Sustainable Wet Processing Technologies for the Textile Industry: A Comprehensive Review
Abstract
:1. Introduction
2. Research Methodology
- Established and Widely Studied Innovative Systems: Commercially available technologies with broad industrial applications or expanding across sectors.
- Developing and Specialized Technologies: Solutions at early industrial stages or commercially available but with limited adoption.
- Other Emerging Technologies: Innovations still being tested, scaled up, or undergoing regulatory assessments.
3. Textile Wet Processing
3.1. Pre-Treatment
3.2. Dyeing and Printing
3.3. Finishing
4. Innovation in Textile Processing Systems
4.1. Established and Widely Studied Innovative Systems
4.1.1. Ultrasonic Assisted Wet Processing
4.1.2. Ozonation
4.1.3. Plasma
4.1.4. Laser
4.1.5. Digital Inkjet Printing
4.1.6. Atomization Systems
4.1.7. Supercritical Carbon Dioxide
4.2. Developing and Specialized Technologies
4.2.1. Reverse Micelle Dyeing
4.2.2. Foam Technology
4.2.3. Microwave
4.2.4. Dope Dyeing
4.3. Other Emerging Technologies
4.3.1. Ultraviolet Technology
4.3.2. Electrochemical Dyeing
4.3.3. Nanotechnology
4.3.4. Low Temperature Processing
5. Final Considerations and Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BOD | Biochemical oxygen demand |
COD | Chemical oxygen demand |
VOC | Volatile organic compounds |
TOC | Total organic carbon |
PFOS | Perfluorooctane sulfonate |
PFOA | Perfluotooctanoic acid |
O− | Free oxygen atom |
PEG-400 | Polyethylene glycol 400 |
CMG | Carboxymethyl guar gum |
NS | Co-polymer |
CHPTAC | 3-Chloro-2-hydroxypropyl trimethylammonium chloride |
HTCC | N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride |
SC-CO2 | Supercritical carbon dioxide |
PEG-based | Poly(ethylene glycol)-based |
SAE | Secondary alcohol ethoxylate |
RL | Rhamnolipid |
PL | Paraffin liquid |
D5 | Decamethyl cyclopentasiloxane |
PLA | Polylactic acid |
UV | Ultraviolet |
HOO− | Perhydroxyl radicals |
WI | Whiteness index |
AgNPs | Silver nanoparticles |
References
- Eder-Hansen, J.; Chalmer, C.; Tarneberg, S.; Seara, J.; Boger, S.; Theelen, G.; Schwarz, S.; Kristensen, L.; Jager, K. Pulse of the Fashion Industry; Report of the Global Fashion Agenda. 2017. Available online: https://globalfashionagenda.org/resource/pulse-of-the-fashion-industry-2017/ (accessed on 18 November 2024).
- Khan, W.U.; Ahmed, S.; Dhoble, Y.; Madhav, S. A Critical Review of Hazardous Waste Generation from Textile Industries and Associated Ecological Impacts. J. Indian Chem. Soc. 2023, 100, 100–829. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Chakraborty, S.; Hoque, S.M.A.; Mathur, K. Sustainability Assessment of Cotton-Based Textile Wet Processing. Clean Technol. 2019, 1, 232–246. [Google Scholar] [CrossRef]
- Hussain, T.; Wahab, A. A Critical Review of the Current Water Conservation Practices in Textile Wet Processing. J. Clean. Prod. 2018, 198, 806–819. [Google Scholar] [CrossRef]
- Sadowski, M.; Perkins, L.; McGarvey, E. Roadmap to Net Zero: Delivering Science-Based Targets in the Apparel Sector; World Resources Institute: Washington, DC, USA, 2021. [Google Scholar]
- Lara, L.; Cabral, I.; Cunha, J. Ecological Approaches to Textile Dyeing: A Review. Sustainability 2022, 14, 8353. [Google Scholar] [CrossRef]
- Palamutcu, S. Sustainable Textile Technologies. In Textiles and Clothing Sustainability; Springer: Singapore, 2017; pp. 1–22. [Google Scholar]
- Madhav, S.; Ahamad, A.; Singh, P.; Mishra, P.K. A Review of Textile Industry: Wet Processing, Environmental Impacts, and Effluent Treatment Methods. Environ. Qual. Manag. 2018, 27, 31–41. [Google Scholar] [CrossRef]
- Eyupoglu, S.; Merdan, N. Eco-Friendly Production Methods in Textile Wet Processes. In Sustainable Innovations in Textile Chemical Processes; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 31–65. [Google Scholar]
- Korsa, G.; Konwarh, R.; Masi, C.; Ayele, A.; Haile, S. Microbial Cellulase Production and Its Potential Application for Textile Industries. Ann. Microbiol. 2023, 73, 13. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, C.; Xie, R.; Yu, H.; Sun, M.; Li, F. Environmental Assessment of Fabric Wet Processing from Gate-to-Gate Perspective: Comparative Study of Weaving and Materials. Sci. Total Environ. 2023, 857, 159495. [Google Scholar] [CrossRef]
- Hiremath, R.B.; Bansode, S.S.; Kumar, B. Achieving Sustainability through Improvement in the Textile Wet Process Using Particle Swarm Optimization and the Tabu Search Algorithm. Text. Res. J. 2023, 93, 855–865. [Google Scholar] [CrossRef]
- Mojsov, K. Enzymatic Desizing, Bioscouring and Enzymatic Bleaching of Cotton Fabric with Glucose Oxidase. J. Text. Inst. 2019, 110, 1032–1041. [Google Scholar] [CrossRef]
- Mojsov, K. Bioscouring and Bleaching Process of Cotton Fabrics—An Opportunity of Saving Water and Energy. J. Text. Inst. 2015, 107, 905–911. [Google Scholar] [CrossRef]
- Datta, S.; Uddin, M.; Afreen, K.; Akter, S.; Bandyopadhyay, A. Assessment of Antimicrobial Effectiveness of Natural Dyed Fabrics. Bangladesh J. Sci. Ind. Res. 2013, 48, 179–184. [Google Scholar] [CrossRef]
- Baig, U.; Khatri, A.; Ali, S.; Sanbhal, N.; Ishaque, F.; Junejo, N. Ultrasound-Assisted Dyeing of Cotton Fabric with Natural Dye Extracted from Marigold Flower. J. Text. Inst. 2021, 112, 801–808. [Google Scholar] [CrossRef]
- Tissera, N.D.; Wijesena, R.N.; de Silva, K.M.N. Ultrasound Energy to Accelerate Dye Uptake and Dye–Fiber Interaction of Reactive Dye on Knitted Cotton Fabric at Low Temperatures. Ultrason. Sonochem. 2016, 29, 270–278. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Militky, J. Sustainability in Textile Dyeing: Recent Developments. In Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Muthu, S.S., Gardetti, M.A., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 37–79. [Google Scholar]
- Siddiqua, U.H.; Ali, S.; Tufail, A.; Gatasheh, M.K.; Riaz, L.; Yasir, M.W. Relationship between Reactive Group Chemistry and Printing Properties of Heterofunctional Reactive Dyes via Screen Printing. Sci. Rep. 2023, 13, 7259. [Google Scholar] [CrossRef]
- Sheth, G.N.; Musale, A.A. Susbtitute Products for Urea in Application of Reactive Dyes to Cotton Fabrics. Indian J. Fibre Text. Res. 2004, 29, 462–469. [Google Scholar]
- Wang, L.; Xie, G.; Hu, H.; Zhu, Q.; Zhou, J.; Yu, Z. Ecofriendly Urea-Free Pretreatment to Enhance the Inkjet Printing Performance of Reactive Dye Inks on Cotton Fabrics. Green Chem. 2022, 24, 8100–8112. [Google Scholar] [CrossRef]
- Eid, B.M.; Ibrahim, N.A. Recent Developments in Sustainable Finishing of Cellulosic Textiles Employing Biotechnology. J. Clean. Prod. 2021, 284, 124701. [Google Scholar] [CrossRef]
- Yu, C.; Shi, K.; Ning, J.; Zheng, Z.; Yu, H.; Yang, Z.; Liu, J. Preparation and Application of Fluorine-Free Finishing Agent with Excellent Water Repellency for Cotton Fabric. Polymers 2021, 13, 2980. [Google Scholar] [CrossRef] [PubMed]
- Chirila, L.; Danila, A. Hydrophobic and Oleophobic Finishes for Textiles. In Innovative and Emerging Technologies for Textile Dyeing and Finishing; Wiley: Hoboken, NJ, USA, 2021; pp. 325–372. [Google Scholar]
- Liang, T.; Jiang, Z.; Wang, C.; Liu, J. A Facile One-step Synthesis of Flame-retardant Coatings on Cotton Fabric via Ultrasound Irradiation. J. Appl. Polym. Sci. 2017, 134, 45114. [Google Scholar] [CrossRef]
- Jajpura, L.; Nayak, R. Ultrasound Applications in Textiles and Apparels. In Sustainable Technologies for Fashion and Textiles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–161. [Google Scholar]
- Easson, M.; Condon, B.; Villalpando, A.; Chang, S. The Application of Ultrasound and Enzymes in Textile Processing of Greige Cotton. Ultrasonics 2018, 84, 223–233. [Google Scholar] [CrossRef]
- Körlü, A.; Bahtiyari, M.İ. Ultrasound-Based Wet Processes in Textile Industry. In Innovative and Emerging Technologies for Textile Dyeing and Finishing; Wiley: Hoboken, NJ, USA, 2021; pp. 265–299. [Google Scholar]
- Nagaje, V.V.; Hulle, A.A. Ultrasonic Assisted Wet Processing. J. Basic Appl. Eng. Res. 2015, 2, 79–82. [Google Scholar]
- Hassan, M.M.; Bhagvandas, M. Sustainable Ultrasound-Assisted Ultralow Liquor Ratio Dyeing of Wool Textiles with an Acid Dye. ACS Sustain. Chem. Eng. 2017, 5, 973–981. [Google Scholar] [CrossRef]
- Hassan, M.M.; Saifullah, K. Ultrasound-Assisted Sustainable and Energy Efficient Pre-Treatments, Dyeing, and Finishing of Textiles—A Comprehensive Review. Sustain. Chem. Pharm. 2023, 33, 101109. [Google Scholar] [CrossRef]
- Benli, H.; Bahtiyari, M.İ. Use of Ultrasound in Biopreparation and Natural Dyeing of Cotton Fabric in a Single Bath. Cellulose 2015, 22, 867–877. [Google Scholar] [CrossRef]
- Ma, X.; Wei, Y.; Wang, S.; Zuo, X.; Shen, B. Sustainable Ultrasound-Assisted Ultralow Liquor Ratio Dyeing of Cotton Fabric with Natural Turmeric Dye. Text. Res. J. 2020, 90, 685–694. [Google Scholar] [CrossRef]
- Babar, A.A.; Bughio, N.; Peerzada, M.H.; Naveed, T.; Dayo, A.Q. Exhaust Reactive Dyeing of Lyocell Fabric with Ultrasonic Energy. Ultrason. Sonochem. 2019, 58, 104611. [Google Scholar] [CrossRef]
- Khatri, Z.; Memon, M.H.; Khatri, A.; Tanwari, A. Cold Pad-Batch Dyeing Method for Cotton Fabric Dyeing with Reactive Dyes Using Ultrasonic Energy. Ultrason. Sonochem. 2011, 18, 1301–1307. [Google Scholar] [CrossRef]
- Nazmul Islam, G.M.; Ke, G.; Ahsanul Haque, A.N.; Islam, A. Effect of Ultrasound on Dyeing of Wool Fabric with Acid Dye. Int. J. Ind. Chem. 2017, 8, 425–431. [Google Scholar] [CrossRef]
- Actis Grande, G.; Giansetti, M.; Pezzin, A.; Rovero, G.; Sicardi, S. Use of the Ultrasonic Cavitation in Wool Dyeing Process: Effect of the Dye-Bath Temperature. Ultrason. Sonochem. 2017, 35, 276–284. [Google Scholar] [CrossRef]
- Abdelghaffar, F.; Abdelghaffar, R.A.; Arafa, A.A.; Kamel, M.M. Functional Antibacterial Finishing of Woolen Fabrics Using Ultrasound Technology. Fibers Polym. 2018, 19, 2103–2111. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Gianchandani, P.K.; Kim, I.S.; Ni, Q.-Q. Sonication Induced Effective Approach for Coloration of Compact Polyacrylonitrile (PAN) Nanofibers. Ultrason. Sonochem. 2019, 51, 399–405. [Google Scholar] [CrossRef]
- Abramova, A.V.; Abramov, V.O.; Bayazitov, V.M.; Voitov, Y.; Straumal, E.A.; Lermontov, S.A.; Cherdyntseva, T.A.; Braeutigam, P.; Weiße, M.; Günther, K. A Sol-Gel Method for Applying Nanosized Antibacterial Particles to the Surface of Textile Materials in an Ultrasonic Field. Ultrason. Sonochem. 2020, 60, 104788. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Xiao, X.; Yu, N.; Ye, Z. Fabrication of Superhydrophobic Coatings on Cotton Fabric Using Ultrasound-Assisted in-Situ Growth Method. Prog. Org. Coat. 2018, 125, 463–471. [Google Scholar] [CrossRef]
- Eren, H.A.; Yiğit, İ.; Eren, S.; Avinc, O. Ozone: An Alternative Oxidant for Textile Applications. In Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Muthu, S.S., Gardetti, M.A., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 81–98. [Google Scholar]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone Application in Different Industries: A Review of Recent Developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef] [PubMed]
- Körlü, A.; Bonilla, P.C. Textile Industry and Environment. In Textile Industry and Environment; Körlü, A., Ed.; IntechOpen: London, UK, 2019; pp. 13–41. ISBN 978-1-83880-027-7. [Google Scholar]
- Turhan, Y. The Effects of Ozone Bleaching and Ozone Desizing Method on Whiteness and Water Absorption of 100% Cotton Terry Fabrics. Int. J. Mater. Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef]
- Benli, H.; Bahtiyari, M.İ. Combination of Ozone and Ultrasound in Pretreatment of Cotton Fabrics Prior to Natural Dyeing. J. Clean. Prod. 2015, 89, 116–124. [Google Scholar] [CrossRef]
- Ben Fraj, A.; Jaouachi, B. Effects of Ozone Treatment on Denim Garment Properties. Color. Technol. 2021, 137, 678–688. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, C.; Fu, J.; Lou, J.; Zhang, X.; Gao, W.; Fan, X. Effect of Ozone Treatment on the Chemical and Mechanical Properties of Flax Fibers. Ind. Crops Prod. 2022, 189, 115694. [Google Scholar] [CrossRef]
- Du, W.; Zuo, D.; Gan, H.; Yi, C. Comparative Study on the Effects of Laser Bleaching and Conventional Bleaching on the Physical Properties of Indigo Kapok/Cotton Denim Fabrics. Appl. Sci. 2019, 9, 4662. [Google Scholar] [CrossRef]
- Sarker, U.K.; Kawser, N.; Rahim, A.; Al Parvez, A.; Shahid, I. Superiority of Sustainable Ozone Wash Over Conventional Denim Washing Technique. Int. J. Curr. Eng. Technol. 2021, 11, 516–621. [Google Scholar] [CrossRef]
- Anam, W.; Akhtar, K.S.; Muhammad, M.; Sardar, S.; Saleem, I. Development of Novel and Sustainable Ozone Based Dyeing Processes for Cotton Fabric. Cellulose 2024, 31, 8335–8349. [Google Scholar] [CrossRef]
- Zille, A. Plasma Technology in Fashion and Textiles. In Sustainable Technologies for Fashion and Textiles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–142. [Google Scholar]
- El-Sayed, E.; Hassabo, A. Recent Advances in the Application of Plasma in Textile Finishing (A Review). J. Text. Color. Polym. Sci. 2021, 18, 33–43. [Google Scholar] [CrossRef]
- Gobalakrishnan, M.; Saravanan, D.; Das, S. Sustainable Finishing Process Using Natural Ingredients. In Sustainability in the Textile and Apparel Industries: Production Process Sustainability; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–146. [Google Scholar]
- Kramar, A.D.; Obradović, B.M.; Vesel, A.; Kuraica, M.M.; Kostić, M.M. Surface Cleaning of Raw Cotton Fibers with Atmospheric Pressure Air Plasma. Cellulose 2018, 25, 4199–4209. [Google Scholar] [CrossRef]
- Kan, C.; Lam, C. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric. Polymers 2018, 10, 53. [Google Scholar] [CrossRef]
- Zhou, L.; Bai, Y.; Zhou, H.; Guo, S. Environmentally Friendly Textile Production: Continuous Pretreatment of Knitted Cotton Fabric with Normal Temperature Plasma and Padding. Cellulose 2019, 26, 6943–6958. [Google Scholar] [CrossRef]
- Peran, J.; Ercegović Ražić, S.; Sutlović, A.; Ivanković, T.; Glogar, M.I. Oxygen Plasma Pretreatment Improves Dyeing and Antimicrobial Properties of Wool Fabric Dyed with Natural Extract from Pomegranate Peel. Color. Technol. 2020, 136, 177–187. [Google Scholar] [CrossRef]
- Feng, C.; Hu, Y.; Qian, J.; Jin, C.; Zhuge, L.; Wang, W.; Wu, X. The Effect of APGD Plasma Treatment on Silk Fabric. Surf. Eng. 2020, 36, 485–491. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Ahmed, K.A.; Mashaly, H.M.; El-Halwagy, A.A. Treatment of Cotton Fabric with Dielectric Barrier Discharge (DBD) Plasma and Printing with Cochineal Natural Dye. Indian J. Sci. Technol. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, M.; Wang, L.; Yu, M. Effect of Atmospheric-Pressure Air/He Plasma on the Surface Properties Related to Ink-Jet Printing Polyester Fabric. Vacuum 2017, 137, 42–48. [Google Scholar] [CrossRef]
- Timoshina, Y.A.; Trofimov, A.V.; Miftakhov, I.S.; Voznesenskii, E.F. Modification of Textile Materials with Nanoparticles Using Low-Pressure High-Frequency Plasma. Nanotechnol. Russ. 2018, 13, 561–564. [Google Scholar] [CrossRef]
- Xu, L.; Deng, J.; Guo, Y.; Wang, W.; Zhang, R.; Yu, J. Fabrication of Super-Hydrophobic Cotton Fabric by Low-Pressure Plasma-Enhanced Chemical Vapor Deposition. Text. Res. J. 2019, 89, 1853–1862. [Google Scholar] [CrossRef]
- Ngo, H.-T.; Vu Thi Hong, K.; Nguyen, T.-B. Surface Modification by the DBD Plasma to Improve the Flame-Retardant Treatment for Dyed Polyester Fabric. Polymers 2021, 13, 3011. [Google Scholar] [CrossRef]
- Nguyen Thi, H.; Vu Thi Hong, K.; Ngo Ha, T.; Phan, D.-N. Application of Plasma Activation in Flame-Retardant Treatment for Cotton Fabric. Polymers 2020, 12, 1575. [Google Scholar] [CrossRef]
- Angelova, Y.; Mežinska, S.; Lazov, L. Innovative Laser Technology in Textile Industry: Marking and Engraving. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2017, 3, 15. [Google Scholar] [CrossRef]
- Kan, C. CO2 Laser Treatment as a Clean Process for Treating Denim Fabric. J. Clean. Prod. 2014, 66, 624–631. [Google Scholar] [CrossRef]
- Kan, C.W. Colour Fading Effect of Indigo-Dyed Cotton Denim Fabric by CO2 Laser. Fibers Polym. 2014, 15, 426–429. [Google Scholar] [CrossRef]
- Morgan, L.; Shen, J.; Matthews, J.; Tyrer, J. Laser Peri-Dyeing for Agile Textile Design: Implementing Laser Processing Research Within the Textile Industry. In Proceedings of the AUTEX World Textile Conference, Istanbul, Turkey, 20–22 June 2018. [Google Scholar]
- Hung, O.N.; Chan, C.K.; Kan, C.W.; Yuen, C.W.M. An Analysis of Some Physical and Chemical Properties of CO2 Laser-Treated Cotton-Based Fabrics. Cellulose 2017, 24, 363–381. [Google Scholar] [CrossRef]
- Uysaler, T.; Altay, P.; Özcan, G. Investigation of the Effect of Preparation Processes on CO 2 Laser-Faded Denim Fabric Quality. Res. J. Text. Appar. 2024, 28, 1002–1014. [Google Scholar] [CrossRef]
- Tse, S.; Kan, C. Effect of Laser Treatment on Pigment Printing on Denim Fabric: Low Stress Mechanical Properties. Cellulose 2020, 27, 10385–10405. [Google Scholar] [CrossRef]
- Nourbakhsh, S.; Ebrahimi, I.; Valipour, P. Laser Treatment of the Wool Fabric for Felting Shrinkage Control. Fibers Polym. 2011, 12, 521–527. [Google Scholar] [CrossRef]
- Min, J.; Ding, M.; He, J. Using an N-Vinylpyrrolidone Co-Polymer in Reactive Dye Printing as an Alternative to Urea. Text. Res. J. 2021, 91, 1786–1794. [Google Scholar] [CrossRef]
- Wang, L.; Yan, K.; Hu, C.; Ji, B. Preparation and Investigation of a Stable Hybrid Inkjet Printing Ink of Reactive Dye and CHPTAC. Dye. Pigment. 2020, 181, 108584. [Google Scholar] [CrossRef]
- Wang, L.; Yan, K.; Hu, C. Cleaner Production of Inkjet Printed Cotton Fabrics Using a Urea-Free Ecosteam Process. J. Clean. Prod. 2017, 143, 1215–1220. [Google Scholar] [CrossRef]
- Weerakoon, D.; Bansal, B.; Padhye, L.P.; Rachmani, A.; James Wright, L.; Silyn Roberts, G.; Baroutian, S. A Critical Review on Current Urea Removal Technologies from Water: An Approach for Pollution Prevention and Resource Recovery. Sep. Purif. Technol. 2023, 314, 123652. [Google Scholar] [CrossRef]
- Vílchez, S.; López, A.; Miras, J.; Bleda, M.J.; Manich, A.M.; Puigventós, N.; Genís, E.; Esquena, J. Eco-Friendly Printing Paste Replacing Urea-Based Formulations in Cotton Printing. J. Text. Inst. 2021, 112, 1046–1054. [Google Scholar] [CrossRef]
- Majeed, H.; Bhatti, H.N.; Bhatti, I.A. Replacement of Sodium Alginate Polymer, Urea and Sodium Bicarbonate in the Conventional Reactive Printing of Cellulosic Cotton. J. Polym. Eng. 2019, 39, 661–670. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, H.; Wu, M.; Yu, D.; Wang, L. Urea-Free Reactive Printing of Viscose Fabric with High Color Performance for Cleaner Production. Cellulose 2021, 28, 2567–2579. [Google Scholar] [CrossRef]
- Wang, C.; Xian, Y.; Wang, H.; Wu, M.; Wang, Y.; Yu, D.; Wang, L. Properties of a New Nitrogen-free Additive as an Alternative to Urea and Its Application in Reactive Printing. Color. Technol. 2022, 138, 137–145. [Google Scholar] [CrossRef]
- Wang, H.; Xian, Y.; Wu, M.; Wang, L. Printing Performances of a New Nitrogen-Free Urea Substitute in Silk Printing of Reactive Dyes. Text. Res. J. 2022, 92, 2402–2409. [Google Scholar] [CrossRef]
- Thakker, A.M.; Sun, D. Herbal Pretreatment of Natural Fabrics for Digital Printing with Ecological Inks. J. Nat. Fibers 2022, 19, 15851–15862. [Google Scholar] [CrossRef]
- Zhang, M.; Qiao, X.; Liu, X.; Fang, K.; Gong, J.; Lu, X.; Gao, W.; Si, J.; Sun, F. Environmental Urea-Free Pretreatment Process to Form New Surface on Hemp for Enhancing the Inkjet Printing Performance. Prog. Org. Coat. 2023, 174, 107317. [Google Scholar] [CrossRef]
- Faisal, S.; Ali, M.; Naqvi, S.; Lin, L. Statistical Optimization and Bulk Scale Validation of the Effects of Cationic Pre-Treatment of Cotton Fabric for Digital Printing with Reactive Dyes. J. Nat. Fibers 2022, 19, 6737–6747. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Yan, K. A One-Step Inkjet Printing Technology with Reactive Dye Ink and Cationic Compound Ink for Cotton Fabrics. Carbohydr. Polym. 2018, 197, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Bu, G.; Wang, C.; Fu, S.; Tian, A. Water-soluble Cationic Chitosan Derivative to Improve Pigment-based Inkjet Printing and Antibacterial Properties for Cellulose Substrates. J. Appl. Polym. Sci. 2012, 125, 1674–1680. [Google Scholar] [CrossRef]
- Zhang, H.; Pei, L.; Liang, S.; Wang, Q.; Huang, J.; Gu, X.; Wang, J. Synthesis and Application of Reactive Dyes Based on Azo-Anthraquinone Skeleton to Realize Clean Printing of Cotton Fabrics. Fibers Polym. 2021, 22, 1333–1342. [Google Scholar] [CrossRef]
- Hasan, S.M.; Ull-Islam, N.; Chowdhury, K.H.; Akter, M.; Sakib, M.S.I. Core 2.0 Nebulization Technique—A Sustainable Denim Finishing Approach. Text. Leather Rev. 2024, 7, 582–596. [Google Scholar] [CrossRef]
- Mohsin, M.; Sardar, S.; Hassan, M.; Akhtar, N.; Hassan, A.; Sufyan, M. Novel, Sustainable and Water Efficient Nano Bubble Dyeing of Cotton Fabric. Cellulose 2020, 27, 6055–6064. [Google Scholar] [CrossRef]
- Eren, H.A.; Yiğit, İ.; Eren, S.; Avinc, O. Sustainable Textile Processing with Zero Water Utilization Using Super Critical Carbon Dioxide Technology. In Sustainability in the Textile and Apparel Industries: Production Process Sustainability; Springer: Berlin/Heidelberg, Germany, 2020; pp. 179–196. [Google Scholar]
- Broadbent, P.J.; Carr, C.M.; Lewis, D.M.; Rigout, M.L.; Siewers, E.J.; Shojai Kaveh, N. Supercritical Carbon Dioxide (SC-CO2) Dyeing of Cellulose Acetate: An Opportunity for a “Greener” Circular Textile Economy. Color. Technol. 2023, 139, 475–488. [Google Scholar] [CrossRef]
- Elmaaty, T.A.; Kazumasa, H.; Elsisi, H.; Mousa, A.; Sorour, H.; Gaffer, H.; Hori, T.; Hebeish, A.; Tabata, I.; Farouk, R. Pilot Scale Water Free Dyeing of Pure Cotton under Supercritical Carbon Dioxide. Carbohydr. Polym. Technol. Appl. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Meena, C.R. Ecofriendly Coloration of Polyester by Dispersant-Free Disperse Dyes. In Textile Dyes and Pigments; Wiley: Hoboken, NJ, USA, 2022; pp. 197–223. [Google Scholar]
- De Giorgi, M.R.; Cadoni, E.; Maricca, D.; Piras, A. Dyeing Polyester Fibres with Disperse Dyes in Supercritical CO2. Dye. Pigment. 2000, 45, 75–79. [Google Scholar] [CrossRef]
- Gawish, S.; Ramadan, A.; Mosleh, S. Improvement Polypropylene Dyeing by Modification Methods. Egypt. J. Chem. 2018, 62, 49–62. [Google Scholar] [CrossRef]
- Elmaaty, T.A.; Mousa, A.A.; Farouk, R.; Elsisi, H.; Sorour, H.; Youssef, Y.A.; Abbas, D. Organoclay-Assisted Disperse Dyeing of Polypropylene Nanocomposite Fabrics in Supercritical Carbon Dioxide. Sci. Rep. 2024, 14, 13570. [Google Scholar] [CrossRef] [PubMed]
- Eren, S.; Özyurt, İ. Waterless Dyeing of Polyamide 6.6. Polymers 2024, 16, 1472. [Google Scholar] [CrossRef] [PubMed]
- Buckley, N.W.; John, A. Optimizing Supercritical ScCO2 Dyeing Conditions for Polyester-Cotton and Nylon-Wool Blends: A Sustainable Alternative to Conventional Aqueous Dyeing. Mari Papel Y Corrugado 2024, 1, 79–88. [Google Scholar]
- Wang, M.; Liu, M.; Zhao, H.; Xiong, X.; Zheng, L. Reactive Modified Curcumin for High-Fastness Nonaqueous SC-CO2 Dyeing of Cotton Fabric. Cellulose 2020, 27, 10541–10551. [Google Scholar] [CrossRef]
- Ju, W.; Wen-xiu, F. Dyeing Performance of Cotton Fabrics with Natural Curcuminoid in Supercritical Carbon Dioxide. J. Text. Eng. Fash. Technol. 2019, 5, 86–87. [Google Scholar] [CrossRef]
- Eren, S.; Avinc, O.; Saka, Z.; Eren, H.A. Waterless Bleaching of Knitted Cotton Fabric Using Supercritical Carbon Dioxide Fluid Technology. Cellulose 2018, 25, 6247–6267. [Google Scholar] [CrossRef]
- Aslanidou, D.; Tsioptsias, C.; Panayiotou, C. A Novel Approach for Textile Cleaning Based on Supercritical CO2 and Pickering Emulsions. J. Supercrit. Fluids 2013, 76, 83–93. [Google Scholar] [CrossRef]
- Elmaaty, T.; El-Aziz, E.; Ma, J.; El-Taweel, F.; Okubayashi, S. Eco-Friendly Disperse Dyeing and Functional Finishing of Nylon 6 Using Supercritical Carbon Dioxide. Fibers 2015, 3, 309–322. [Google Scholar] [CrossRef]
- Peng, L.; Guo, R.; Lan, J.; Jiang, S.; Li, C.; Zhang, Z. Synthesis of Silver Nanoparticles on Wool Fabric in Supercritical Carbon Dioxide. Mater. Express 2017, 7, 405–410. [Google Scholar] [CrossRef]
- Gao, Z.; Qu, D.; Qu, Y.; Wang, W.; Cui, S.; Guo, H.; Li, F.; Sun, F. A Novel Jig Dyeing Apparatus for Dyeing Polyester with Supercritical Carbon Dioxide and Its Dyeing Effect. Fibers Polym. 2022, 23, 745–750. [Google Scholar] [CrossRef]
- Tang, A.Y.L.; Lee, C.H.; Wang, Y.; Kan, C.W. Dyeing Properties of Cotton with Reactive Dye in Nonane Nonaqueous Reverse Micelle System. ACS Omega 2018, 3, 2812–2819. [Google Scholar] [CrossRef]
- Tang, A.Y.L.; Lee, C.H.; Wang, Y.M.; Kan, C.W. A Study of PEG-Based Reverse Micellar Dyeing of Cotton Fabric: Reactive Dyes with Different Reactive Groups. Cellulose 2019, 26, 4159–4173. [Google Scholar] [CrossRef]
- Lee, C.H.; Tang, A.Y.L.; Wang, Y.; Kan, C.W. Effect of Reverse Micelle-Encapsulated Reactive Dyes Agglomeration in Dyeing Properties of Cotton. Dye. Pigment. 2019, 161, 51–57. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Lee, C.; Kan, C. Reverse Micellar Dyeing of Wool Fabric with Reactive Dyes. Fibers Polym. 2019, 20, 2367–2375. [Google Scholar] [CrossRef]
- Lee, C.-H.; Wang, Y.; Tang, Y.-L.; Kan, C.-W. Dyeing Wool Knitted Fabric in Nano-Scale Reverse Micelle with Reactive Dyes—A Computer Colour Matching Study. Fibers Polym. 2021, 22, 1320–1332. [Google Scholar] [CrossRef]
- Tang, Y.L.A.; Jin, S.; Lee, C.H.; Law, H.S.; Yu, J.; Wang, Y.; Kan, C. Reverse Micellar Dyeing of Cotton Fabric with Reactive Dye Using Biodegradable Non-Ionic Surfactant as Nanoscale Carrier: An Optimisation Study by One-Factor-at-One-Time Approach. Polymers 2023, 15, 4175. [Google Scholar] [CrossRef]
- Tang, Y.L.A.; Lee, C.H.; Wang, Y.; Kan, C. Effect of Solvent Dyeing Medium on Dye Encapsulation and Non-Aqueous Dyeing of Cotton Fabric with Rhamnolipid (RL) Microbial Biosurfactant-Based Reactive Dye Encapsulated Reverse Micelles. Fibers Polym. 2023, 24, 4323–4335. [Google Scholar] [CrossRef]
- Tang, Y.L.A.; Yu, J.; Lee, C.H.; Wang, Y.; Kan, C.-W. Limonene Biosolvent-Based Non-Aqueous Dyeing Medium for Salt-Free and Alkali-Free Rhamnolipid (RL) Biosurfactant Reverse Micellar Dyeing of Cotton Fabric with Reactive Dyes. Sustain. Mater. Technol. 2024, 42, e01137. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Dutta, S.; Tehrani-Bagha, A.R. Solvent-Assisted Salt-Free Reactive Dyeing of Cotton Fabric. Cellulose 2024, 31, 7101–7118. [Google Scholar] [CrossRef]
- Fu, C.; Wang, J.; Shao, J.; Pu, D.; Chen, J.; Liu, J. A Non-Aqueous Dyeing Process of Reactive Dye on Cotton. J. Text. Inst. 2015, 106, 152–161. [Google Scholar] [CrossRef]
- Hoque, E.; Acharya, S.; Shamshina, J.; Abidi, N. Review of Foam Applications on Cotton Textiles. Text. Res. J. 2023, 93, 486–501. [Google Scholar] [CrossRef]
- Sarwar, N.; Bin Humayoun, U.; Nawaz, A.; Yoon, D.H. Development of Sustainable, Cost Effective Foam Finishing Approach for Cellulosic Textile Employing Succinic Acid/Xylitol Crosslinking System. Sustain. Mater. Technol. 2021, 30, e00350. [Google Scholar] [CrossRef]
- Milini, L. Digital Printing System for Printing on Fabric Including Foam Pretreatment. U.S. Patent 11,390,092, 19 July 2022. [Google Scholar]
- Cossiri, A.; Capellini, L.; Maiani, G. Methods of Treating Textiles with Foam and Related Processes. U.S. Patent 2022/0042241, 10 February 2022. [Google Scholar]
- Mohsin, M.; Sardar, S. Multi-Criteria Decision Analysis for Textile Pad-Dyeing and Foam-Dyeing Based on Cost, Performance, Productivity and Sustainability. Cellulose 2019, 26, 4143–4157. [Google Scholar] [CrossRef]
- Zhu, D.; Wan, Z.; Zhao, X.; Liao, S.; Wang, Q.; Liu, L.; Yi, C. Foaming Indigo: An Efficient Technology for Yarn Dyeing. Dye. Pigment. 2022, 197, 109862. [Google Scholar] [CrossRef]
- Mohsin, M.; Sardar, S. Development of Sustainable and Cost Efficient Textile Foam-Finishing and Its Comparison with Conventional Padding. Cellulose 2020, 27, 4091–4107. [Google Scholar] [CrossRef]
- Buyukakinci, Y.B.; Guzel, E.T.; Karadag, R. Organic Cotton n Fabric Dyed with Dyer’s Oak and Barberry Dye by Microwave Irradiation and Conventional Methods. Ind. Textila 2021, 72, 30–38. [Google Scholar] [CrossRef]
- Tănase, M.A.; Soare, A.C.; Oancea, P.; Răducan, A.; Mihăescu, C.I.; Alexandrescu, E.; Petcu, C.; Diţu, L.M.; Ferbinteanu, M.; Cojocaru, B.; et al. Facile In Situ Synthesis of ZnO Flower-like Hierarchical Nanostructures by the Microwave Irradiation Method for Multifunctional Textile Coatings. Nanomaterials 2021, 11, 2574. [Google Scholar] [CrossRef]
- Xue, Z. Study of Dyeing Properties of Wool Fabrics Treated with Microwave. J. Text. Inst. 2016, 107, 258–263. [Google Scholar] [CrossRef]
- Irfan, M.; Zhang, H.; Syed, U.; Hou, A. Low Liquor Dyeing of Cotton Fabric with Reactive Dye by an Eco-Friendly Technique. J. Clean. Prod. 2018, 197, 1480–1487. [Google Scholar] [CrossRef]
- Adeel, S.; Hussaan, M.; Rehman, F.; Habib, N.; Salman, M.; Naz, S.; Amin, N.; Akhtar, N. Microwave-Assisted Sustainable Dyeing of Wool Fabric Using Cochineal-Based Carminic Acid as Natural Colorant. J. Nat. Fibers 2019, 16, 1026–1034. [Google Scholar] [CrossRef]
- El Sayed, N.A.; El-Bendary, M.A.; Ahmed, O.K. A Sustainable Approach for Linen Dyeing and Finishing with Natural Lac Dye through Chitosan Bio-Mordanting and Microwave Heating. J. Eng. Fibers Fabr. 2023, 18, 1–12. [Google Scholar] [CrossRef]
- Adeel, S.; Rehman, F.; Hameed, A.; Habib, N.; Kiran, S.; Zia, K.M.; Zuber, M. Sustainable Extraction and Dyeing of Microwave-Treated Silk Fabric Using Arjun Bark Colorant. J. Nat. Fibers 2020, 17, 745–758. [Google Scholar] [CrossRef]
- Adeel, S.; Rehman, F.-U.-; Zia, K.M.; Azeem, M.; Kiran, S.; Zuber, M.; Irfan, M.; Qayyum, M.A. Microwave-Supported Green Dyeing of Mordanted Wool Fabric with Arjun Bark Extracts. J. Nat. Fibers 2021, 18, 136–150. [Google Scholar] [CrossRef]
- Zuber, M.; Adeel, S.; Rehman, F.-U.; Anjum, F.; Muneer, M.; Abdullah, M.; Zia, K.M. Influence of Microwave Radiation on Dyeing of Bio-Mordanted Silk Fabric Using Neem Bark (Azadirachta Indica)-Based Tannin Natural Dye. J. Nat. Fibers 2020, 17, 1410–1422. [Google Scholar] [CrossRef]
- Adeel, S.; Naseer, K.; Javed, S.; Mahmmod, S.; Tang, R.-C.; Amin, N.; Naz, S. Microwave-Assisted Improvement in Dyeing Behavior of Chemical and Bio-Mordanted Silk Fabric Using Safflower (Carthamus tinctorius L.) Extract. J. Nat. Fibers 2020, 17, 55–65. [Google Scholar] [CrossRef]
- Kiran, S.; Adeel, S.; Yousaf, M.S.; Habib, N.; Hassan, A.; Qayyum, M.A.; Abdullah, M. Green Dyeing of Microwave Treated Silk Using Coconut Coir Based Tannin Natural Dye. Ind. Textila 2020, 71, 227–234. [Google Scholar] [CrossRef]
- Xue, Z. Microwave-Assisted Antimicrobial Finishing of Wool Fabric with Chitosan Derivative. Indian J. Fibre Text. Res. (IJFTR) 2015, 40, 51–56. [Google Scholar]
- Ghayempour, S.; Mortazavi, S.M. Microwave Curing for Applying Polymeric Nanocapsules Containing Essential Oils on Cotton Fabric to Produce Antimicrobial and Fragrant Textiles. Cellulose 2015, 22, 4065–4075. [Google Scholar] [CrossRef]
- Hashem, M.; Taleb, M.A.; El-Shall, F.N.; Haggag, K. New Prospects in Pretreatment of Cotton Fabrics Using Microwave Heating. Carbohydr. Polym. 2014, 103, 385–391. [Google Scholar] [CrossRef]
- Gurudatt, K.; De, P.; Rakshit, A.K.; Bardhan, M.K. Dope-Dyed Polyester Fibers from Recycled PET Wastes for Use in Molded Automotive Carpets. J. Ind. Text. 2005, 34, 167–179. [Google Scholar] [CrossRef]
- Terinte, N.; Manda, B.M.K.; Taylor, J.; Schuster, K.C.; Patel, M.K. Environmental Assessment of Coloured Fabrics and Opportunities for Value Creation: Spin-Dyeing versus Conventional Dyeing of Modal Fabrics. J. Clean. Prod. 2014, 72, 127–138. [Google Scholar] [CrossRef]
- Nygren, N.; Schlapp-Hackl, I.; Heimala, S.; Sederholm, H.; Rissanen, M.; Hummel, M. Spin-Dyeing of Cellulose Fibres with Vat Dyes Using the Ioncell Process. Carbohydr. Polym. 2024, 346, 122578. [Google Scholar] [CrossRef]
- Manian, A.P.; Müller, S.; Braun, D.E.; Pham, T.; Bechtold, T. Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim. Polymers 2022, 14, 5280. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, N.K.; Siebert, S.; Richter, C.; Groten, R.; Seide, G. Effect of Colorants and Process Parameters on the Properties of Dope-Dyed Polylactic Acid Multifilament Yarns. Polymers 2022, 14, 5021. [Google Scholar] [CrossRef]
- Bhatti, I.A.; Adeel, S.; Parveen, S.; Zuber, M. Dyeing of UV Irradiated Cotton and Polyester Fabrics with Multifunctional Reactive and Disperse Dyes. J. Saudi Chem. Soc. 2016, 20, 178–184. [Google Scholar] [CrossRef]
- Wang, N.; Tang, P.; Zhao, C.; Zhang, Z.; Sun, G. An Environmentally Friendly Bleaching Process for Cotton Fabrics: Mechanism and Application of UV/H2O2 System. Cellulose 2020, 27, 1071–1083. [Google Scholar] [CrossRef]
- Eren, S. Photocatalytic Hydrogen Peroxide Bleaching of Cotton. Cellulose 2018, 25, 3679–3689. [Google Scholar] [CrossRef]
- Mansuri, A.H.; Khoddami, A.; Rezai Do, A. Using Ultraviolet Radiation for the Bleaching and Pilling Reduction of Knitted Cotton Fabric. Fibres Text. East. Eur. 2011, 19, 74–77. [Google Scholar]
- Ouchi, A.; Liu, C.; Kunioka, M. Increasing the Dyeability of Polyester Fabrics by Photochemical Treatment at Room-Temperature Using H 2 O 2 in Air. Green Chem. 2015, 17, 490–498. [Google Scholar] [CrossRef]
- Bhatti, I.A.; Adeel, S.; Siddique, S.; Abbas, M. Effect of UV Radiation on the Dyeing of Cotton Fabric with Reactive Blue 13. J. Saudi Chem. Soc. 2014, 18, 606–609. [Google Scholar] [CrossRef]
- Qiang, S.; Chen, K.; Yin, Y.; Wang, C. Robust UV-Cured Superhydrophobic Cotton Fabric Surfaces with Self-Healing Ability. Mater. Des. 2017, 116, 395–402. [Google Scholar] [CrossRef]
- Javed, K.; Galib, C.M.A.; Yang, F.; Chen, C.-M.; Wang, C. A New Approach to Fabricate Graphene Electro-Conductive Networks on Natural Fibers by Ultraviolet Curing Method. Synth. Met. 2014, 193, 41–47. [Google Scholar] [CrossRef]
- Hou, A.; Feng, G.; Zhuo, J.; Sun, G. UV Light-Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3,3′,4,4′-Benzophenone Tetracarboxylic Acid. ACS Appl. Mater. Interfaces 2015, 7, 27918–27924. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Yang, X.; Zhang, Q.; Zheng, Y.; Ren, Y.; Cheng, B. A Phosphorous/Nitrogen-Containing Flame Retardant with UV-Curing for Polyester/Cotton Fabrics. Cellulose 2022, 29, 1263–1281. [Google Scholar] [CrossRef]
- Seipel, S.; Yu, J.; Periyasamy, A.P.; Viková, M.; Vik, M.; Nierstrasz, V.A. Inkjet Printing and UV-LED Curing of Photochromic Dyes for Functional and Smart Textile Applications. RSC Adv. 2018, 8, 28395–28404. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, W.; Chen, Q.; Wang, W. Direct Electrochemical Reduction and Dyeing Properties of CI Vat Yellow 1 Using Carbon Felt Electrode. Dye. Pigment. 2021, 184, 108835. [Google Scholar] [CrossRef]
- Kulandainathan, M.A.; Patil, K.; Muthukumaran, A.; Chavan, R.B. Review of the Process Development Aspects of Electrochemical Dyeing: Its Impact and Commercial Applications. Color. Technol. 2007, 123, 143–151. [Google Scholar] [CrossRef]
- Chavan, R.B. Indigo Dye and Reduction Techniques. In Denim; Elsevier: Amsterdam, The Netherlands, 2015; pp. 37–67. [Google Scholar]
- Li, X.; Wang, K.; Wang, M.; Zhang, W.; Yao, J.; Komarneni, S. Sustainable Electrochemical Dyeing of Indigo with Fe(II)-Based Complexes. J. Clean. Prod. 2020, 276, 123251. [Google Scholar] [CrossRef]
- Yi, C.; Tan, X.; Bie, B.; Ma, H.; Yi, H. Practical and Environment-Friendly Indirect Electrochemical Reduction of Indigo and Dyeing. Sci. Rep. 2020, 10, 4927. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z. Denim Electroreduction Dyeing Method. CN Patent 109440491, 4 January 2022. [Google Scholar]
- Jiang, C.; Dong, H.; Fang, J.; Lü, J.; Wang, H.; Wang, W.; Liu, Y.; Sun, L.; Sun, Z.; Xu, F.; et al. A Method of Based on Electrochemical Techniques Indigotin Dye Liquor. CN Patent 109736103, 10 May 2019. [Google Scholar]
- Bechtold, T.; Turcanu, A. Electrochemical Reduction in Vat Dyeing: Greener Chemistry Replaces Traditional Processes. J. Clean. Prod. 2009, 17, 1669–1679. [Google Scholar] [CrossRef]
- Hakeim, O.A.; Nassar, S.H.; Raghab, A.A.; Abdou, L.A.W. An Approach to the Impact of Nanoscale Vat Coloration of Cotton on Reducing Agent Account. Carbohydr. Polym. 2013, 92, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Elshemy, N.S.; EL-Sayad, H.S.; Abd El-Rahman, A.A.; Mashaly, H.M.; Nassar, S.H. Optimization and Characterization of Prepared Nano-Disperse Dyes via a Sonication Process and Their Application in Textile Dyeing and Printing. Fibers Polym. 2019, 20, 2540–2549. [Google Scholar] [CrossRef]
- Ragheb, A.A.; Tawfik, S.; Adb-El Thalouth, J.I.; Mosaad, M.M. Development of Printing Natural Fabrics with Curcuma Natural Dye via Nanotechnology. Int. J. Pharm. Sci. Res. 2017, 8, 611–620. [Google Scholar]
- Chattopadhyay, D.P.; Patel, B.H. Improvement in Physical and Dyeing Properties of Natural Fibres through Pre-Treatment with Silver Nanoparticles. Indian. J. Fibre Text. Res. 2010, 34, 368–373. [Google Scholar]
- Perera, S.; Bhushan, B.; Bandara, R.; Rajapakse, G.; Rajapakse, S.; Bandara, C. Morphological, Antimicrobial, Durability, and Physical Properties of Untreated and Treated Textiles Using Silver-Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 975–989. [Google Scholar] [CrossRef]
- Zhou, Q.; Lv, J.; Ren, Y.; Chen, J.; Gao, D.; Lu, Z.; Wang, C. A Green in Situ Synthesis of Silver Nanoparticles on Cotton Fabrics Using Aloe Vera Leaf Extraction for Durable Ultraviolet Protection and Antibacterial Activity. Text. Res. J. 2017, 87, 2407–2419. [Google Scholar] [CrossRef]
- Asmat-Campos, D.; Delfín-Narciso, D.; Juárez-Cortijo, L. Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers 2021, 9, 10. [Google Scholar] [CrossRef]
- Raeisi, M.; Kazerouni, Y.; Mohammadi, A.; Hashemi, M.; Hejazi, I.; Seyfi, J.; Khonakdar, H.A.; Davachi, S.M. Superhydrophobic Cotton Fabrics Coated by Chitosan and Titanium Dioxide Nanoparticles with Enhanced Antibacterial and UV-Protecting Properties. Int. J. Biol. Macromol. 2021, 171, 158–165. [Google Scholar] [CrossRef]
- Rabiei, H.; Farhang Dehghan, S.; Montazer, M.; Khaloo, S.S.; Koozekonan, A.G. UV Protection Properties of Workwear Fabrics Coated with TiO2 Nanoparticles. Front. Public Health 2022, 10, 929095. [Google Scholar] [CrossRef]
- Ferrero, F.; Periolatto, M. Ultrasound for Low Temperature Dyeing of Wool with Acid Dye. Ultrason. Sonochem. 2012, 19, 601–606. [Google Scholar] [CrossRef] [PubMed]
Process | Description | Wastewater Composition | |
---|---|---|---|
Desizing | Remove starch or wax-like sizes applied to improve tensile strength during weaving or knitting | Sizes Enzymes Starch | Waxes Suspended solids TOC |
Scouring | Remove natural non-cellulosic impurities such as pectin, wax, protein, dirt, oil, seed husk fragments and mineral matter | NaOH Surfactants Detergents Fats | Pectin Oils Sizes Waxes |
Bleaching | Remove yellow shades and brighten the fabric | H2O2 Sodium silicate Organic stabilizer | Alkalis Suspended solids |
Mercerizing | Improve shine and dye uptake | NaOH | High pH |
Dyeing and Printing | Provide color | Dyes Color pigments Heavy metals Salts Surfactants | Alkalis Urea Formaldehyde Solvents BOD |
Finishing | Grant desirable qualities or functionalities | Softeners Solvents Resins Waxes | BOD COD VOC Suspended solids |
Technology | Advantages | Challenges | Sustainability Impacts | Industrial Feasibility |
---|---|---|---|---|
Established and Widely Studied Innovative Systems | ||||
Ultrasonic-assisted wet processing |
|
|
| Industrial systems available (Geratex, Sonovia, Siansonic, Sono-Tek, Cheersonic and GRINP®); scale-up ongoing |
Ozonation |
|
|
| Commercially adopted in denim finishing (Absolute Ozone®, Ozcon Environmental, Ozon denim, Jeanologia and Tonello®) |
Plasma |
|
|
| Industrial systems available (Acxys, Ahlbrandt, GRINP®, Enercon, Plasma Etch, AGC Plasma Technology Solutions, Plasmatreat and Thierry Corporation); industrial uptake growing |
Laser |
|
|
| Widely adopted in denim finishing (SEI Laser, Jeanologia, Portlaser and Zaitex); expanding into other areas |
Digital Inkjet Printing |
|
|
| Industrial systems widely available (Zimmer, EFI® Reggiani, Konica Minolta, MS Printing Solutions and Durst Group) |
Atomization systems |
|
|
| Industrial systems available (Care Applications, Tonello®, AirDye®, Then-Airflow®, Imogo, Baldwin®); industry uptake increasing |
Supercritical Carbon Dioxide |
|
|
| Industrially available for synthetics (DyeCoo®, Deven Supercriticals and Qarboon); natural fiber solutions under development |
Developing and Specialized Technologies | ||||
Reverse Micelle Dyeing |
|
|
| Lab-scale research promising; industrial application not yet confirmed |
Foam technology |
|
|
| Early-stage industrial applications; more data on scaling needed |
Microwave |
|
|
| Early-stage industrial applications (Ferrite Microwave Technologies, ITA RWTH Aachen, Püschner, and DyStar); lab and pilot stages |
Dope dyeing |
|
|
| Industrially available for synthetics (Recron®, Filatex India Limited, Diklatex, Far Eastern New Century, Thai Polyester Co., Ltd., GAC Acelon, We aRe SpinDye® and Birla cellulose); expanding into cellulosic fibers |
Other Emerging Technologies | ||||
Ultraviolet Technology |
|
|
| Pilot applications (RUDOLF GmbH and Trelleborg Engineered Coated Fabrics); scalability studies ongoing |
Electrochemical dyeing |
|
|
| Pilot projects (RedElec); currently in the research and validation phase |
Nanotechnology |
|
|
| Research-to-commercial pipeline growing (functional textiles); regulatory considerations ongoing |
Low-temperature processing |
|
|
| Commercial processes available (Bozzetto Group, CHT Group, Ever dye, MCTRON Technologies); industry adoption is growing |
Low-Pressure Plasma | Atmospheric-Pressure Plasma |
---|---|
Microwave plasma Inductively coupled plasma Capacitive coupled plasma | Dielectric barrier discharge (DBD) plasma Corona plasma/discharges Plasma jet Gliding arc plasma Glow discharge |
Alternative agent | Substrate | Effects on Color Strength, Fastness, and Dyeing Properties | References | |
---|---|---|---|---|
Urea substitutes | Polyethylene glycol 400 (PEG-400) | Cotton | Urea reductions above 70% result in color performance similar to urea conventional treatment. | [78] |
Resulted in superior dye penetration and improved sharpness of the edges. | [79] | |||
Glycerol and 1,4-butanediol formulation | Viscose, cotton, linen and silk | Resulted in similar color strength and improved dye penetration, maintaining fastness properties. | [80,81] | |
Silk | Resulted in increased color strength and similar fastness properties. | [82] | ||
Guar gum | Wool and cotton | Resulted in increased color strength on wool and similar color strength on cotton fabrics. | [83] | |
Carboxymethyl guar gum (CMG) | Hemp fibers | Resulted in color strength increases above 26% for all primary colors and black and similar color fastness. | [84] | |
Co-polymer (NS) | Cotton | Resulted in increased color strength and fastness properties with 1 wt% NS-02 treatment. | [74] | |
Cationic agents | 3-Chloro-2-hydroxypropyl trimethylammonium chloride (CHPTAC) | Cotton | Resulted in an increase of 38% in color strength and 37% in dye fixation. | [21] |
Resulted in excellent color fastness and significant environmental advantages with nearly colorless wastewater. | [85] | |||
One-step printing technology applying cationic agents and dyes simultaneously resulted in sharper edges, improved color strength, and nearly colorless wastewater compared to the two-step process. However, urea was used in pre-treatment. | [86] | |||
N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC) | Cotton | Resulted in increased color strength values and better fastness properties. | [87] | |
Dye modifications | Reactive dye containing CHPTAC | Cotton | Resulted in an increase in color strength by 35% when compared to normal reactive dye. However, urea was used in pre-treatment. | [75] |
Reactive dyes with multifunctional groups | Cotton | Multifunctional groups had low dependence on urea, which resulted in 98% dye fixation and good fastness properties | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, M.L.; Sampaio, F.; Gonçalves, A.L. Sustainable Wet Processing Technologies for the Textile Industry: A Comprehensive Review. Sustainability 2025, 17, 3041. https://doi.org/10.3390/su17073041
Catarino ML, Sampaio F, Gonçalves AL. Sustainable Wet Processing Technologies for the Textile Industry: A Comprehensive Review. Sustainability. 2025; 17(7):3041. https://doi.org/10.3390/su17073041
Chicago/Turabian StyleCatarino, Maria L., Filipa Sampaio, and Ana L. Gonçalves. 2025. "Sustainable Wet Processing Technologies for the Textile Industry: A Comprehensive Review" Sustainability 17, no. 7: 3041. https://doi.org/10.3390/su17073041
APA StyleCatarino, M. L., Sampaio, F., & Gonçalves, A. L. (2025). Sustainable Wet Processing Technologies for the Textile Industry: A Comprehensive Review. Sustainability, 17(7), 3041. https://doi.org/10.3390/su17073041