The Structure and Influencing Mechanisms of the Global Palm Oil Trade: A Complex Network Perspective
Abstract
:1. Introduction
2. Background and Data
2.1. Background
2.2. Data Sources and Processing
3. Empirical Strategy
3.1. Complex Network Analysis
3.2. QAP Analysis
4. Results
4.1. The Analysis of the Global Palm Oil Trade Network Structure
4.2. Analysis of the Mechanisms Influencing the Structure of the Global Palm Oil Trade Network
4.3. Robustness Tests
5. Conclusions
6. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadiguna, R.A.; Tjahjono, B. A framework for managing sustainable palm oil supply chain operations: A case of Indonesia. Prod. Plan. Control 2017, 28, 1093–1106. [Google Scholar] [CrossRef]
- Ramadhani, T.N.; Santoso, R.P. Competitiveness analyses of Indonesian and Malaysian palm oil exports. Econ. J. Emerg. Mark. 2019, 11, 46–58. [Google Scholar] [CrossRef]
- Hassanpour, B.; Ismail, M.M. Regional comparative advantage and competitiveness of Malaysian palm oil products. Oil Palm Ind. Econ. J. 2010, 10, 23–28. [Google Scholar]
- Maksum, A.; Muda, I.; Lubis, A.; Azhar, I.A.S. Trading of Indonesian crude palm oil supply chain and its impact on economic growth: Implementation of theory of comparative advantage and the competitive advantage of nation. Int. J. Energy Econ. Policy 2021, 11, 296–302. [Google Scholar] [CrossRef]
- Arsyad, M.; Amiruddin, A.; Suharno, S.; Jahroh, S. Competitiveness of palm oil products in international trade: An analysis between Indonesia and Malaysia. Caraka Tani J. Sustain. Agric. 2020, 35, 157–167. [Google Scholar] [CrossRef]
- Tandra, H.; Suroso, A.I.; Syaukat, Y.; Najib, M. The determinants of competitiveness in global palm oil trade. Economies 2022, 10, 132. [Google Scholar] [CrossRef]
- Maulana, F.R.; Sukiyono, K. Analysis of Indonesian Palm Oil Competitiveness in the Main Export Destination Countries. Indones. J. Agric. Res. 2023, 6, 68–78. [Google Scholar] [CrossRef]
- Yan, M.L.; Shi, W.H.; Zhou, X.L.; Yin, G.H.; Zhang, Y.; Wu, C.L. Evolution of global palm oil trade pattern and policy implications. China Oils Fats 2023, 48, 93–100. [Google Scholar]
- Hamidi, H.N.A.; Khalid, N.; Karim, Z.A. Palm oil trade restrictiveness index and its impact on world palm oil exports. Agric. Econ./Zemědělská Ekon. 2024, 70, 101–111. [Google Scholar] [CrossRef]
- Adhikari, S. Effects of Tariffs and Trade Agreements on Global Palm Oil Trade: A Gravity Model Approach. Master’s Thesis, University of Georgia, Athens, GA, USA, 2021. [Google Scholar]
- Ahmad Hamidi, H.N.; Khalid, N.; Karim, Z.A.; Zainuddin, M.R.K. Technical efficiency and export potential of the world palm oil market. Agriculture 2022, 12, 1918. [Google Scholar] [CrossRef]
- Go, Y.H.; Lau, W.Y. Palm oil spot-futures relation: Evidence from unrefined and refined products. Agricul-Tural Econ.–Czech 2019, 65, 133–142. [Google Scholar]
- Lee, S.; Yi, E.; Cho, Y.; Ahn, K. The path to a sustainable palm oil futures market. Energy Rep. 2022, 8, 6543–6550. [Google Scholar] [CrossRef]
- Myat, A.K.; Tun, M.T.Z. Predicting palm oil price direction using random forest. In Proceedings of the 2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand, 20–22 November 2019; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Adhikari, S.; Poudel, D.; Gopinath, M. Is Policy Greasing the Wheels of Global Palm Oil Trade? Res. World Agric. Econ. 2023, 4, 62–77. [Google Scholar]
- Gereffi, G.; Humphrey, J.; Sturgeon, T. The governance of global value chains. Rev. Int. Political Econ. 2005, 12, 78–104. [Google Scholar]
- Gibbon, P.; Ponte, S. Trading Down: Africa, Value Chains, and the Global Economy; Temple University Press: Philadelphia, PA, USA, 2005. [Google Scholar]
- Appadurai, A. Modernity at Large: Cultural Dimensions of Globalization; University of Minnesota Press: Minneapolis, MN, USA, 1996; Volume 1. [Google Scholar]
- Oosterveer, P. Promoting sustainable palm oil: Viewed from a global networks and flows perspective. J. Clean. Prod. 2015, 107, 146–153. [Google Scholar] [CrossRef]
- Li, W.; Fu, D.; Su, F.; Xiao, Y. Spatial–temporal evolution and analysis of the driving force of oil palm patterns in Malaysia from 2000 to 2018. ISPRS Int. J. Geo-Inf. 2020, 9, 280. [Google Scholar] [CrossRef]
- Mareeh, H.Y.S.; Prabakusuma, A.S.; Hussain, M.D.; Patwary, A.K.; Dedahujaev, A.; Aleryani, R.A. Sustainability and profitability of Malaysia crude palm oil supply chain management: System dynamics modelling approach. Nankai Bus. Rev. Int. 2023, 14, 698–719. [Google Scholar]
- Naidu, L.; Moorthy, R. A review of key sustainability issues in Malaysian palm oil industry. Sustainability 2021, 13, 10839. [Google Scholar] [CrossRef]
- Tengku Hamzah, T.A.A.; Zainuddin, Z.; Mohd Yusoff, M.; Osman, S.; Abdullah, A.; Md Saini, K.; Sisun, A. The conundrum of carbon trading projects towards sustainable development: A review from the palm oil industry in Malaysia. Energies 2019, 12, 3530. [Google Scholar] [CrossRef]
- Gutierrez Al-Khudhairy, S.; Howells, T.R.; Bin Sailim, A.; McClean, C.J.; Senior, M.J.; Azmi, R.; Benedick, S.; Hill, J.K. Sustainable management practices do not reduce oil palm yields on smallholder farms on Borneo. Agroecol. Sustain. Food Syst. 2023, 47, 3–24. [Google Scholar] [CrossRef]
- Waters, K.; Altiparmak, S.O.; Shutters, S.T.; Thies, C. The Green Mirage: The EU’s Complex Relationship with Palm Oil Biodiesel in the Context of Environmental Narratives and Global Trade Dynamics. Energies 2024, 17, 343. [Google Scholar] [CrossRef]
- Degli Innocenti, E. Vertical Integration of the Palm Oil Sustainable Global Value Chains in Indonesia and Thailand: Sustainability Frameworks, Local Dynamics, Material and Information Flows in the Global-Local Nexus. Doctoral Dissertation, Wageningen University and Research, Wageningen, The Netherlands, 2024. [Google Scholar]
- Herman, P.R. Modeling complex network patterns in international trade. Rev. World Econ. 2022, 158, 127–179. [Google Scholar] [CrossRef]
- Huang, X.Y.; Li, G.X. Study on the Evolution of Agricultural Trade Network Patterns and Their Influencing Mechanisms in RCEP Countries—A Complex Network Perspective. Int. Econ. Trade Res. 2023, 39, 22–41. (In Chinese) [Google Scholar]
- Wilhite, A. Bilateral trade and ‘small-world’networks. Comput. Econ. 2001, 18, 49–64. [Google Scholar] [CrossRef]
- Newman, M.E. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar]
- Maluck, J.; Donner, R.V. A network of networks perspective on global trade. PLoS ONE 2015, 10, e0133310. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Cheng, X. Evolution of the global coal trade network: A complex network analysis. Resour. Policy 2019, 62, 496–506. [Google Scholar]
- Lee, J.W.; Maeng, S.E.; Ha, G.G.; Lee, M.H.; Cho, E.S. Applications of complex networks on analysis of world trade network. J. Phys. Conf. Ser. 2013, 410, 012063. [Google Scholar] [CrossRef]
- Fagiolo, G.; Reyes, J.; Schiavo, S. The evolution of the world trade web: A weighted-network analysis. J. Evol. Econ. 2010, 20, 479–514. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Q.; Wu, H.; Li, J. Unpacking the global rice trade network: Centrality, structural holes, and the nexus of food insecurity. Foods 2024, 13, 604. [Google Scholar] [CrossRef]
- Özekicioğlu, H.; Yilmaz, B.; Alkan, G.; Oğuz, S.; Kocabaş, C.; Boz, F. Exploring the impacts of Covid-19 on the electronic product trade of the G-7 countries: A complex network analysis approach and panel data analysis. PLoS ONE 2023, 18, e0286694. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Zhang, H.Y.; Fan, Y. Identification of global oil trade patterns: An empirical research based on complex network theory. Energy Convers. Manag. 2014, 85, 856–865. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Mukherjee, G.; Saramäki, J.; Kaski, K.; Manna, S.S. The international trade network: Weighted network analysis and modelling. J. Stat. Mech. Theory Exp. 2008, 2008, P02002. [Google Scholar] [CrossRef]
- Wang, J.; Dai, C. Evolution of global food trade patterns and its implications for food security based on complex network analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X. Understanding global rice trade flows: Network evolution and implications. Foods 2023, 12, 3298. [Google Scholar] [CrossRef]
- Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. USA 2012, 109, 5989–5994. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Yin, J.; Liang, J. Temporal characteristics and spatial homogeneity of virtual water trade: A complex network analysis. Water Resour. Manag. 2019, 33, 1467–1480. [Google Scholar] [CrossRef]
- Dicken, P. Global Shift: Mapping the Changing Contours of the World Economy; SAGE Publications Ltd.: Thousand Oaks CA, USA, 2007. [Google Scholar]
- Pye, O. A plantation precariat: Fragmentation and organizing potential in the palm oil global production network. Dev. Change 2017, 48, 942–964. [Google Scholar] [CrossRef]
- Ruan, Z.; Du, P.; Jiao, Y. Analysis of lithium trade patterns and influencing factors in the regions along the “Belt and Road”. PLoS ONE 2024, 19, e0307321. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, C.; Wang, H.; Li, C. Evolution characteristics and influencing factors of global dairy trade. Sustainability 2023, 15, 931. [Google Scholar] [CrossRef]
- Yin, J.; Ni, Y.; Fan, Y. Tourism cooperation in the Belt and Road Initiative from economic and spatial insights. PLoS ONE 2024, 19, e0300392. [Google Scholar] [CrossRef]
- Low, S.W.; Kew, S.R.; Tee, L.T. International evidence on the link between quality of governance and stock market performance. Glob. Econ. Rev. 2011, 40, 361–384. [Google Scholar]
- Chaney, T. The network structure of international trade. Am. Econ. Rev. 2014, 104, 3600–3634. [Google Scholar]
- Lohmann, J. Do language barriers affect trade? Econ. Lett. 2011, 110, 159–162. [Google Scholar]
- Borgatti, S.P.; Foster, P.C. The network paradigm in organizational research: A review and typology. J. Manag. 2003, 29, 991–1013. [Google Scholar]
- Hou, Z.; Niu, X.; Yu, Z.; Chen, W. Spatiotemporal evolution and market dynamics of the international liquefied natural gas trade: A multilevel network analysis. Energies 2023, 17, 228. [Google Scholar] [CrossRef]
- Cong, Y.; Hou, Y.; Jiang, J.; Chen, S.; Cai, X. Features and evolution of global energy trade patterns from the perspective of complex networks. Energies 2023, 16, 5677. [Google Scholar] [CrossRef]
- Wang, M.; Liu, D.; Wang, Z.; Li, Y. Structural evolution of global soybean trade network and the implications to China. Foods 2023, 12, 1550. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Y.; Luo, J.; Cheng, Y.; Veglianti, E. Spatial-temporal variation characteristics and evolution of the global industrial robot trade: A complex network analysis. PLoS ONE 2019, 14, e0222785. [Google Scholar]
- Kulkarni, S.; Dave, R.; Bhatia, U.; Kumar, R. Tracing spatiotemporal changes in agricultural and non-agricultural trade networks of India. PLoS ONE 2023, 18, e0286725. [Google Scholar]
- Zhu, X.; Liu, X. Research on the evolution of global electronics trade network structure since the 21st century from the Chinese perspective. Sustainability 2023, 15, 5437. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar]
- Xiao, H.; Sun, T.; Meng, B.; Cheng, L. Complex network analysis for characterizing global value chains in equipment manufacturing. PLoS ONE 2017, 12, e0169549. [Google Scholar]
- Zhang, Z.; Lan, H.; Xing, W. Global trade pattern of crude oil and petroleum products: Analysis based on complex network. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 022033. [Google Scholar] [CrossRef]
- Boyd, J.P.; Fitzgerald, W.J.; Beck, R.J. Computing core/periphery structures and permutation tests for social relations data. Soc. Netw. 2006, 28, 165–178. [Google Scholar]
- Hu, L.; Hu, J.; Huang, W. Evolutionary analysis of the solar photovoltaic products trade network in belt and road initiative countries from an economic perspective. Energies 2023, 16, 6371. [Google Scholar] [CrossRef]
- Xu, H.; Niu, N.; Li, D.; Wang, C. A dynamic evolutionary analysis of the vulnerability of global food trade networks. Sustainability 2024, 16, 3998. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, G.; Guan, C.; Mao, H.; Zhang, B.; Liu, H. The expansion of global LNG trade and its implications for CH4 emissions mitigation. Environ. Res. Lett. 2023, 19, 014022. [Google Scholar]
- Wang, W.; Mao, W.; Wu, R.; Zhu, J.; Yang, Z. Study on the spatial imbalance and polarization of marine green aquaculture efficiency in China. Water 2024, 16, 273. [Google Scholar] [CrossRef]
- Cui, C.; Wu, X.; Liu, L.; Zhang, W. The spatial-temporal dynamics of daily intercity mobility in the Yangtze River Delta: An analysis using big data. Habitat Int. 2020, 106, 102174. [Google Scholar]
- Fu, J.; Huang, X.; Tong, L. Urban layout optimization in a city network under an extended quadratic assignment problem framework. Transp. A Transp. Sci. 2022, 18, 221–247. [Google Scholar] [CrossRef]
- McLeod, M. Tourism policy networks in four Caribbean countries. Ann. Tour. Res. Empir. Insights 2023, 4, 100113. [Google Scholar] [CrossRef]
- Cong, H.; Zou, D.; Gao, B.; Shao, J. Network patterns and influence factors of new energy vehicle trade along the countries of the Belt and Road. Econ. Geogr. 2021, 41, 109–118. [Google Scholar]
- Pu, Y.; Li, Y.; Wang, Y. Structure characteristics and influencing factors of cross-border electricity trade: A complex network perspective. Sustainability 2021, 13, 5797. [Google Scholar] [CrossRef]
- Wan, D.; Xu, Y.Y. A Study on the Evolution of China’s Vegetable Export Trade Patterns and Its Influencing Factors—Based on Social Network Analysis. Econ. Probl. 2024, 3, 23–29. (In Chinese) [Google Scholar]
- Melitz, J. Language and foreign trade. Eur. Econ. Rev. 2008, 52, 667–699. [Google Scholar] [CrossRef]
- Wan, L.L.; Gao, X. The Impact of Cultural, Geographical, and Institutional Distances on China’s Import and Export Trade: Empirical Evidence from 32 Countries and Regions. Int. Econ. Trade Res. 2014, 30, 39–48. (In Chinese) [Google Scholar]
- Berthelon, M.; Freund, C. On the conservation of distance in international trade. J. Int. Econ. 2008, 75, 310–320. [Google Scholar] [CrossRef]
- Smarzynska, B.K. Does relative location matter for bilateral trade flows? An extension of the gravity model. J. Econ. Integr. 2001, 16, 379–398. [Google Scholar] [CrossRef]
- Håkanson, L.; Dow, D. Markets and networks in international trade: On the role of distances in globalization. Manag. Int. Rev. 2012, 52, 761–789. [Google Scholar] [CrossRef]
- Duranton, G.; Storper, M. Rising trade costs? Agglomeration and trade with endogenous transaction costs. Can. J. Econ. /Rev. Can. D’économique 2008, 41, 292–319. [Google Scholar]
- Leamer, E.E.; Storper, M. The economic geography of the internet age. In Economy; Routledge: Abingdon, UK, 2017; pp. 431–455. [Google Scholar]
- Rauch, J.E. Networks versus markets in international trade. J. Int. Econ. 1999, 48, 7–35. [Google Scholar]
- Bergstrand, J.H. The gravity equation in international trade: Some microeconomic foundations and empirical evidence. Rev. Econ. Stat. 1985, 67, 474–481. [Google Scholar] [CrossRef]
- Duan, J.; Nie, C.; Wang, Y.; Yan, D.; Xiong, W. Research on global grain trade network pattern and its driving factors. Sustainability 2021, 14, 245. [Google Scholar] [CrossRef]
- Han, D.; Li, G.S. Research on the evolution and the influence mechanism of grain trade pattern between China and countries along” The Belt and Road”: From the perspective of social network. Issues Agric. Econ. 2020, 8, 24–40. [Google Scholar]
Variable Name | Variable Meaning | Variable Method and Description | Data Source |
---|---|---|---|
gdp | Gross Domestic Product | Construct a GDP difference matrix by taking the absolute difference in GDP between two countries. | World Bank Database (WDI) |
popu | Total National Population | Construct a population difference matrix by taking the absolute difference in population between two countries. | World Bank Database (WDI) |
dist | Geographic Distance Between Capitals | Construct a distance matrix using the spherical distance between national capitals. | French CEPII-Geography Database |
lang | Use of a Common Language | Construct a binary language matrix, where countries with the same language are marked as 1 and others as 0. | French CEPII-Geography Database |
regi | Institutional Distance | Construct an institutional distance difference matrix by taking the absolute difference in institutional distance between two countries. | Calculated from World Bank Database (WDI) data |
Indicators | Network Density | Network Connectivity | Average Shortest Path | Reciprocity |
---|---|---|---|---|
2003–2009 | 0.093 | 0.776 | 1.995 | 0.445 |
2010–2016 | 0.113 | 0.836 | 1.953 | 0.518 |
2017–2023 | 0.125 | 0.890 | 1.910 | 0.580 |
Main Communities | Major Countries |
---|---|
Community 1 | Malaysia, Indonesia, the Netherlands, Singapore, Italy, Germany, Denmark, etc. |
Community 2 | China, Saudi Arabia, Sweden, Greece, etc. |
Community 3 | the United States, UAE, Thailand, Japan, etc. |
Community 4 | Canada, Colombia, Egypt, Lebanon, etc. |
Community 5 | South Africa, Tanzania, Jordan, etc. |
Main Communities | Major Countries |
---|---|
Community 1 | Malaysia, Indonesia, Singapore, the Netherlands, Germany, the United States, China, etc. |
Community 2 | Egypt, Saudi Arabia, Oman, Denmark, etc. |
Community 3 | South Africa, Kenya, Colombia, UAE, etc. |
Community 4 | Poland, Greece, Hungary, Austria etc. |
Main Communities | Major Countries |
---|---|
Community 1 | Malaysia, Indonesia, the Netherlands, Singapore, Germany, Denmark, the United States, China, etc. |
Community 2 | Colombia, Ecuador, Guatemala, South Africa, etc. |
Community 3 | Poland, Greece, Hungary, Austria, etc. |
Ranking | 2003–2009 | 2010–2016 | 2017–2023 | |||
---|---|---|---|---|---|---|
In-Degree | Out-Degree | In-Degree | Out-Degree | In-Degree | Out-Degree | |
1 | Malaysia | Malaysia | Malaysia | Malaysia | Malaysia | Malaysia |
2 | Indonesia | Indonesia | Indonesia | Indonesia | Indonesia | Indonesia |
3 | the Netherlands | the Netherlands | USA | the Netherlands | USA | the Netherlands |
4 | USA | Singapore | the Netherlands | Germany | the Netherlands | Germany |
5 | Italy | Italy | Italy | UK | Italy | Belgium |
6 | Germany | Germany | Singapore | Italy | Germany | Singapore |
7 | Singapore | UK | Germany | Belgium | Singapore | Sweden |
8 | France | Belgium | UK | Singapore | UK | Italy |
9 | UK | USA | Belgium | Sweden | Belgium | UK |
10 | Belgium | France | France | USA | France | Spain |
Ranking | 2003–2009 | 2010–2016 | 2017–2023 | |||
---|---|---|---|---|---|---|
1 | Malaysia 6635.704 | Malaysia 0.831 | Malaysia 7100.097 | Malaysia 0.866 | Malaysia 7828.490 | Malaysia 0.888 |
2 | Indonesia 5016.854 | Indonesia 0.778 | Indonesia 5718.932 | Indonesia 0.803 | Indonesia 5643.98 | Indonesia 0.816 |
3 | USA 2014.967 | the Netherlands 0.683 | USA 2049.9665 | Singapore 0.645 | Singapore 2088.169 | Singapore 0.676 |
4 | the Netherlands 1896.059 | Singapore 0.626 | Singapore 1682.788 | the Netherlands 0.643 | the Netherlands 1337.824 | the Netherlands 0.660 |
5 | Italy 1386.014 | Germany 0.613 | the Netherlands 1222.203 | Italy 0.630 | USA 1169.708 | UAE 0.634 |
6 | Singapore 1326.095 | Italy 0.608 | Italy 1116.207 | Germany 0.617 | India 795.821 | Sweden 0.633 |
7 | Germany 947.728 | UK 0.598 | India 849.366 | Belgium 0.602 | UAE 788.359 | France 0.629 |
8 | UK 800.327 | USA 0.584 | Germany 791.538 | UK 0.600 | Germany 779.483 | Spain 0.629 |
9 | Ghana 670.302 | Belgium 0.583 | UK 752.141 | India 0.595 | Belgium 746.638 | Belgium 0.625 |
10 | France 623.903 | France 0.566 | UAE 677.184 | France 0.593 | Italy 746.936 | Germany 0.625 |
Variables | 2003 | 2009 | 2015 | 2023 | ||||
---|---|---|---|---|---|---|---|---|
Obs Value | Sig | Obs Value | Sig | Obs Value | Sig | Obs Value | Sig | |
gdp | 1.000 | 0.000 *** | 0.017 | 0.382 | 0.031 | 0.308 | −0.001 | 0.551 |
popu | 0.396 | 0.059 * | −0.063 | 0.024 ** | −0.016 | 0.030 ** | −0.023 | 0.014 ** |
dist | −0.136 | 0.136 | −0.227 | 0.000 *** | −0.242 | 0.000 *** | −0.359 | 0.000 *** |
lang | 0.025 | 0.485 | 0.117 | 0.035 ** | 0.131 | 0.020 ** | 0.139 | 0.006 *** |
regi | −0.056 | 0.001 *** | −0.068 | 0.000 *** | −0.069 | 0.000 *** | −0.069 | 0.000 *** |
Variables | 2003 | 2009 | 2015 | 2023 | ||||
---|---|---|---|---|---|---|---|---|
Std Coef | Sig | Std Coef | Sig | Std Coef | Sig | Std Coef | Sig | |
popu | −0.027 | 0.046 ** | −0.057 | 0.028 ** | −0.010 | 0.026 ** | −0.027 | 0.066 * |
dist | −0.174 | 0.003 *** | −0.213 | 0.001 *** | −0.227 | 0.000 *** | −0.211 | 0.000 *** |
lang | 0.073 | 0.140 | 0.085 | 0.094 * | 0.098 | 0.070 * | 0.120 | 0.044 ** |
regi | −0.057 | 0.004 *** | −0.068 | 0.001 *** | −0.069 | 0.002 *** | −0.070 | 0.001 *** |
Variables | FE(1) | FE(2) | FE(3) | FE(4) |
---|---|---|---|---|
0.299 *** (4.60) | 0.311 *** (4.76) | 0.311 *** (4.76) | 0.308 *** (4.68) | |
0.265 *** (4.17) | 0.270 *** (4.24) | 0.271 *** (4.25) | 0.273 *** (4.27) | |
−0.035 (−0.37) | −0.034 (−0.37) | −0.063 (−0.59) | −0.177 (−1.36) | |
−0.010 ** (−2.12) | 0.010 ** (−2.14) | 0.010 ** (−2.14) | ||
−0.382 (−0.88) | −0.168 (−0.32) | |||
−0.599 (−1.32) | ||||
Constant | −8.455 *** (−5.35) | −8.893 *** (−5.55) | −8.591 *** (−5.10) | −7.626 *** (−4.27) |
F-Value | 39.05 *** | 30.06 *** | 24.19 *** | 17.67 *** |
Variable Name | Variable Meaning | Variable Method and Description | Data Source |
---|---|---|---|
perland | Arable Land Per Capita | Construct an arable land per capita difference matrix by taking the absolute difference in arable land per capita between two countries. | World Bank Database (WDI) |
er | Exchange Rate | Construct an exchange rate difference matrix by taking the absolute difference in exchange rate between two countries. | World Bank Database (WDI) |
ta | Trade Agreements | Construct a trade agreement matrix where countries with the same trade agreements are marked as 1 and others as 0. | WTO Regional Trade Agreements Database |
ct | Composition of Trade | Construct a composition of trade difference matrix by taking the absolute difference in the composition of trade between two countries. | UN Comtrade Database |
Variables | 2003 | 2009 | 2015 | 2023 | ||||
---|---|---|---|---|---|---|---|---|
Obs Value | Sig | Obs Value | Sig | Obs Value | Sig | Obs Value | Sig | |
gdp | 1.010 | 0.376 | 0.022 | 0.345 | 0.098 | 0.430 | −0.001 | 0.551 |
popu | 0.410 | 0.030 ** | −0.062 | 0.025 ** | −0.016 | 0.025 ** | −0.023 | 0.001 *** |
dist | −0.136 | 0.136 | −0.297 | 0.000 *** | −0.310 | 0.000 *** | −0.251 | 0.000 *** |
lang | 0.091 | 0.563 | 0.134 | 0.045 ** | 0.132 | 0.025 ** | 0.139 | 0.006 *** |
regi | −0.056 | 0.001 *** | −0.066 | 0.001 *** | −0.070 | 0.001 *** | −0.070 | 0.001 *** |
perland | 0.084 | 0.048 ** | 0.064 | 0.004 *** | 0.078 | 0.000 *** | 0.064 | 0.000 *** |
er | 0.089 | 0.062 * | 0.067 | 0.351 | 0.046 | 0.129 | 0.033 | 0.462 |
ta | 0.183 | 0.004 *** | 0.176 | 0.001 *** | 0.114 | 0.000 *** | 0.118 | 0.000 *** |
ct | −0.122 | 0.119 | −0.077 | 0.023 ** | −0.134 | 0.039 ** | −0.245 | 0.053 * |
Variables | 2003 | 2009 | 2015 | 2023 | ||||
---|---|---|---|---|---|---|---|---|
Std Coef | Sig | Std Coef | Sig | Std Coef | Sig | Std Coef | Sig | |
popu | −0.031 | 0.046 ** | −0.022 | 0.043 ** | −0.021 | 0.040 ** | −0.022 | 0.046 ** |
dist | −0.231 | 0.000 *** | −0.213 | 0.000 *** | −0.227 | 0.000 *** | −0.211 | 0.000 *** |
lang | 0.066 | 0.140 | 0.065 | 0.069 * | 0.067 | 0.029 ** | 0.067 | 0.044 ** |
regi | −0.057 | 0.000 *** | −0.068 | 0.000 *** | −0.069 | 0.000 *** | −0.070 | 0.000 *** |
perland | 0.045 | 0.021 ** | 0.044 | 0.000 *** | 0.064 | 0.000 *** | 0.064 | 0.000 *** |
ta | 0.166 | 0.001 *** | 0.073 | 0.004 *** | 0.078 | 0.000 *** | 0.077 | 0.000 *** |
ct | −0.022 | 0.060 * | −0.067 | 0.036 ** | −0.072 | −0.034 ** | −0.087 | −0.034 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, Z.; Chen, Y.; Yang, S. The Structure and Influencing Mechanisms of the Global Palm Oil Trade: A Complex Network Perspective. Sustainability 2025, 17, 3062. https://doi.org/10.3390/su17073062
Zhang S, Chen Z, Chen Y, Yang S. The Structure and Influencing Mechanisms of the Global Palm Oil Trade: A Complex Network Perspective. Sustainability. 2025; 17(7):3062. https://doi.org/10.3390/su17073062
Chicago/Turabian StyleZhang, Shurui, Ziyu Chen, Yingying Chen, and Sisongyu Yang. 2025. "The Structure and Influencing Mechanisms of the Global Palm Oil Trade: A Complex Network Perspective" Sustainability 17, no. 7: 3062. https://doi.org/10.3390/su17073062
APA StyleZhang, S., Chen, Z., Chen, Y., & Yang, S. (2025). The Structure and Influencing Mechanisms of the Global Palm Oil Trade: A Complex Network Perspective. Sustainability, 17(7), 3062. https://doi.org/10.3390/su17073062