Empowering Agricultural Economic Resilience with Smart Supply Chain: Theoretical Mechanism and Action Path
Abstract
:1. Introduction
2. Literature Review
3. Research Hypotheses
3.1. The Direct Impact of Smart Supply Chains on Agricultural Economic Resilience
3.1.1. Strengthen the Basic Support from Data Elements
3.1.2. Optimize the Production Inputs by Process Upgrade
3.1.3. Matching Supply and Demand to Ensure Green Ecology
3.1.4. Stabilizes Agricultural Output Through Resource Synergy
3.1.5. Digital Technology Empowers Scientific and Technological Innovation Upgrades
3.2. The Moderating Effect Analysis
3.3. Threshold Effect Analysis
4. Research Design
4.1. Benchmark Regression Model
4.2. Moderating Effect Model
4.3. Threshold Effect Model
5. Variables and Data Source
5.1. Explained Variables
5.1.1. Variable Selection and Measurement
5.1.2. Calculation of Agricultural Economic Resilience
5.2. Core Explanatory Variables
5.3. Moderating Variables
5.4. Control Variables
5.5. Data Sources and Descriptive Statistics
5.5.1. Data Sources
5.5.2. Descriptive Statistics
6. Results of Empirical Analysis
6.1. Benchmark Regression
6.2. Robustness Test
6.2.1. Considering Endogeneity
6.2.2. Narrowing the Sample Interval
6.2.3. Eliminating Outliers
6.3. Moderating Effect Test
6.4. Threshold Effect Test
6.5. Heterogeneity Test
6.6. Spatial Spillover Effect
6.6.1. Spatial Spillover Effect Test
6.6.2. Spatial Spillover Effect Test
7. Conclusions and Policy Recommendations
7.1. Conclusions
7.2. Policy Recommendations
7.3. Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appiah-Otoo, I.; Chen, X.; Kursah, M.B. Modelling the impact of renewable energy investment on global carbon dioxide emissions. Energy Rep. 2023, 10, 3787–3799. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Ullah, I.; Dagar, V.; Tanin, T.; Rehman, A.; Zeeshan, M. Agricultural productivity and rural poverty in China: The impact of land reforms. J. Clean. Prod. 2024, 475, 143723. [Google Scholar] [CrossRef]
- Available online: https://www.gov.cn/zhengce/zhengceku/2023-02/22/content_5742671.htm (accessed on 1 March 2025).
- Quan, T.; Zhang, H.; Quan, T.; Yu, Y. Unveiling the impact and mechanism of digital technology on agricultural economic resilience. Chin. J. Popul. Resour. Environ. 2024, 22, 136–145. [Google Scholar] [CrossRef]
- Huo, C.; Chen, L. The impact of land transfer policy on sustainable agricultural development in China. Sci. Rep. 2024, 14, 7064. [Google Scholar] [CrossRef]
- Chen, B.; Huang, Z.; He, W.; Wang, M. Comprehensive Land Consolidation as a Development Strategy for Rural Revitalization: The Political Ecology Mechanisms and Benefits of the Pastoral Complex. Land 2024, 13, 897. [Google Scholar] [CrossRef]
- Fatorachian, H.; Kazemi, H. Impact of Industry 4.0 on Supply Chain Performance. Prod. Plan. Control 2021, 32, 63–81. [Google Scholar] [CrossRef]
- Sardar, S.; Sarkar, B.; Kim, B. Integrating Machine Learning, Radio Frequency Identification, and Consignment Policy for Reducing Unreliability in Smart Supply Chain Management. Processes 2021, 9, 247. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Ma, Z.; Liu, D.; Guo, Y. Agricultural Economic Resilience in the Context of International Food Price Fluctuation—An Empirical Analysis on the Main Grain–Producing Areas in Northeast China. Sustainability 2022, 14, 14102. [Google Scholar] [CrossRef]
- Zheng, T.; Zhao, G.; Chu, S. A Study on the Impact of External Shocks on the Resilience of China’s Grain Supply Chain. Sustainability 2024, 16, 956. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, S.; Zhang, Y.; Zeng, M.; Zhao, D. Digital pathways to resilience: Assessing the impact of digitalization on agricultural production resilience in China. China Econ. Rev. 2025, 90, 102375. [Google Scholar] [CrossRef]
- Holling, C. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 460–482. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the Notion of Regional Economic Resilience: Conceptualization and Explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Foster, K. A Case Study Approach to Understanding Regional Resilience. In Working Paper; California Digital Library University of California: Los Angeles, CA, USA, 2007. [Google Scholar]
- Yao, R.; Ma, Z.; Wu, H.; Xie, Y. Mechanism and Measurement of the Effects of Industrial Agglomeration on Agricultural Economic Resilience. Agriculture 2024, 14, 337. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, J. Empowering Agricultural Economic Resilience in China: Does Green Finance Matter? Adv. Agric. 2024, 1, 1350399. [Google Scholar] [CrossRef]
- Ye, Y.; Zou, P.; Zhang, W.; Liu, X.; Liu, B.; Kang, X. Spatial–Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China. Agronomy 2022, 12, 3144. [Google Scholar] [CrossRef]
- Jiang, H. Analysis of spatial network effects of China’s agricultural economic resilience. Guizhou Soc. Sci. 2022, 8, 151–159. (In Chinese) [Google Scholar]
- Zhou, J.; Chen, H.; Bai, Q.; Liu, L.; Li, G.; Shen, Q. Can the Integration of Rural Industries Help Strengthen China’s Agricultural Economic Resilience? Agriculture 2023, 13, 1813. [Google Scholar] [CrossRef]
- Zhou, L.; Xin, T. The impact of new urbanization construction on the resilience of China’s agricultural economy: Empirical analysis based on the spatial difference-in-differences model. Chin. J. Eco-Agric. 2025, 33, 1–14. (In Chinese) [Google Scholar] [CrossRef]
- Gao, Q.; Sun, M.; Chen, L. The impact of digital inclusive finance on agricultural economic resilience. Financ. Res. Lett. 2024, 66, 105679. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, X.; Lu, Q.; Nicolescu, C.M.; Guan, M.; Kang, A. Numerical Analysis and Service Quality Evaluation of the Fresh Agricultural Produce Supply Chain Platform. Appl. Sci. 2023, 13, 713. [Google Scholar] [CrossRef]
- Lee, K.; Wong, S.; Alzoubi, H.; Al Kurdi, B.; Alshurideh, M.; El Khatib, M. Adopting smart supply chain and smart technologies to improve operational performance in manufacturing industry. Int. J. Eng. Bus. Manag. 2024, 15. [Google Scholar] [CrossRef]
- Ning, L.; Yao, D. The Impact of Digital Transformation on Supply Chain Capabilities and Supply Chain Competitive Performance. Sustainability 2023, 15, 10107. [Google Scholar] [CrossRef]
- Sharma, M.; Antony, R.; Sharma, A.; Daim, T. Can smart supply chain bring agility and resilience for enhanced sustainable business performance? Int. J. Logist. Manag. 2025, 36, 501–505. [Google Scholar] [CrossRef]
- Bhat, S.; Huang, N.; Sofi, I.; Sultan, M. Agriculture-Food Supply Chain Management Based on Blockchain and IoT: A Narrative on Enterprise Blockchain Interoperability. Agriculture 2021, 12, 40. [Google Scholar] [CrossRef]
- Abiri, R.; Rizan, N.; Balasundram, S.; Shahbazi, A.; Abdul-Hamid, H. Application of digital technologies for ensuring agricultural productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, Y.; Chen, J. Financing an Agricultural Supply Chain with a Capital-Constrained Smallholder Farmer in Developing Economies. Prod. Oper. Manag. 2021, 30, 2102–2121. [Google Scholar] [CrossRef]
- Hong, X.; Chen, Q.; Wang, N. The impact of digital inclusive finance on the agricultural factor mismatch of agriculture-related enterprises. Financ. Res. Lett. 2023, 59, 104774. [Google Scholar] [CrossRef]
- Yang, C.; Liu, W.; Zhou, J. The Role of Digital Finance in Shaping Agricultural Economic Resilience: Evidence from Machine Learning. Agriculture 2024, 14, 1834. [Google Scholar] [CrossRef]
- Yermekova, Z.; Romanenko, S.; Zhanibekova, G.; Aitzhanova, B.; Apakhayev, N. Integration of digital technologies to improve the efficiency of small and medium-sized agricultural enterprises. Sci. Horiz. 2024, 27, 142–152. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; He, B. Does Digital Infrastructure Improve Urban Economic Resilience? Evidence from the Yangtze River Economic Belt in China. Sustainability 2023, 15, 14289. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; He, B. Empowerment of Digital Technology for the Resilience of the Logistics Industry: Mechanisms and Paths. Systems 2024, 12, 278. [Google Scholar] [CrossRef]
- Wang, J.; Dong, Y.; Wang, H. Research on the impact and mechanism of digital economy on China’s food production capacity. Sci. Rep. 2024, 14, 27292. [Google Scholar] [CrossRef]
- Ali, I.; Arslan, A.; Chowdhury, M.; Khan, Z.; Tarba, S. Reimagining global food value chains through effective resilience to COVID-19 shocks and similar future events: A dynamic capability perspective. J. Bus. Res. 2022, 141, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.; Khan, M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front. Plant Sci. 2022, 13, 927535. [Google Scholar] [CrossRef]
- Mane, A.E.; Chihab, Y.; Tatane, K.; Korchiyne, R. Agriculture Supply Chain Management Based on Blockchain Architecture and Smart Contracts. Appl. Comput. Intell. Soft Comput. 2022, 2020, 8011525. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Shekarian, E.; Ijadi, B.; Zare, A.; Majava, J. Sustainable Supply Chain Management: A Comprehensive Systematic Review of Industrial Practices. Sustainability 2021, 14, 7892. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhang, X.; Li, Y.; Ding, W.; Yu, X.; He, B. The Impact of Digital Inclusive Finance on Agricultural Carbon Emissions: Evidence from China. Pol. J. Environ. Stud. 2025, 34, 1593–1605. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, M.; Zheng, X. Digital Economy, Agricultural Technology Innovation, and Agricultural Green Total Factor Productivity. Sage Open 2023, 13, 21582440231194388. [Google Scholar] [CrossRef]
- Guan, X.; He, L.; Hu, Z. Impact of Rural E-Commerce on Farmers’ Income and Income Gap. Agriculture 2024, 14, 1689. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.; Zhou, G.; Liu, Q.; Yi, C. Spatial distribution, influencing factors and innovative development countermeasures of farmer cooperatives in Hunan Province, China. Sci. Rep. 2024, 14, 11308. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, T. Supply Chain Decision Model Based on Blockchain: A Case Study of Fresh Food E-Commerce Supply Chain Performance Improvement. Discret. Dyn. Nat. Soc. 2021, 1, 5795547. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, S.; Zhang, M. The impact of entrepreneurship of farmers on agriculture and rural economic growth: Innovation-driven perspective. Innov. Green Dev. 2023, 3, 100093. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.; Alemany Díaz, M.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Chang, J.; Jiang, H.; Liu, J.; Li, M. How the digital economy enhances the grain supply chain resilience in China: Exploring the moderating effects of government innovation driven. Front. Sustain. Food Syst. 2024, 8, 1439593. [Google Scholar] [CrossRef]
- Luo, W.; Zuo, S.; Song, Y.; Tang, S. The impact of data elements on agricultural economic resilience: A dynamic QCA analysis. Front. Sustain. Food Syst. 2025, 8, 1510328. [Google Scholar] [CrossRef]
- Li, C.; Yu, G.; Deng, H.; Liu, J.; Li, D. Spatio-temporal pattern and the evolution of the distributional dynamics of county-level agricultural economic resilience in China. PLoS ONE 2024, 19, e0300601. [Google Scholar] [CrossRef]
- Li, B.; Han, F.; Chen, S.; Guo, H. Study on development route of smart supply chain based on comprehensive evaluation method: Empirical analysis based on six provinces in developed regions of China. East China Econ. Manag. 2022, 36, 66–74. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Li, Y. The impact of integrated development of the primary, secondary and tertiary industries in rural areas on farmers’ income and its regional heterogeneity. Reform 2019, 12, 104–114. (In Chinese) [Google Scholar]
- Hou, J.; Zhang, M.; Li, Y. Can digital economy truly improve agricultural ecological transformation? New insights from China. Humanit. Soc. Sci. Commun. 2024, 11, 153. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Zhu, X.; Zhang, X. Spatial-temporal characteristics of agricultural economic resilience and spatial spillover effects of driving factors: Evidence from provincial panel data in China. Front. Environ. Sci. 2025, 13, 1437018. [Google Scholar] [CrossRef]
- Tan, Z.; Qiu, Y.; Luo, J.; Han, J.; Chen, S. The impact of the opening of high-speed rail on the agglomeration of tertiary industry in the Yangtze River Economic Belt. J. Chongqing Univ. (Soc. Sci. Ed.) 2023, 29, 38–55. (In Chinese) [Google Scholar] [CrossRef]
First Level | Second Level | Third Level | Impact |
---|---|---|---|
Risk resistance | Basic support | Per capita contribution of farmers to the total agricultural, forestry, wood, and fishery production value | + |
Contribution of agricultural, forestry, fishery, and agricultural production per mu of cultivated land | + | ||
Number of people employed in the primary industry in rural areas | + | ||
The original value of productive fixed assets in agriculture, forestry, animal husbandry, and fishery owned by rural households | + | ||
Level of public financial support for agriculture | + | ||
Level of financial support for agriculture | |||
Production input | Crop Diversification Index | + | |
Effective irrigation area | + | ||
Average total mechanical power per unit area | + | ||
Electricity consumption of rural residents in production and life | + | ||
The proportion of disaster-affected area to non-disaster-affected area | − | ||
Green ecology | Amount of agricultural fertilizer (pure) per unit sowing area | − | |
Pesticide application per unit sowing area | − | ||
Amount of agricultural plastic film applied per unit sowing area | − | ||
Adaptive adjustment | Agricultural output | Total output value of agriculture, forestry, animal husbandry, and fishery | + |
Total grain production | + | ||
GDP growth rate of primary industry | + | ||
Average annual wage of rural residents | + | ||
The proportion of agricultural product processing industry in the total agricultural output value | + | ||
innovative transformation | Scientific & technological innovation upgrade | Agricultural R&D expenditure | + |
Rural broadband network penetration rate | + | ||
Number of Taobao Villages | + | ||
Recreational agriculture business income | + |
Province | 2009 | 2011 | 2013 | 2015 | 2017 | 2019 | 2021 | Average | Rank |
---|---|---|---|---|---|---|---|---|---|
Beijing | 0.07 | 0.07 | 0.09 | 0.10 | 0.11 | 0.14 | 0.15 | 0.10 | 24 |
Tianjin | 0.17 | 0.18 | 0.08 | 0.09 | 0.10 | 0.11 | 0.14 | 0.12 | 17 |
Hebei | 0.14 | 0.16 | 0.18 | 0.20 | 0.21 | 0.24 | 0.29 | 0.20 | 7 |
Shanghai | 0.08 | 0.09 | 0.14 | 0.15 | 0.16 | 0.18 | 0.17 | 0.13 | 13 |
Jiangsu | 0.18 | 0.22 | 0.26 | 0.30 | 0.33 | 0.40 | 0.38 | 0.29 | 1 |
Zhejiang | 0.13 | 0.17 | 0.18 | 0.23 | 0.30 | 0.41 | 0.46 | 0.26 | 3 |
Fujian | 0.09 | 0.11 | 0.13 | 0.15 | 0.16 | 0.19 | 0.23 | 0.14 | 12 |
Shandong | 0.18 | 0.21 | 0.24 | 0.27 | 0.31 | 0.35 | 0.41 | 0.27 | 2 |
Guangdong | 0.14 | 0.17 | 0.18 | 0.21 | 0.26 | 0.33 | 0.38 | 0.23 | 4 |
Hainan | 0.05 | 0.08 | 0.09 | 0.13 | 0.16 | 0.19 | 0.12 | 0.11 | 20 |
Shanxi | 0.06 | 0.07 | 0.08 | 0.10 | 0.10 | 0.12 | 0.10 | 0.09 | 28 |
Anhui | 0.10 | 0.12 | 0.16 | 0.18 | 0.20 | 0.22 | 0.23 | 0.17 | 8 |
Jiangxi | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.13 | 0.16 | 0.11 | 22 |
Henan | 0.16 | 0.17 | 0.19 | 0.20 | 0.21 | 0.24 | 0.28 | 0.20 | 6 |
Hubei | 0.11 | 0.13 | 0.14 | 0.16 | 0.17 | 0.19 | 0.21 | 0.15 | 11 |
Hunan | 0.11 | 0.12 | 0.14 | 0.16 | 0.18 | 0.20 | 0.23 | 0.16 | 10 |
Neimenggu | 0.08 | 0.10 | 0.11 | 0.13 | 0.14 | 0.16 | 0.18 | 0.12 | 15 |
Guangxi | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.14 | 0.16 | 0.11 | 18 |
Chongqing | 0.06 | 0.07 | 0.10 | 0.12 | 0.14 | 0.13 | 0.16 | 0.11 | 23 |
Sichuan | 0.12 | 0.15 | 0.18 | 0.21 | 0.24 | 0.27 | 0.32 | 0.20 | 5 |
Guizhou | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | 0.12 | 0.13 | 0.09 | 26 |
Yunnan | 0.07 | 0.09 | 0.10 | 0.11 | 0.12 | 0.14 | 0.16 | 0.11 | 19 |
Shaanxi | 0.06 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.14 | 0.10 | 25 |
Gansu | 0.06 | 0.07 | 0.08 | 0.09 | 0.09 | 0.11 | 0.12 | 0.08 | 29 |
Qinghai | 0.07 | 0.05 | 0.06 | 0.07 | 0.08 | 0.11 | 0.13 | 0.08 | 30 |
Ningxia | 0.14 | 0.17 | 0.06 | 0.06 | 0.06 | 0.08 | 0.10 | 0.09 | 27 |
Xinjiang | 0.08 | 0.09 | 0.11 | 0.13 | 0.14 | 0.16 | 0.18 | 0.12 | 16 |
Heilongjiang | 0.10 | 0.13 | 0.17 | 0.17 | 0.18 | 0.20 | 0.22 | 0.16 | 9 |
Jilin | 0.07 | 0.08 | 0.10 | 0.11 | 0.12 | 0.14 | 0.16 | 0.11 | 21 |
Liaoning | 0.09 | 0.12 | 0.13 | 0.14 | 0.14 | 0.14 | 0.15 | 0.13 | 14 |
Average | 0.10 | 0.12 | 0.13 | 0.15 | 0.16 | 0.19 | 0.21 | 0.14 | / |
First Level | Second Level | Impact |
---|---|---|
Supply chain foundation | Road density | + |
Railway density | + | |
Density of inland waterways | + | |
Investment in transportation, warehousing, and postal services | + | |
Transport, warehousing, and postal workers | + | |
Logistics and warehousing land area | + | |
Traffic congestion | − | |
Supply chain collaboration | Agricultural value added | + |
Manufacturing value added | + | |
Cargo transportation volume | + | |
Cargo turnover | + | |
E-commerce sales | + | |
E-commerce purchases | + | |
Proportion of e-commerce transaction activities | + | |
Supply chain innovation | Number of transportation science and technology institutions | + |
Number of transportation research laboratories and research centers | + | |
Whether a national pilot city for supply chain innovation and application | + | |
Mobile device penetration | + | |
Number of Internet users | + | |
Total number of IT professionals | + |
Type | Name | Variables | Obs. | Mean | St.d. | Min. | Max. |
---|---|---|---|---|---|---|---|
Explained | Res | Agricultural economic resilience | 420 | 0.233 | 0.098 | 0.060 | 0.082 |
Explanatory | Sup | Smart supply chain | 420 | 0.134 | 0.114 | 0.010 | 0.840 |
Moderating | Merge | Rural industrial integration | 420 | 0.144 | 0.111 | 0.010 | 0.560 |
Control | LnPgdp | Per capita disposable income | 420 | 9.662 | 0.942 | 6.799 | 11.731 |
Inn | Agricultural innovation level | 420 | 17.700 | 23.573 | 0.000 | 159.000 | |
Mech | Agricultural mechanization level | 420 | 4.352 | 2.168 | 0.943 | 13.396 | |
Elec | Agricultural power facilities | 420 | 19.984 | 51.509 | 1.130 | 412.75 | |
Stru | Agricultural planting structure | 420 | 0.660 | 0.142 | 0.355 | 0.971 | |
Eco | Ecological environment | 420 | 1.015 | 1.143 | 0.001 | 10.182 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Sup | 0.508 *** (0.046) | 0.368 *** (0.053) | 0.418 *** (0.050) | 0.406 *** (0.050) | 0.398 *** (0.052) | 0.421 *** (0.053) |
Inn | 0.001 *** (0.000) | 0.001 *** (0.000) | 0.001 *** (0.000) | 0.001 *** (0.000) | 0.001 *** (0.000) | |
Mech | 0.010 *** (0.001) | 0.010 *** (0.001) | 0.011 *** (0.002) | 0.010 *** (0.002) | ||
Elec | 0.000 ** (0.000) | 0.000 ** (0.000) | 0.000 * (0.000) | |||
Stru | −0.026 (0.043) | −0.061 (0.047) | ||||
Eco | −0.004 * (0.002) | |||||
Constant | 0.036 *** (0.007) | 0.050 *** (0.007) | 0.014 * (0.009) | 0.014 * (0.009) | 0.032 (0.030) | 0.057 * (0.033) |
Fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 420 | 420 | 420 | 420 | 420 | 420 |
R2 | 0.714 | 0.733 | 0.763 | 0.765 | 0.766 | 0.768 |
(1) Sup | (2) Res | (3) Res | (4) Res | |
---|---|---|---|---|
Instru | 1.067 *** (0.000) | |||
Sup | 0.326 *** (0.028) | 0.575 *** (0.148) | 0.397 *** (0.052) | |
Controls | Yes | Yes | Yes | Yes |
Fixed effects | Yes | Yes | Yes | Yes |
Obs. | 390 | 390 | 120 | 420 |
R2 | 0.995 | 0.776 | 0.590 | 0.779 |
Variables | Res |
---|---|
Sup | 0.287 *** (0.071) |
Merge | −0.117 *** (0.044) |
Sup × Merge | 0.396 *** (0.136) |
Controls | Yes |
Constant | 0.080 ** (0.036) |
Fixed effects | Yes |
Obs. | 420 |
R2 | 0.773 |
Variables | Threshold | F Value | p Value | Threshold Value | Critical Values | BS Times | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
Merge | Single | 48.06 | 0.063 | 0.240 | 37.996 | 51.913 | 72.395 | 300 |
Double | 30.88 | 0.057 | 0.270 | 25.108 | 31.439 | 46.362 | 300 | |
LnGdp | Single | 51.86 | 0.077 | 10.724 | 47.629 | 55.478 | 77.820 | 300 |
Variables | (1) | (2) |
---|---|---|
Merge | LnPgdp | |
Sup·I (Adj ≤ 0.240) | 0.437 *** (0.042) | |
Sup·I (0.240 < Adj ≤ 0.270) | 0.618 *** (0.050) | |
Sup·I (Adj > 0.270) | 0.509 *** (0.041) | |
Sup·I (Adj ≤ 10.724) | 0.371 *** (0.042) | |
Sup·I (Adj > 10.724) | 0.505 *** (0.041) | |
Controls | Yes | Yes |
Fixed effects | Yes | Yes |
Obs. | 420 | 420 |
R2 | 0.790 | 0.791 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Eastern | Central | Western | Northeastern | |
Sup | 0.276 *** (0.092) | 0.303 *** (0.070) | 1.037 *** (0.142) | 0.182 (0.137) |
Constant | 0.068 (0.066) | 0.118 *** (0.031) | −0.063 (0.069) | 0.039 (0.144) |
Controls | Yes | Yes | Yes | Yes |
Fixed effects | Yes | Yes | Yes | Yes |
Obs. | 140 | 84 | 154 | 42 |
R2 | 0.852 | 0.981 | 0.741 | 0.993 |
Year | Res | Sup | ||||
---|---|---|---|---|---|---|
I | Z | P | I | Z | P | |
2008 | 0.009 | 0.903 | 0.367 | 0.122 | 3.332 | 0.001 |
2009 | 0.008 | 0.879 | 0.380 | 0.122 | 3.335 | 0.001 |
2010 | 0.030 | 1.324 | 0.186 | 0.121 | 3.291 | 0.001 |
2011 | 0.037 | 1.465 | 0.143 | 0.118 | 3.218 | 0.001 |
2012 | 0.043 | 1.616 | 0.106 | 0.112 | 3.092 | 0.002 |
2013 | 0.050 | 1.766 | 0.077 | 0.101 | 2.878 | 0.004 |
2014 | 0.050 | 1.762 | 0.078 | 0.107 | 2.980 | 0.003 |
2015 | 0.062 | 2.013 | 0.044 | 0.114 | 3.134 | 0.002 |
2016 | 0.053 | 1.837 | 0.066 | 0.097 | 2.769 | 0.006 |
2017 | 0.066 | 2.091 | 0.037 | 0.094 | 2.702 | 0.007 |
2018 | 0.070 | 2.182 | 0.029 | 0.091 | 2.649 | 0.008 |
2019 | 0.073 | 2.259 | 0.024 | 0.098 | 2.804 | 0.005 |
2020 | 0.072 | 2.227 | 0.026 | 0.102 | 2.886 | 0.004 |
2021 | 0.054 | 1.842 | 0.065 | 0.108 | 2.989 | 0.003 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Sup | 0.556 *** (0.047) | |||
Jc | 0.709 *** (0.124) | |||
Xt | 0.348 *** (0.028) | |||
Cx | 0.208 *** (0.037) | |||
W × Sup | 1.804 *** (0.226) | |||
W × Jc | 0.566 (0.538) | |||
W × Xt | 0.836 *** (0.141) | |||
W × Cx | 1.372 *** (0.167) | |||
Controls | Yes | Yes | Yes | Yes |
Fixed effects | Yes | Yes | Yes | Yes |
Log-likelihood | 1068.914 | 1008.715 | 1063.670 | 1031.603 |
Variables | Direct | Indirect | Total |
---|---|---|---|
Sup | 0.490 *** (0.052) | 0.714 *** (0.129) | 1.204 *** (0.121) |
Jc | 0.708 *** (0.129) | 0.340 (0.465) | 1.049 ** (0.463) |
Xt | 0.325 *** (0.030) | 0.352 *** (0.084) | 0.677 *** (0.082) |
Cx | 0.165 *** (0.039) | 0.819 *** (0.129) | 0.984 *** (0.131) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Jiang, D.; He, B. Empowering Agricultural Economic Resilience with Smart Supply Chain: Theoretical Mechanism and Action Path. Sustainability 2025, 17, 2930. https://doi.org/10.3390/su17072930
Zhang D, Jiang D, He B. Empowering Agricultural Economic Resilience with Smart Supply Chain: Theoretical Mechanism and Action Path. Sustainability. 2025; 17(7):2930. https://doi.org/10.3390/su17072930
Chicago/Turabian StyleZhang, Deyin, Daiyin Jiang, and Bing He. 2025. "Empowering Agricultural Economic Resilience with Smart Supply Chain: Theoretical Mechanism and Action Path" Sustainability 17, no. 7: 2930. https://doi.org/10.3390/su17072930
APA StyleZhang, D., Jiang, D., & He, B. (2025). Empowering Agricultural Economic Resilience with Smart Supply Chain: Theoretical Mechanism and Action Path. Sustainability, 17(7), 2930. https://doi.org/10.3390/su17072930