital intelligence economy. For more economically developed regions, such as China’s eastern regions, the government should further optimize the development environment for the digital intelligence economy by enhancing technological innovation and upgrading industries. This includes supporting the application of advanced digital technologies in traditional industries to drive intelligent transformation and promote the development of emerging digital industries.
- (4)
- Promoting Regional Cooperation and Synergistic Development: In light of the spatial spillover effects of the digital intelligence economy, the government should encourage cooperation and exchange among regions to facilitate the sharing of resources and collaborative innovation. By leveraging the technological and resource advantages of more developed regions, the government can enhance the spillover effects in less developed areas, thereby achieving broader high-quality development.
6.4. Research Limitations and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DIE | Digital Intelligence Economy |
HQD | High-quality Development |
EPU | Economic Policy Uncertainty |
Appendix A
Appendix A.1
Appendix A.2
Variables | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
DIE | 450 | 4.510 | 4.919 | 0.0367 | 26.51 |
HQD | 450 | 9.014 | 6.291 | 1.073 | 29.57 |
ES | 450 | 1.869 | 1.140 | −0.978 | 4.761 |
RD | 450 | 2.692 | 1.432 | −2.434 | 5.774 |
BR | 450 | 3.413 | 0.710 | 1.735 | 5.505 |
EPU | 450 | 144.4 | 18.92 | 117.2 | 186.5 |
EPU_2 | 450 | 147.3 | 41.66 | 84.25 | 245.9 |
EPU_3 | 450 | 181.6 | 118.6 | 85.88 | 470.7 |
UP | 450 | 3.082 | 0.708 | 0.742 | 4.413 |
EC | 450 | 2.727 | 0.730 | 0.207 | 4.366 |
PO | 450 | 3.593 | 0.744 | 1.712 | 4.843 |
GB | 450 | 3.636 | 0.713 | 1.177 | 5.222 |
Appendix A.3
Variables | HQD | DIE | ES | RD | BR | EPU | UP | EC | PO | GB |
---|---|---|---|---|---|---|---|---|---|---|
HQD | 1.000 | |||||||||
DIE | 0.915 *** | 1.000 | ||||||||
ES | 0.733 *** | 0.787 *** | 1.000 | |||||||
RD | 0.728 *** | 0.791 *** | 0.866 *** | 1.000 | ||||||
BR | 0.405 *** | 0.338 *** | 0.579 *** | 0.421 *** | 1.000 | |||||
EPU | 0.030 | −0.015 | 0.005 | 0.022 | −0.002 | 1.000 | ||||
UP | 0.428 *** | 0.457 *** | 0.407 *** | 0.522 *** | 0.075 | 0.003 | 1.000 | |||
EC | 0.613 *** | 0.700 *** | 0.687 *** | 0.871 *** | 0.271 *** | 0.020 | 0.283 *** | 1.000 | ||
PO | 0.557 *** | 0.642 *** | 0.505 *** | 0.662 *** | −0.019 | −0.004 | 0.264 *** | 0.266 *** | 1.000 | |
GB | 0.575 *** | 0.678 *** | 0.840 *** | 0.842 *** | 0.503 *** | −0.011 | 0.205 *** | 0.226 *** | 0.291 *** | 1.000 |
Appendix A.4
Variables | (1) | (2) | (3) |
---|---|---|---|
RE | FE | FE | |
IE | 0.426 *** | 0.261 *** | 0.261 *** |
(0.046) | (0.046) | (0.046) | |
Control | YES | YES | YES |
Constant | 2.090 | 16.291 *** | 16.291 *** |
(2.032) | (4.770) | (4.770) | |
Observations | 450 | 450 | 450 |
R-squared | 0.110 | 0.110 | |
Number of ID | 30 | 30 | 30 |
Hausman | 556 | ||
p-value | 0.000 |
Appendix A.5
Variables | Unmatched(U)/Matched(M) | Mean | %bias | |
---|---|---|---|---|
Treated | Control | |||
UP | U | 3.471 | 2.694 | 131.2 |
M | 3.200 | 3.175 | 4.3 | |
EC | U | 3.142 | 2.311 | 138.6 |
M | 2.696 | 2.720 | −4.1 | |
PO | U | 4.027 | 3.160 | 143.3 |
M | 3.611 | 3.635 | −4.0 | |
GB | U | 4.025 | 3.247 | 130.2 |
M | 3.683 | 3.654 | 4.8 |
Appendix A.6
Year | Wa | We | ||
---|---|---|---|---|
I | p-Value | I | p-Value | |
2008 | 0.280 | 0.008 | 0.235 | 0.005 |
2009 | 0.283 | 0.008 | 0.229 | 0.006 |
2010 | 0.303 | 0.005 | 0.248 | 0.003 |
2011 | 0.283 | 0.008 | 0.248 | 0.003 |
2012 | 0.294 | 0.006 | 0.233 | 0.005 |
2013 | 0.290 | 0.007 | 0.242 | 0.003 |
2014 | 0.293 | 0.006 | 0.252 | 0.002 |
2015 | 0.276 | 0.009 | 0.253 | 0.003 |
2016 | 0.325 | 0.002 | 0.290 | 0.001 |
2017 | 0.257 | 0.012 | 0.259 | 0.002 |
2018 | 0.260 | 0.010 | 0.282 | 0.001 |
2019 | 0.254 | 0.012 | 0.263 | 0.002 |
2020 | 0.325 | 0.002 | 0.241 | 0.003 |
2021 | 0.369 | 0.001 | 0.268 | 0.001 |
2022 | 0.389 | 0.000 | 0.246 | 0.003 |
Appendix B
Wa | We | |||
---|---|---|---|---|
Value | p-Value | Value | p-Value | |
Moran’I | 9.586 | 0.000 | 6.577 | 0.000 |
LM-lag | 190.726 | 0.000 | 36.697 | 0.000 |
Robust-LM-lag | 112.409 | 0.000 | 9.002 | 0.003 |
LM-error | 89.239 | 0.000 | 41.293 | 0.000 |
Robust-LM-error | 10.922 | 0.001 | 13.598 | 0.000 |
Wa | We | ||||
---|---|---|---|---|---|
Z-Value | p-Value | Z-Value | p-Value | ||
LR Test | SDM/SAR | 35.300 | 0.000 | 46.880 | 0.000 |
SDM/SEM | 169.050 | 0.000 | 131.400 | 0.000 | |
Wald Test | SDM/SAR | 19.220 | 0.002 | 11.620 | 0.040 |
SDM/SEM | 36.520 | 0.000 | 13.920 | 0.016 |
Wa | We | |||
---|---|---|---|---|
Z-Value | p-Value | Z-Value | p-Value | |
Both/Time | 787.740 | 0.000 | 817.240 | 0.000 |
Both/Ind | 46.430 | 0.00 | 42.3600 | 0.000 |
References
- Zhou, B.; Zeng, X.; Jiang, L.; Xue, B. High-Quality Economic Growth under the Influence of Technological Innovation Preference in China: A Numerical Simulation from the Government Financial Perspective. Struct. Change Econ. Dyn. 2020, 54, 163–172. [Google Scholar]
- Yang, Z.; Chen, J. Innovation and Governance of Corporate Social Responsibility in the Digital and Intelligent Era. J. Shanghai Univ. Financ. Econ. 2020, 22, 33–51. [Google Scholar]
- Lu, Y. Industry 4.0: A Survey on Technologies, Applications and Open Research Issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar]
- Wang, H.; Zhang, J.; Jia, Y. Research on Regional High-Quality Economic Development of China. J. Technol. Econ. 2023, 42, 120–131. [Google Scholar]
- Bei, J. Study on the “High-Quality Development” Economics. China Political Econ. 2018, 1, 163–180. [Google Scholar]
- Cai, Q.; Huang, L. Research on Coordinated Regional Development in the Era of Digital Economy: Theoretical Evolution and Prospects. Int. Financ. 2024, 7, 43–50. [Google Scholar]
- Zhang, X.; Wang, G.; Zhang, J.; He, Z. Digital Economy, Financial Inclusion and Inclusive Growth. China Econ. 2020, 15, 92–105. [Google Scholar]
- Chen, P. Is the Digital Economy Driving Clean Energy Development?—New Evidence from 276 Cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar]
- Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M.; Hao, Y. Digitalization and Sustainable Development: How Could Digital Economy Development Improve Green Innovation in China? Bus. Strategy Environ. 2023, 32, 1847–1871. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. Manag. World 2020, 36, 65–76. [Google Scholar]
- Ding, C.; Liu, C.; Zheng, C.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2022, 14, 216. [Google Scholar]
- Wang, Y.; Chen, C.R.; Huang, Y.S. Economic Policy Uncertainty and Corporate Investment: Evidence from China. Pac.-Basin Financ. J. 2014, 26, 227–243. [Google Scholar]
- Dinh, H.B.P.; Iyke, B.N.; Sharma, S.S.; Affandi, Y. Economic Policy Uncertainty and Financial Stability-Is There a Relation? Econ. Model. 2021, 94, 1018–1029. [Google Scholar]
- Bu, L.; Zhao, H.; Fan, H. Geopolitical Risk, Economic Policy Uncertainty and Exchange Rate Fluctuation. Stud. Int. Financ. 2021, 11, 55–65. [Google Scholar]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring Economic Policy Uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar]
- Wang, C.; Yu, D.; Long, R. Economic Policy Uncertainty and Enterprise Digitalization: Stepping Stone or Stumbling Block? Bus. Manag. J. 2023, 45, 79–100. [Google Scholar]
- Sun, G.; Fang, J.; Li, J.; Wang, X. Research on the Impact of the Integration of Digital Economy and Real Economy on Enterprise Green Innovation. Technol. Forecast. Soc. Change 2024, 200, 123097. [Google Scholar]
- Ye, F.; Ouyang, Y.; Li, Y. Digital Investment and Environmental Performance: The Mediating Roles of Production Efficiency and Green Innovation. Int. J. Prod. Econ. 2023, 259, 108822. [Google Scholar]
- Liang, L.; Li, Y. How Does Government Support Promote Digital Economy Development in China? The Mediating Role of Regional Innovation Ecosystem Resilience. Technol. Forecast. Soc. Change 2023, 188, 122328. [Google Scholar]
- Hussain, M.; Yang, S.; Maqsood, U.S.; Zahid, R.M.A. Tapping into the Green Potential: The Power of Artificial Intelligence Adoption in Corporate Green Innovation Drive. Bus. Strategy Environ. 2024, 33, 4375–4396. [Google Scholar]
- Nahar, S. Modeling the Effects of Artificial Intelligence (AI)-Based Innovation on Sustainable Development Goals (SDGs): Applying a System Dynamics Perspective in a Cross-Country Setting. Technol. Forecast. Soc. Change 2024, 201, 123203. [Google Scholar]
- Ma, D.; Zhu, Q. Innovation in Emerging Economies: Research on the Digital Economy Driving High-Quality Green Development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar]
- Guo, B.; Wang, Y.; Zhang, H.; Liang, C.; Feng, Y.; Hu, F. Impact of the Digital Economy on High-Quality Urban Economic Development: Evidence from Chinese Cities. Econ. Model. 2023, 120, 106194. [Google Scholar]
- Wang, B.; Wang, J.; Dong, K.; Nepal, R. How Does Artificial Intelligence Affect High-Quality Energy Development? Achieving a Clean Energy Transition Society. Energy Policy 2024, 186, 114010. [Google Scholar]
- Jian, L.; Guo, S.; Yu, S. Effect of Artificial Intelligence on the Development of China’s Wholesale and Retail Trade. Sustainability 2023, 15, 10524. [Google Scholar] [CrossRef]
- Rao, S.; Pan, Y.; He, J.; Shangguan, X. Digital Finance and Corporate Green Innovation: Quantity or Quality? Environ. Sci. Pollut. Res. 2022, 29, 56772–56791. [Google Scholar]
- Xu, W.; Shi, R.; Zhou, J.; Liu, C. The Mechanism and Effect of Digital Intelligence Economy Promoting Common Prosperity. J. Ind. Technol. Econ. 2024, 43, 135–144. [Google Scholar]
- Duc, D.T.V.; Dat, T.T.; Linh, D.H.; Phong, B.X. Measuring the Digital Economy in Vietnam. Telecommun. Policy 2024, 48, 102683. [Google Scholar]
- Ababio, J.O.-M.; Yiadom, E.B.; Ofori-Sasu, D.; Sarpong-Kumankoma, E. Digital Financial Inclusion and Inclusive Development in Lower-Middle-Income Countries: The Enabling Role of Institutional Quality. J. Chin. Econ. Foreign Trade Stud. 2024, 17, 133–151. [Google Scholar]
- Zhang, X.; Lau, C.K.M.; Li, R.; Wang, Y.; Wanjiru, R.; Seetaram, N. Determinants of Carbon Emissions Cycles in the G7 Countries. Technol. Forecast. Soc. Change 2024, 201, 123261. [Google Scholar]
- Ades, A.; Di Tella, R. Rents, Competition, and Corruption. Am. Econ. Rev. 1999, 89, 982–993. [Google Scholar]
- Komornicki, T.; Goliszek, S. New Transport Infrastructure and Regional Development of Central and Eastern Europe. Sustainability 2023, 15, 5263. [Google Scholar] [CrossRef]
- Romer, P. Endogenous Technological-Change. J. Polit. Econ. 1990, 98, S71–S102. [Google Scholar]
- Zhang, H.; Liu, Z.; Wang, S. Exploration of the Path of High-Quality Development of China’s Economy in the Context of the Digital Economy. J. Commer. Econ. 2019, 23, 183–186. [Google Scholar]
- Peng, X.-Y.; Zou, X.-Y.; Zhao, X.-X.; Chang, C.-P. How Does Economic Policy Uncertainty Affect Green Innovation? Technol. Econ. Dev. Econ. 2023, 29, 114–140. [Google Scholar]
- Gulen, H.; Ion, M. Policy Uncertainty and Corporate Investment. Rev. Financ. Stud. 2016, 29, 523–564. [Google Scholar]
- Welter, F.; Baker, T.; Wirsching, K. Three Waves and Counting: Therising Tide of Contextualization in Entrepreneurship Research. Small Bus. Econ. Group 2019, 52, 319–330. [Google Scholar]
- Philip, L.; Cottrill, C.; Farrington, J.; Williams, F.; Ashmore, F. The Digital Divide: Patterns, Policy and Scenarios for Connecting the “final Few” in Rural Communities across Great Britain. J. Rural Stud. 2017, 54, 386–398. [Google Scholar]
- Liu, Y.; Dong, J.; Wei, J. Digital Innovation Management:Theoretical Framework and Future Research. Manag. World 2020, 36, 198–217,219. [Google Scholar]
- Krugman, P. Increasing Returns and Economic-Geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar]
- Chauhan, C.; Parida, V.; Dhir, A. Linking Circular Economy and Digitalization Technologies: A Systematic Literature Review of Past Achievements and Future Promises. Technol. Forecast. Soc. Change 2022, 177, 121508. [Google Scholar]
- Liu, Z.; Zheng, Y. Development Paradigm of Artificial Intelligence in China from the Perspective of Digital Economics. J. Chin. Econ. Bus. Stud. 2022, 20, 207–217. [Google Scholar]
- Zou, T. Technological Innovation Promotes Industrial Upgrading: An Analytical Framework. Struct. Change Econ. Dyn. 2024, 70, 150–167. [Google Scholar] [CrossRef]
- Ye, T.; Wang, X. The Impact of Digital Economy on Coordinated and Balanced Development—On the Realization Path of Common Prosperity. Econ. Perspect. 2023, 1, 73–88. [Google Scholar]
- Ren, X.; Xia, X.; Taghizadeh-Hesary, F. Uncertainty of Uncertainty and Corporate Green Innovation-Evidence from China. Econ. Anal. Policy 2023, 78, 634–647. [Google Scholar]
- Xu, Z. Economic Policy Uncertainty, Cost of Capital, and Corporate Innovation. J. Bank Financ. 2020, 111, 105698. [Google Scholar]
- Diemer, A.; Iammarino, S.; Rodriguez-Pose, A.; Storper, M. The Regional Development Trap in Europe. Econ. Geogr. 2022, 98, 487–509. [Google Scholar]
- Adams, S.; Adedoyin, F.; Olaniran, E.; Bekun, F.V. Energy Consumption, Economic Policy Uncertainty and Carbon Emissions; Causality Evidence from Resource Rich Economies. Econ. Anal. Policy 2020, 68, 179–190. [Google Scholar]
- Yao, J.; Zhang, K.; Guo, L.; Feng, X. How Does Artificial Intelligence Improve Firm Productivity? Based on the Perspective of Labor Skill Structure Adjustment. J. Manag. World 2024, 40, 101–116,133,117–122. [Google Scholar]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Polit. Econ. 2020, 128, 2188–2244. [Google Scholar]
- Lu, T.; Zhu, Z. Will AI Reduce Labor Income Share—A Test Based on Fixed Effect Model and Panel Quantile Model. J. Shanxi Univ. Financ. Econ. 2021, 43, 29–41. [Google Scholar]
- Klump, R.; McAdam, P.; Willman, A. Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach. Rev. Econ. Stat. 2007, 89, 183–192. [Google Scholar]
- Song, M.; Tao, W.; Shen, Z. Improving High-Quality Development with Environmental Regulation and Industrial Structure in China. J. Clean. Prod. 2022, 366, 132997. [Google Scholar]
- Zheng, H.; He, Y. How Does Industrial Co-Agglomeration Affect High-Quality Economic Development? Evidence from Chengdu-Chongqing Economic Circle in China. J. Clean. Prod. 2022, 371, 133485. [Google Scholar]
- Pu, X.; Zeng, M.; Zhang, W. Corporate Sustainable Development Driven by High-Quality Innovation: Does Fiscal Decentralization Really Matter? Econ. Anal. Policy 2023, 78, 273–289. [Google Scholar]
- Li, X.; Wu, F.; Zhu, L. Digital Economy and Regional Innovation Performance. J. Shanxi Univ. Financ. Econ. 2021, 43, 17–30. [Google Scholar]
- Caliendo, M.; Kopeinig, S. Some Practical Guidance for the Implementation of Propensity Score Matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar]
- Li, J.; Peng, Y.; Ma, S. Inclusive Finance and Economic Development in China: Multidimensional Connotation and Empirical Analysis. Econ. Res. J. 2020, 55, 37–52. [Google Scholar]
- Lv, Y.; Chen, W.; Cheng, J. Effects of Urbanization on Energy Efficiency in China: New Evidence from Short Run and Long Run Efficiency Models. Energy Policy 2020, 147, 111858. [Google Scholar]
- Capello, R.; Lenzi, C. Innovation Modes and Entrepreneurial Behavioral Characteristics in Regional Growth. Small Bus. Econ. Group 2016, 47, 875–893. [Google Scholar]
Target Layer | Secondary Indicators | Tertiary Indicators |
---|---|---|
Digital Intelligence Economy | Industrial Digitalization | Number of Internet broadband access ports |
Employment in urban units of the information transmission, software and information technology services industry | ||
Industrial Intelligence | Number of artificial intelligence companies | |
Number of industrial robots in use | ||
Industrial Upgrading | Value of technology market transactions | |
Funding for technological improvements |
Target Layer | Secondary Indicators | Tertiary Indicators |
---|---|---|
High-Quality Development | Harmonious | GDP |
Proportion of tertiary industry to GDP | ||
Green | Wastewater discharge | |
Carbon emission | ||
Innovation | Number of patents granted | |
Output of new industrial products | ||
Open | Total exports and imports | |
Total foreign investment | ||
Sharing | Book collection | |
Local financial expenditure on education |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
HQD | HQD | HQD | HQD | HQD | |
DIE | 0.245 *** | 0.243 *** | 0.228 *** | 0.242 *** | 0.210 *** |
(5.57) | (5.52) | (5.28) | (5.56) | (4.87) | |
UP | −0.115 | −0.083 | 0.018 | 0.120 | |
(−0.53) | (−0.39) | (0.08) | (0.56) | ||
EC | 1.739 *** | 1.994 *** | 1.486 *** | ||
(4.53) | (4.96) | (3.63) | |||
PO | −2.777 ** | −4.978 *** | |||
(−2.08) | (−3.55) | ||||
GB | 2.752 *** | ||||
(4.41) | |||||
Constant | 8.407 *** | 8.760 *** | 4.875 *** | 13.803 *** | 15.279 *** |
(34.81) | (12.39) | (4.42) | (3.11) | (3.51) | |
Observations | 450 | 450 | 450 | 450 | 450 |
R-squared | 0.208 | 0.208 | 0.247 | 0.255 | 0.289 |
Zone | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
HQD | ES | HQD | RD | HQD | BR | |
ES | 0.825 *** | |||||
(4.20) | ||||||
RD | 0.537 ** | |||||
(2.08) | ||||||
BR | 0.835 *** | |||||
(3.41) | ||||||
DIE | 0.175 *** | 0.042 *** | 0.244 *** | 0.032 *** | 0.181 *** | 0.035 *** |
(4.08) | (3.91) | (5.28) | (3.76) | (4.17) | (4.04) | |
Control | YES | YES | YES | YES | YES | YES |
Observations | 450 | 450 | 450 | 450 | 450 | 450 |
R-squared | 0.319 | 0.881 | 0.119 | 0.899 | 0.309 | 0.918 |
Zone | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
HQD | HQD | HQD | HQD | HQD | HQD | |
EPU | −0.288 *** | −0.286 *** | ||||
(−6.07) | (−6.00) | |||||
DIE×EPU | −0.001 ** | |||||
(−1.99) | ||||||
EPU_2 | −7.611 *** | −7.510 *** | ||||
(−6.04) | (−6.00) | |||||
DIE×EPU_2 | −0.001 | |||||
(−0.75) | ||||||
EPU_3 | −0.092 *** | −0.092 *** | ||||
(−6.00) | (−6.00) | |||||
DIE×EPU_3 | −0.001 ** | |||||
(−2.09) | ||||||
DIE | 0.341 *** | 0.210 *** | 0.230 *** | 0.210 *** | 0.245 *** | 0.210 *** |
(4.33) | (4.87) | (4.56) | (4.87) | (5.32) | (4.87) | |
Control | YES | YES | YES | YES | YES | YES |
Observations | 450 | 450 | 450 | 450 | 450 | 450 |
R-squared | 0.296 | 0.289 | 0.290 | 0.289 | 0.297 | 0.289 |
Zone | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
Variables | (1) | (2) |
---|---|---|
HQD | HQD | |
DIE | 0.226 *** | 0.210 *** |
(5.73) | (4.87) | |
Control | YES | YES |
Observations | 450 | 450 |
R-squared | 0.372 | 0.289 |
Zone | YES | YES |
Year | YES | YES |
Variables | (1) | (2) | (3) |
---|---|---|---|
DIE | HQD | HQD | |
L.DIE | 0.576 *** | 0.091 ** | |
(18.00) | (1.97) | ||
DIE_PCA | 0.437 *** | ||
(2.76) | |||
Control | YES | YES | YES |
Observations | 420 | 420 | 450 |
R-squared | 0.597 | 0.234 | 0.261 |
Zone | YES | YES | YES |
Year | YES | YES | YES |
Variables | (1) |
---|---|
HQD | |
DIE_dum | 1.012 ** |
(2.08) | |
UP | 0.091 |
(0.28) | |
EC | 1.511 ** |
(2.23) | |
PO | −3.560 |
(−1.66) | |
GB | 3.556 *** |
(3.55) | |
Constant | 7.951 |
(1.14) | |
Observations | 130 |
R-squared | 0.416 |
Zone | YES |
Year | YES |
Variables | East | Central | West | |||
---|---|---|---|---|---|---|
HQD | HQD | HQD | HQD | HQD | HQD | |
EPU | −0.363 *** | −0.365 *** | −0.219 ** | −0.224 ** | −0.189 *** | −0.189 *** |
(−4.16) | (−4.25) | (−2.17) | (−2.18) | (−2.80) | (−2.79) | |
DIE×EPU | −0.002 ** | 0.001 | 0.000 | |||
(−2.36) | (0.29) | (0.33) | ||||
DIE | 0.149 ** | 0.426 *** | 0.375 ** | 0.267 | 0.181 | 0.133 |
(2.32) | (3.20) | (2.57) | (0.67) | (1.51) | (0.71) | |
Control | YES | YES | YES | YES | YES | YES |
Observations | 165 | 165 | 135 | 135 | 150 | 150 |
R-squared | 0.328 | 0.355 | 0.512 | 0.512 | 0.357 | 0.358 |
Zone | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
Variables | Wa | We | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
DIE | 0.219 *** | 0.458 *** | 0.677 *** | 0.351 *** | 0.481 ** | 0.833 *** |
(3.01) | (5.17) | (4.90) | (3.83) | (2.01) | (3.69) | |
Control | YES | YES | YES | YES | YES | YES |
Observations | 450 | 450 | 450 | 450 | 450 | 450 |
R-squared | 0.047 | 0.047 | 0.047 | 0.288 | 0.288 | 0.288 |
Zone | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
The Explanatory Variable | Threshold | F | p-Value | BS |
---|---|---|---|---|
DIE | Single | 21.370 | 0.0033 | 300 |
Double | 9.05 | 0.1367 | 300 |
HQD | |
---|---|
DIE(GC<1645.944) | −0.0804 ** |
(−1.36) | |
DIE(GC>1645.944) | 0.1866 *** |
(3.49) | |
Control | YES |
R-squared | 0.111 |
Observations | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, C.; Wu, Z. How the Digital Intelligence Economy Can Promote Regional High-Quality Development Under the Influence of Economic Policy Uncertainty. Sustainability 2025, 17, 2869. https://doi.org/10.3390/su17072869
Wan C, Wu Z. How the Digital Intelligence Economy Can Promote Regional High-Quality Development Under the Influence of Economic Policy Uncertainty. Sustainability. 2025; 17(7):2869. https://doi.org/10.3390/su17072869
Chicago/Turabian StyleWan, Chenyi, and Zongfa Wu. 2025. "How the Digital Intelligence Economy Can Promote Regional High-Quality Development Under the Influence of Economic Policy Uncertainty" Sustainability 17, no. 7: 2869. https://doi.org/10.3390/su17072869
APA StyleWan, C., & Wu, Z. (2025). How the Digital Intelligence Economy Can Promote Regional High-Quality Development Under the Influence of Economic Policy Uncertainty. Sustainability, 17(7), 2869. https://doi.org/10.3390/su17072869