Sustainable Animal Nutrition and Feeding Strategies for Reducing Methane Emissions and Enhancing Feed Digestibility with Encapsulated Black Soldier Fly Larvae Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Animal Ethics, and Preparation of Black Soldier Larvae Oil
2.2. Encapsulation Black Soldier Fly Larvae Oil Preparation
2.3. Design of Experiment
2.4. Animals and Rumen Fluid Inoculum
2.5. Fermentation Substrates In Vitro
2.6. In Vitro Digestibility
2.7. Measurements and Chemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Nutritional Composition of Diet
3.2. Kinetics and Cumulative Production of Gas
3.3. Ruminal pH, Protozoal Population, NH3-N, and CH4
3.4. In Vitro Volatile Fatty Acid
3.5. In Vitro Degradability
4. Discussion
4.1. Kinetics and Cumulative Production of Gas
4.2. In Vitro Ruminal pH, Protozoal Population, NH3-N, and CH4 Production
4.3. In Vitro Volatile Fatty Acid
4.4. In Vitro Degradability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinfeld, H. The livestock revolution—A global veterinary mission. Vet. Parasitol. 2004, 125, 19–41. [Google Scholar] [PubMed]
- Herrero, M.; Thornton, P.K. Livestock and global change: Emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20878–20881. [Google Scholar] [PubMed]
- Burrow, H.M. Overcoming major environmental and production challenges in cattle owned by smallholder farmers in the tropics. Caraka Tani J. Sustain. Agric. 2022, 37, 161. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Guo, H.; Su, Z.; Yang, X.; Xu, S.; Pan, H. Greenhouse gas emissions from beef cattle breeding based on the ecological cycle model. Int. J. Environ. Res. Public Health 2022, 19, 9481. [Google Scholar] [CrossRef]
- Kozicka, K.; Žukovskis, J.; Wójcik-Gront, E. Explaining global trends in cattle population changes between 1961 and 2020 directly affecting methane emissions. Sustainability 2023, 15, 10533. [Google Scholar] [CrossRef]
- Hristov, A.N.; Melgar, A.; Wasson, D.; Arndt, C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animals 2010, 4, 351–365. [Google Scholar] [CrossRef]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2012, 184, 1929–1952. [Google Scholar] [CrossRef]
- Canul-Solis, J.; Campos-Navarrete, M.; Piñeiro-Vázquez, A.; Casanova-Lugo, F.; Barros-Rodríguez, M.; Chay-Canul, A.; Cárdenas-Medina, J.; Castillo-Sánchez, L. Mitigation of rumen methane emissions with foliage and pods of tropical trees. Animals 2020, 10, 843. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Smith, S.B.; Gill, C.A.; Lunt, D.K.; Brooks, M.A. Regulation of fat and fatty acid composition in beef cattle. Asian-Australas. J. Anim. Sci. 2009, 22, 1225–1233. [Google Scholar] [CrossRef]
- Mapato, C.; Wanapat, M.; Cherdthong, A. Effects of urea treatment of straw and dietary level of vegetable oil on lactating dairy cows. Trop. Anim. Health Prod. 2010, 42, 1635–1642. [Google Scholar]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [PubMed]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Van Heugten, E.; Martinez, G.; McComb, A.; Koutsos, L. Improvements in performance of nursery pigs provided with supplemental oil derived from black soldier fly (Hermetia illucens) larvae. Animals 2022, 12, 3251. [Google Scholar] [CrossRef]
- Phongpradist, R.; Semmarath, W.; Kiattisin, K.; Jiaranaikulwanitch, J.; Chaiyana, W.; Chaichit, S.; Phimolsiripol, Y.; Dejkriengkraikul, P.; Ampasavate, C. The in vitro effects of black soldier fly larvae (Hermetia illucens) oil as a high-functional active ingredient for inhibiting hyaluronidase, anti-oxidation benefits, whitening, and UVB protection. Front. Pharmacol. 2023, 14, 1243961. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A. Black soldier fly larva oil in diets with roughage to concentrate ratios on fermentation characteristics, degradability, and methane generation. Animals 2023, 13, 2416. [Google Scholar] [CrossRef]
- Abubakr, A.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats. PLoS ONE 2014, 9, e95713. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Alimon, A.R.; Yaakub, H.; Samsudin, A.A.; Candyrine, S.C.L.; Wan Mohamed, W.N.; Md Noh, A.; Fuat, M.A.; Mookiah, S. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: A review. Trop. Anim. Health Prod. 2021, 53, 422. [Google Scholar] [CrossRef]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, A.; Samsudin, A.A.; Kaka, U. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 2019, 9, 400. [Google Scholar] [CrossRef]
- Albarki, H.R.; Kusuma, R.I.; Daulai, M.S.; Suntara, C.; Iwai, C.B.; Jayanegara, A.; Cherdthong, A. Effects of rumen-protected fat on rumen fermentation products, meat characteristics, cattle performance, and milk quality: A meta-analysis. Anim. Feed Sci. Technol. 2024, 318, 116137. [Google Scholar] [CrossRef]
- Wulandari, W.; Widyobroto, B.P.; Noviandi, C.T.; Agus, A. In vitro digestibility and ruminal fermentation profile of pangola grass (Digitaria decumbens) supplemented with crude palm oil protected by sodium hydroxide. Livest. Res. Rural Dev. 2020, 32, 1–7. [Google Scholar]
- Riestanti, L.U.; Despal; Oktavianti, B.P.; Toharmat, T.; Retnani, Y. Effects of ca-soap protected vegetables oil in dairy ration on rumen fermentability and in vitro digestibility. IOP Conf. Ser. Earth Environ. Sci. 2023, 1168, 012023. [Google Scholar] [CrossRef]
- Behan, A.A.; Chwen, L.T.; Kaka, U.; Muhammad, A.I.; Samsudin, A.A. Effect of rumen-protected fat on in vitro rumen fermentation and apparent biohydrogenation of fatty acids. J. Indones. Trop. Anim. Agric. 2024, 49, 252–263. [Google Scholar] [CrossRef]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar]
- Akonjuen, B.M.; Aryee, A.N.A. Novel extraction and encapsulation strategies for food bioactive lipids to improve stability and control delivery. Food Chem. Adv. 2023, 2, 100278. [Google Scholar]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. [Google Scholar] [CrossRef]
- Muslykhah, U.; Phupaboon, S.; Suriyapha, C.; Matra, M.; Wanapat, M. Encapsulation of protein-based bioactive from black soldier fly for ruminant feeding. J. Agric. Food Res. 2024, 18, 101325. [Google Scholar] [CrossRef]
- Phupaboon, S.; Matra, M.; Prommachart, R.; Totakul, P.; Supapong, C.; Wanapat, M. Extraction, characterization, and chitosan microencapsulation of bioactive compounds from Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. Antioxidants 2022, 11, 2103. [Google Scholar] [CrossRef]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [PubMed]
- Tassone, S.; Fortina, R.; Peiretti, P.G. In vitro techniques using the DaisyII incubator for the assessment of digestibility: A review. Animals 2020, 10, 775. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar]
- Porter, M.G.; Murray, R.S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2001, 56, 405–411. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar]
- Williams, S.R.O.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 2019, 9, 1006. [Google Scholar] [CrossRef]
- Tiven, N.C.; Hartati, L.; Simanjorang, T.M. Liquid smoke as fat protector and its effect on rumen fermentation characteristics and microbial activity. Trop. Anim. Sci. J. 2021, 44, 152–159. [Google Scholar]
- Kim, T.-B.; Lee, J.-S.; Cho, S.-Y.; Lee, H.-G. In vitro and in vivo studies of rumen-protected microencapsulated supplement comprising linseed oil, vitamin E, rosemary extract, and hydrogenated palm oil on rumen fermentation, physiological profile, milk yield, and milk composition in dairy cows. Animals 2020, 10, 1631. [Google Scholar] [CrossRef] [PubMed]
- Beam, T.M.; Jenkins, T.C.; Moate, P.J.; Kohn, R.A.; Palmquist, D.L. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 2000, 83, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Clement Hawke, J. The in vitro lipolysis and biohydrogenation of monogalactosyldiglyceride by whole rumen contents and its fractions. J. Sci. Food Agric. 1979, 30, 603–612. [Google Scholar]
- Álvarez-Torres, J.N.; Ramírez-Bribiesca, J.E.; Bautista-Martínez, Y.; Crosby-Galván, M.M.; Granados-Rivera, L.D.; Ramírez-Mella, M.; Ruiz-González, A. Stability and effects of protected palmitic acid on in vitro rumen degradability and fermentation in lactating goats. Fermentation 2024, 10, 110. [Google Scholar] [CrossRef]
- Machmuller, A.; Ossowski, D.A.; Wanner, M.; Kreuzer, M. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro. Anim. Feed Sci. Technol. 1998, 71, 117–130. [Google Scholar]
- Bettero, V.P.; Valle, T.A.D.; Barletta, R.V.; de Araújo, C.E.; de Jesus, E.F.; de Almeida, G.F.; Takiya, C.S.; Zanferari, F.; de Paiva, P.G.; Júnior, J.E.; et al. Use of protected fat sources to reduce fatty acid biohydrogenation and improve abomasal flow in dry dairy cows. Anim. Feed Sci. Technol. 2017, 224, 30–38. [Google Scholar] [CrossRef]
- Simionatto, M.; Maeda, E.M.; Da Silveira, M.F.; Macedo, V.D.P.; De Paula, F.L.M.; Hill, J.A.G. Effect of adding different levels of palm oil-protected fat in the diet of lambs concerning rumen parameters. Anim. Feed Sci. Technol. 2024, 310, 115929. [Google Scholar] [CrossRef]
- Bain, A.; Wiryawan, K.G.; Astuti, D.; Suharti, S.; Arman, C.; Nasiu, F. Characteristics of in vitro fermentation and nutrient digestibility of ration supplemented with different level of soybean oil calcium soap. IOP Conf. Ser. Earth Environ. Sci. 2020, 465, 012020. [Google Scholar] [CrossRef]
- Hidayah, N.; Suharti, S.; Wiryawan, K.G. In-vitro ruminal ecosystem in buffaloes on concentrates and fat supplementation. Media Peternak. 2014, 37, 129–135. [Google Scholar]
- Suharti, S.; Nasution, A.R.; Wiryawan, K.G. In vitro rumen fermentation characteristics and fatty acid profiles added with calcium soap of canola/flaxseed oil. Media Peternak. 2017, 40, 171–177. [Google Scholar]
- Hristov, A.N.; Ivan, M.; McAllister, T.A. In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet. J. Anim. Sci. 2004, 82, 2693–2704. [Google Scholar] [CrossRef]
- Hegarty, R.S. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 1999, 50, 1321. [Google Scholar] [CrossRef]
- Monteyne, A.J.; Dunlop, M.V.; Machin, D.J.; Coelho, M.O.C.; Pavis, G.F.; Porter, C.; Murton, A.J.; Abdelrahman, D.R.; Dirks, M.L.; Stephens, F.B.; et al. A mycoprotein-based high-protein vegan diet supports equivalent daily myofibrillar protein synthesis rates compared with an isonitrogenous omnivorous diet in older adults: A randomized controlled trial. Br. J. Nutr. 2021, 126, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Machmüller, A.; Ossowski, D.A.; Kreuzer, M. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Anim. Feed Sci. Technol. 2000, 85, 41–60. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, Y.; Liu, S.; Xie, T.; Wang, Q.; Wang, Z.; Li, S.; Wang, W. Rumen metagenome reveals the mechanism of mitigation methane emissions by unsaturated fatty acid while maintaining the performance of dairy cows. Anim. Nutr. 2024, 18, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Habtewold, J.; Gordon, R.; Sokolov, V.; VanderZaag, A.; Wagner-Riddle, C.; Dunfield, K. Reduction in methane emissions from acidified dairy slurry is related to inhibition of Methanosarcina species. Front. Microbiol. 2018, 9, 2806. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Zhang, M.; Yang, H.; Zhao, F.; Jiang, N.; Zhang, A. In situ and in vitro evaluation of the bioavailability of rumen-protected methionine with coating prototypes. J. Mech. Behav. Biomed. Mater. 2022, 133, 105355. [Google Scholar] [CrossRef]
- Gawad, R.; Fellner, V. Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation. Asian-Australas. J. Anim. Sci. 2019, 32, 72–81. [Google Scholar] [CrossRef]
- Amanullah, S.M.; Lee, S.-S.; Paradhipta, D.H.V.; Joo, Y.-H.; Kim, D.-H.; Seong, P.-N.; Jeong, S.-M.; Kim, S.-C. Impact of oil sources on in vitro fermentation, microbes, greenhouse gas, and fatty acid profile in the rumen. Fermentation 2022, 8, 242. [Google Scholar] [CrossRef]
- Mattos, W.; Palmquist, D.L. Increased polyunsaturated fatty acid yields in milk of cows fed protected fat. J. Dairy Sci. 1974, 57, 1050–1054. [Google Scholar] [CrossRef]
- Prachumchai, R.; Suntara, C.; Kanakai, N.; Cherdthong, A. Inclusion of black soldier fly larval oil in ruminant diets influences feed consumption, nutritional digestibility, ruminal characteristics, and methane estimation in Thai-indigenous steers. J. Anim. Physiol. Anim. Nutr. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Dissociation of calcium soaps of long-chain fatty acids in rumen fluid. J. Dairy Sci. 1990, 73, 1784–1787. [Google Scholar] [CrossRef] [PubMed]
- Pramono, A.; Hadi, R.F.; Sutrisno, J.; Cahyadi, M. The effect of protected soybean oil and soybean groats base on in vitro dry matter digestibility, in vitro organic matter digestibility in the rumen and post rumen. IOP Conf. Ser. Earth Environ. Sci. 2019, 347, 012016. [Google Scholar] [CrossRef]
Ingredient | NC | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |
---|---|---|---|---|---|---|---|---|---|
Rice straw | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 |
Cassava chips | 20.00 | 20.00 | 18.21 | 16.06 | 13.92 | 20.00 | 18.21 | 16.06 | 13.92 |
Soybean meal | 12.36 | 13.06 | 13.29 | 13.44 | 13.58 | 13.06 | 13.29 | 13.44 | 13.58 |
Palm kernel meal | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Rice bran | 3.14 | 0.44 | 0.00 | 0.00 | 0.00 | 0.44 | 0.00 | 0.00 | 0.00 |
Molasses | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Salt | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Urea | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Premix 1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Black soldier fly larvae oil (BSFLO) | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Encapsulated BSFLO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 |
Chemical analysis | |||||||||
Dry matter (%) | 98.83 | 98.86 | 98.88 | 98.99 | 98.88 | 97.97 | 97.81 | 98.12 | 97.95 |
Organic matter (%) | 92.75 | 92.28 | 90.59 | 94.38 | 91.81 | 92.78 | 90.78 | 89.70 | 91.42 |
Crude protein (%) | 15.66 | 16.96 | 15.65 | 16.60 | 16.53 | 15.84 | 16.26 | 16.44 | 16.69 |
Ether extract (%) | 3.18 | 4.41 | 6.50 | 8.48 | 10.24 | 4.47 | 6.22 | 7.39 | 9.26 |
NDF (%) | 56.31 | 60.79 | 55.00 | 52.45 | 57.13 | 55.72 | 53.15 | 58.09 | 55.86 |
ADF (%) | 56.26 | 52.14 | 55.83 | 57.54 | 54.20 | 54.47 | 55.92 | 56.13 | 54.59 |
Treatment | Product | Level (%) | Kinetic Gas (mL/0.5 g) | ||||
---|---|---|---|---|---|---|---|
a | b | c | |a| + b | Cumulative Gas (mL) | |||
NC | - | - | −4.31 | 78.55 ab | 0.044 | 82.58 | 73.5 b |
T1 | BSFLO | 2 | −4.43 cb | 84.83 a | 0.041 | 89.36 | 78.6 b |
T2 | BSFLO | 4 | −4.66 c | 75.24 b | 0.045 | 79.30 | 55.5 e |
T3 | BSFLO | 6 | −5.57 d | 62.27 c | 0.063 | 76.64 | 56.9 de |
T4 | BSFLO | 8 | −5.24 d | 63.76 c | 0.062 | 68.68 | 51.4 e |
T5 | Encapsulated BSFLO | 2 | −3.29 a | 83.79 a | 0.047 | 93.68 | 84.3 a |
T6 | Encapsulated BSFLO | 4 | −4.03 b | 79.78 ab | 0.045 | 83.66 | 74.7 b |
T7 | Encapsulated BSFLO | 6 | −4.20 cb | 73.45 b | 0.053 | 76.74 | 65.8 c |
T8 | Encapsulated BSFLO | 8 | −4.35 cb | 66.34 c | 0.056 | 70.54 | 61.8 cd |
SEM | 0.11 | 1.24 | 0.003 | 1.22 | 1.11 | ||
Contrast | |||||||
Nc vs. other treatment | 0.39 | <0.05 | 0.05 | 0.20 | <0.01 | ||
Nc | −4.31 | 78.55 a | 0.04 | 82.58 | 73.51 a | ||
Others | −4.47 | 73.68 b | 0.05 | 79.83 | 66.14 b | ||
Contrast product | <0.01 | <0.05 | 0.70 | 0.07 | <0.01 | ||
BSFLO | −4.98 | 71.52 | 0.05 | 78.50 | 60.61 | ||
Encapsulated BSFLO | −3.97 | 75.84 | 0.05 | 81.16 | 71.67 | ||
Contrast level linear | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Contrast level quadratic | <0.05 | 0.17 | 0.70 | 0.28 | <0.01 | ||
Contrast level cubic | 0.20 | 0.13 | 0.09 | 0.21 | <0.05 | ||
Level 2% | −3.86 | 84.31 | 0.04 b | 91.52 a | 81.46 | ||
Level 4% | −4.35 | 77.51 | 0.05 b | 81.48 b | 65.09 | ||
Level 6% | −4.88 | 67.86 | 0.06 a | 76.69 c | 61.39 | ||
Level 8% | −4.79 | 65.05 | 0.06 a | 69.61 d | 56.61 | ||
Interaction | |||||||
Product × level linear | 0.97 | 0.19 | 0.08 | 0.36 | 0.74 | ||
Product × level quadratic | 0.91 | <0.05 | 0.26 | 0.75 | <0.05 | ||
Product × level cubic | <0.05 | 0.20 | 0.87 | 0.38 | <0.05 |
Treatment | Product | Level (%) | pH | Protozoa Count (×105, cell/mL) | NH3-N (mg%) | Estimation of CH4 (mM) | ||||
---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |||
NC | - | - | 6.70 | 6.50 | 1.20 | 0.90 | 12.15 | 20.27 | 15.70 a | 24.03 a |
T1 | BSFLO | 2 | 6.63 | 6.60 | 0.44 | 0.64 | 12.23 | 20.61 | 5.98 f | 22.28 a |
T2 | BSFLO | 4 | 6.60 | 6.63 | 0.44 | 0.50 | 12.36 | 20.79 | 8.96 cb | 16.00 b |
T3 | BSFLO | 6 | 6.63 | 6.60 | 0.33 | 0.43 | 12.33 | 20.91 | 8.38 cd | 16.85 b |
T4 | BSFLO | 8 | 6.63 | 6.67 | 0.30 | 0.33 | 12.90 | 20.87 | 7.70 de | 13.09 c |
T5 | Encapsulated BSFLO | 2 | 6.63 | 6.57 | 0.43 | 0.47 | 12.37 | 20.61 | 7.46 e | 10.12 d |
T6 | Encapsulated BSFLO | 4 | 6.63 | 6.63 | 0.50 | 0.40 | 12.47 | 20.98 | 7.49 e | 11.02 cd |
T7 | Encapsulated BSFLO | 6 | 6.73 | 6.60 | 0.33 | 0.50 | 12.54 | 20.89 | 8.90 cb | 9.95 d |
T8 | Encapsulated BSFLO | 8 | 6.67 | 6.60 | 0.40 | 0.43 | 12.98 | 20.84 | 9.68 b | 12.37 cd |
SEM | 0.04 | 0.02 | 0.06 | 0.10 | 0.16 | 0.18 | 0.22 | 0.63 | ||
Contrast | ||||||||||
Nc vs. other treatment | 0.16 | <0.01 | <0.01 | <0.01 | 0.09 | <0.01 | <0.01 | <0.01 | ||
Nc | 6.70 | 6.50 b | 1.20 a | 0.90 a | 12.15 | 20.27 b | 15.70 a | 24.03 a | ||
Others | 6.65 | 6.61 a | 0.40 b | 0.46 b | 12.52 | 20.81 a | 8.07 b | 13.96 b | ||
Contrast product | 0.11 | 0.13 | 0.35 | 0.70 | 0.27 | 0.79 | <0.01 | <0.01 | ||
BSFLO | 6.63 | 6.63 | 0.38 | 0.48 | 12.45 | 20.80 | 7.75 | 17.06 | ||
Encapsulated BSFLO | 6.67 | 6.60 | 0.42 | 0.45 | 12.59 | 20.83 | 8.38 | 10.86 | ||
Contrast level linear | 0.31 | 0.11 | <0.05 | 0.12 | <0.01 | 0.20 | <0.01 | <0.01 | ||
Contrast level quadratic | 0.74 | 0.60 | 0.84 | 0.88 | 0.13 | 0.21 | <0.01 | 0.10 | ||
Contrast level cubic | 0.12 | 0.05 | 0.08 | 0.47 | 0.27 | 0.72 | 0.39 | 0.23 | ||
Level 2% | 6.63 | 6.58 | 0.44 ab | 0.55 | 12.30 b | 20.61 | 6.72 | 16.20 | ||
Level 4% | 6.62 | 6.63 | 0.47 a | 0.45 | 12.42 b | 20.89 | 8.23 | 13.51 | ||
Level 6% | 6.68 | 6.60 | 0.33 b | 0.47 | 12.44 b | 20.90 | 8.64 | 13.40 | ||
Level 8% | 6.65 | 6.63 | 0.35 b | 0.38 | 12.94 a | 20.85 | 8.69 | 12.73 | ||
Interaction | ||||||||||
Product × level linear | 0.46 | 0.49 | 0.48 | 0.12 | 0.92 | 0.79 | <0.05 | <0.01 | ||
Product × level quadratic | 0.33 | 0.13 | 0.84 | 0.88 | 0.82 | 0.69 | <0.01 | 0.66 | ||
Product × level cubic | 0.46 | 0.82 | 0.43 | 0.71 | 0.71 | 0.60 | <0.01 | <0.01 |
Treatment | Product | Level (%) | 24 h | 48 h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetic Acid (A, mM) | Propionic Acid (P, mM) | Butyric Acid (B, mM) | Total VFA (mM) | A:P | Acetic Acid (A, mM) | Propionic Acid (P, mM) | Butyric Acid (B, mM) | Total VFA (mM) | A:P | |||
NC | - | - | 60.16 a | 31.55 a | 14.09 a | 107.03 a | 1.88 | 82.97 a | 35.77 a | 17.03 | 141.26 a | 2.33 a |
T1 | BSFLO | 2 | 38.22 f | 28.62 b | 11.75 c | 81.07 c | 1.35 | 77.59 b | 34.02 a | 15.80 | 132.97 b | 2.28 a |
T2 | BSFLO | 4 | 44.83 b | 27.79 b | 13.01 b | 88.08 b | 1.61 | 59.89 cd | 30.80 b | 15.83 | 111.02 c | 1.94 bc |
T3 | BSFLO | 6 | 41.22 cde | 23.27 cd | 11.73 c | 79.01 cde | 1.77 | 63.53 c | 29.60 cb | 15.02 | 112.59 c | 2.15 ab |
T4 | BSFLO | 8 | 39.34 ef | 22.37 d | 12.76 b | 76.33 e | 1.76 | 54.28 ef | 25.86 d | 15.20 | 101.67 d | 2.00 b |
T5 | Encapsulated BSFLO | 2 | 38.69 f | 25.11 c | 11.23 c | 76.84 de | 1.54 | 47.79 g | 30.26 b | 13.50 | 95.98 e | 1.65 d |
T6 | Encapsulated BSFLO | 4 | 40.06 def | 25.03 c | 11.94 c | 79.22 cd | 1.68 | 57.21 de | 30.05 b | 13.95 | 108.55 c | 1.73 cd |
T7 | Encapsulated BSFLO | 6 | 41.72 cd | 22.06 d | 13.16 b | 78.89 cde | 1.89 | 47.54 g | 25.96 d | 14.66 | 92.96 e | 1.92 bc |
T8 | Encapsulated BSFLO | 8 | 43.32 cb | 23.71 cd | 11.35 c | 81.62 c | 1.83 | 52.24 f | 26.88 cd | 14.07 | 97.76 de | 1.94 bc |
SEM | 0.61 | 0.52 | 0.22 | 0.74 | 0.02 | 1.15 | 0.87 | 0.36 | 1.22 | 0.06 | ||
Contrast | ||||||||||||
Nc vs. other treatment | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Nc | 60.16 a | 31.55 a | 14.09 a | 107.03 a | 1.88 a | 82.97 a | 35.77 a | 17.03 a | 141.26 a | 2.33 a | ||
Others | 40.92 b | 24.74 b | 12.12 b | 80.13 b | 1.68 b | 57.51 b | 29.18 b | 14.75 b | 106.69 b | 1.95 b | ||
Contrast product | 0.93 | <0.01 | 0.05 | <0.05 | <0.01 | <0.01 | <0.05 | <0.01 | <0.01 | <0.01 | ||
BSFLO | 40.90 | 25.51 | 12.31 | 81.12 | 1.62 b | 63.82 | 30.07 | 15.46 a | 114.56 | 2.09 | ||
Encapsulated BSFLO | 40.95 | 23.98 | 11.92 | 79.14 | 1.74 a | 51.20 | 28.29 | 14.05 b | 98.81 | 1.81 | ||
Contrast level linear | <0.05 | <0.01 | 0.06 | 0.12 | <0.01 | <0.01 | <0.01 | 0.92 | <0.01 | 0.36 | ||
Contrast level quadratic | <0.01 | 0.35 | <0.01 | <0.01 | <0.01 | 0.36 | 0.83 | 0.44 | 0.45 | 0.56 | ||
Contrast level cubic | <0.05 | <0.01 | 0.42 | <0.01 | <0.05 | 0.94 | 0.50 | 0.91 | 0.22 | 0.03 | ||
Level 2% | 38.46 | 26.87 | 11.49 | 78.95 | 1.45 c | 62.69 | 32.14 | 14.65 | 114.48 | 1.97 | ||
Level 4% | 42.44 | 26.41 | 12.48 | 83.65 | 1.65 b | 58.55 | 30.43 | 14.89 | 109.78 | 1.84 | ||
Level 6% | 41.47 | 22.66 | 12.44 | 78.95 | 1.83 a | 55.53 | 27.78 | 14.84 | 102.78 | 2.04 | ||
Level 8% | 41.33 | 23.04 | 12.06 | 78.98 | 1.79 a | 53.26 | 26.37 | 14.63 | 99.71 | 1.97 | ||
Interaction | ||||||||||||
Product × level linear | <0.01 | <0.01 | 0.93 | <0.01 | 0.05 | <0.01 | 0.09 | 0.06 | <0.01 | <0.01 | ||
Product × level quadratic | <0.01 | 0.32 | <0.01 | <0.01 | 0.28 | <0.01 | 0.56 | 0.31 | <0.01 | 0.24 | ||
Product × level cubic | <0.05 | 0.96 | <0.01 | <0.01 | 0.07 | <0.01 | <0.05 | 0.21 | <0.01 | 0.18 |
Treatment | Product | Level (%) | IVDMD Rumen 24 h (%) | IVDMD Rumen 48 h (%) | IVDMD Abomasum (%) |
---|---|---|---|---|---|
NC | - | - | 39.80 | 49.39 a | 60.77 a |
T1 | BSFLO | 2 | 40.70 | 46.23 bc | 55.57 cd |
T2 | BSFLO | 4 | 37.12 | 43.92 cd | 53.67 def |
T3 | BSFLO | 6 | 36.70 | 40.55 e | 51.30 g |
T4 | BSFLO | 8 | 37.27 | 41.89 de | 52.20 efg |
T5 | Encapsulated BSFLO | 2 | 38.51 | 50.75 a | 59.24 ab |
T6 | Encapsulated BSFLO | 4 | 36.50 | 48.33 ab | 57.30 bc |
T7 | Encapsulated BSFLO | 6 | 35.61 | 45.29 bc | 54.32 de |
T8 | Encapsulated BSFLO | 8 | 34.60 | 41.65 de | 51.69 fg |
SEM | 0.87 | 1.01 | 0.71 | ||
Contrast | |||||
Nc vs. other treatment | <0.05 | <0.01 | <0.01 | ||
Nc | 39.80 a | 49.39 a | 60.77 a | ||
Others | 37.13 b | 44.83 b | 54.41 b | ||
Contrast product | <0.05 | 0.00 | <0.01 | ||
BSFLO | 37.95 a | 43.15 | 53.18 | ||
Encapsulated BSFLO | 36.30 b | 46.50 | 55.64 | ||
Contrast level linear | <0.01 | <0.01 | <0.01 | ||
Contrast level quadratic | 0.05 | 0.40 | 0.31 | ||
Contrast level cubic | 0.55 | 0.38 | 0.27 | ||
Level 2% | 39.60 a | 48.49 | 57.41 | ||
Level 4% | 36.81 b | 46.12 | 55.48 | ||
Level 6% | 36.15 b | 42.92 | 52.81 | ||
Level 8% | 35.93 b | 41.77 | 51.94 | ||
Interaction | |||||
Product × level linear | 0.74 | <0.05 | <0.05 | ||
Product × level quadratic | 0.22 | 0.10 | 0.10 | ||
Product × level cubic | 0.87 | 0.38 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarki, H.R.; Suntara, C.; Wongtangtintharn, S.; Iwai, C.B.; Jayanegara, A.; Cherdthong, A. Sustainable Animal Nutrition and Feeding Strategies for Reducing Methane Emissions and Enhancing Feed Digestibility with Encapsulated Black Soldier Fly Larvae Oil. Sustainability 2025, 17, 3155. https://doi.org/10.3390/su17073155
Albarki HR, Suntara C, Wongtangtintharn S, Iwai CB, Jayanegara A, Cherdthong A. Sustainable Animal Nutrition and Feeding Strategies for Reducing Methane Emissions and Enhancing Feed Digestibility with Encapsulated Black Soldier Fly Larvae Oil. Sustainability. 2025; 17(7):3155. https://doi.org/10.3390/su17073155
Chicago/Turabian StyleAlbarki, Hajrian Rizqi, Chanon Suntara, Sawitree Wongtangtintharn, Chuleemas Boonthai Iwai, Anuraga Jayanegara, and Anusorn Cherdthong. 2025. "Sustainable Animal Nutrition and Feeding Strategies for Reducing Methane Emissions and Enhancing Feed Digestibility with Encapsulated Black Soldier Fly Larvae Oil" Sustainability 17, no. 7: 3155. https://doi.org/10.3390/su17073155
APA StyleAlbarki, H. R., Suntara, C., Wongtangtintharn, S., Iwai, C. B., Jayanegara, A., & Cherdthong, A. (2025). Sustainable Animal Nutrition and Feeding Strategies for Reducing Methane Emissions and Enhancing Feed Digestibility with Encapsulated Black Soldier Fly Larvae Oil. Sustainability, 17(7), 3155. https://doi.org/10.3390/su17073155