Sustainable Transition of the Global Semiconductor Industry: Challenges, Strategies, and Future Directions
Abstract
:1. Introduction
2. Environmental Impacts of Semiconductor Production
2.1. Carbon Emissions and Their Sources
2.2. Air Pollution and Health Impacts
2.3. Water Use and Solid Waste Impact
3. Mitigation Technologies and Strategies
3.1. Optimization and Technological Innovations
3.2. Clean Energy and Energy Efficiency
3.3. Supply Chain Management and Optimization
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
USD | US Dollar |
GHG | Greenhouse Gas |
PFCs | Perfluorocarbons |
HFCs | Hydrofluorocarbons |
NF3 | Nitrogen Trifluoride |
SF6 | Sulfur Hexafluoride |
CO2 | Carbon Dioxide |
IoT | Internet of Things |
5G | Fifth generation |
GWP | Global Warming Potential |
VOCs | Volatile Organic Compounds |
NOx | Nitrogen Oxides |
SOx | Sulfur Oxides |
PM | Particulate Matter |
BEOL | Back end of the line |
FEOL | Front end of the line |
CVD | Chemical Vapor Deposition |
CMP | Chemical Mechanical Polishing |
BGA | Ball Grid Array |
FC | Flip-Chip |
LF | Lead Frame |
H2SO4 | Sulfuric Acid |
HF | Hydrofluoric Acid |
HCl | Hydrochloric Acid |
HNO3 | Nitric Acid |
TSMC | Taiwan Semiconductor Manufacturing Company |
UPW | Ultrapure water |
Si | Silicon |
GaAs | Gallium Arsenide |
CdTe | Cadmium Telluride |
GaN | Gallium Nitride |
PFAS | Per- and Polyfluoroalkyl Substances |
E-waste | Electronic Waste |
DRAM | Dynamic Random Access Memory |
C4F8 | Octafluorocyclobutane |
EUV | Extreme ultraviolet |
N2O | Nitrous Oxide |
BCP | Block Copolymer |
CCS | Carbon Capture and Storage |
ALD | Atomic Layer Deposition |
SOD | Spin-On Dielectrics |
References
- Statista Semiconductors—Worldwide|Statista Market Forecast. Available online: https://www.statista.com/outlook/tmo/semiconductors/worldwide (accessed on 24 May 2024).
- McKinsey Company Semiconductors in China: Brave New World or Same Old Story?|McKinsey. Available online: https://www.mckinsey.com/industries/semiconductors/our-insights/semiconductors-in-china-brave-new-world-or-same-old-story#/ (accessed on 26 January 2025).
- Pelcat, M. GHG Emissions of Semiconductor Manufacturing in 2021. Ph.D. Thesis, University of Rennes, Rennes, France, 2023. [Google Scholar]
- Malmodin, J.; Lövehagen, N.; Bergmark, P.; Lundén, D. ICT Sector Electricity Consumption and Greenhouse Gas Emissions—2020 Outcome. Telecommun. Policy 2024, 48, 102701. [Google Scholar] [CrossRef]
- Ruberti, M. The Chip Manufacturing Industry: Environmental Impacts and Eco-Efficiency Analysis. Sci. Total Environ. 2023, 858, 159873. [Google Scholar] [CrossRef] [PubMed]
- SEMI. Semiconductor Climate Consortium; BCG. A White Paper on Transparency, Ambition, and Collaboration. Available online: https://discover.semi.org/transparency-ambition-and-collaboration-white-paper-download-registration.html (accessed on 23 January 2025).
- Richard, C. Semiconductor Manufacturing. In Understanding Semiconductors: A Technical Guide for Non-Technical People; Richard, C., Ed.; Apress: Berkeley, CA, USA, 2023; pp. 57–80. ISBN 978-1-4842-8847-4. [Google Scholar]
- Vauche, L.; Guillemaud, G.; Lopes Barbosa, J.-C.; Di Cioccio, L. Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device. Sustainability 2024, 16, 901. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Tsai, C.-H. A Survey on Fluorinated Greenhouse Gases in Taiwan: Emission Trends, Regulatory Strategies, and Abatement Technologies. Environments 2023, 10, 113. [Google Scholar] [CrossRef]
- Statista TSMC: Volume of Scope 1 GHG Emissions by Emitter. 2023. Available online: https://www.statista.com/statistics/1312928/tsmc-volume-of-scope-1-ghg-emissions-by-emitter/ (accessed on 24 January 2025).
- Statista TSMC: Volume of Scope 2 GHG Emissions by Emitter. 2023. Available online: https://www.statista.com/statistics/1312938/tsmc-volume-of-scope-2-ghg-emissions-by-emitter/ (accessed on 24 January 2025).
- Statista TSMC: Volume of Scope 3 GHG Emissions by Origin. 2022. Available online: https://www.statista.com/statistics/1312955/tsmc-volume-of-scope-3-ghg-emissions-by-origin/ (accessed on 24 January 2025).
- Kuo, T.-C.; Kuo, C.-Y.; Chen, L.-W. Assessing Environmental Impacts of Nanoscale Semi-Conductor Manufacturing from the Life Cycle Assessment Perspective. Resour. Conserv. Recycl. 2022, 182, 106289. [Google Scholar] [CrossRef]
- Li, T.; Hou, J.; Yan, J.; Liu, R.; Yang, H.; Sun, Z. Chiplet Heterogeneous Integration Technology—Status and Challenges. Electronics 2020, 9, 670. [Google Scholar] [CrossRef]
- Maitra, V.; Su, Y.; Shi, J. Virtual Metrology in Semiconductor Manufacturing: Current Status and Future Prospects. Expert Syst. Appl. 2024, 249, 123559. [Google Scholar] [CrossRef]
- Liu, C.H.; Lin, S.J.; Lewis, C. Life Cycle Assessment of DRAM in Taiwan’s Semiconductor Industry. J. Clean. Prod. 2010, 18, 419–425. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Hu, A.H.; Hung, L.H.; Yang, K.-T.; Wu, C.-H. Life Cycle Impact Assessment of Semiconductor Packaging Technologies with Emphasis on Ball Grid Array. J. Clean. Prod. 2020, 276, 124301. [Google Scholar] [CrossRef]
- Alim, M.A.; Abdullah, M.Z.; Aziz, M.S.A.; Kamarudin, R. Die Attachment, Wire Bonding, and Encapsulation Process in LED Packaging: A Review. Sens. Actuators A Phys. 2021, 329, 112817. [Google Scholar] [CrossRef]
- Nguyen, M.T.N.; Lee, J.S. Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process. Chemosensors 2024, 12, 233. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, L.; Feng, Y.; Xu, Y.; Liu, Y.; Guo, G.; Dai, H.; Wang, C.; Wang, C.; Hsi, H.-C.; et al. A Resource Utilization Method for Volatile Organic Compounds Emission from the Semiconductor Industry: Selective Catalytic Oxidation of Isopropanol to Acetone Over Au/α-Fe2O3 Nanosheets. Appl. Catal. B Environ. 2020, 275, 119011. [Google Scholar] [CrossRef]
- Hsieh, S.; Lin, P.-Y.; Lin, I.-H.; Beck, D.E.; Lin, C.-H. Assessing the Contribution of Semiconductors to the Sustainable Development Goals (SDGs) from 2017 to 2022. Heliyon 2023, 9, e21306. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Fang, J.; Liang, Y.; Wang, X.; Zhang, Q.; Wang, J.; He, M.; Wang, W.; Deng, J.; Ren, C.; et al. Acid Rain Reduced Soil Carbon Emissions and Increased the Temperature Sensitivity of Soil Respiration: A Comprehensive Meta-Analysis. Sci. Total Environ. 2024, 923, 171370. [Google Scholar] [CrossRef]
- Kok, J.F.; Storelvmo, T.; Karydis, V.A.; Adebiyi, A.A.; Mahowald, N.M.; Evan, A.T.; He, C.; Leung, D.M. Mineral Dust Aerosol Impacts on Global Climate and Climate Change. Nat. Rev. Earth Environ. 2023, 4, 71–86. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The Health Effects of Ultrafine Particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Ullah, H.; Abbas, Q.; Munir, M.A.M. A Systematic Review on Global Pollution Status of Particulate Matter-Associated Potential Toxic Elements and Health Perspectives in Urban Environment. Environ. Geochem. Health 2019, 41, 1131–1162. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.; Zhang, J.; Zhou, F.; Zhao, J.; Wei, X.; Zheng, K.; Wu, J.; Li, B.; Pan, B. Toxicity and Endocrine-Disrupting Potential of PM2.5: Association with Particulate Polycyclic Aromatic Hydrocarbons, Phthalate Esters, and Heavy Metals. Environ. Pollut. 2022, 292, 118349. [Google Scholar] [CrossRef]
- Lu, H.-H.; Lu, M.-C.; Le, T.-C.; An, Z.; Pui, D.Y.H.; Tsai, C.-J. Continuous Improvements and Future Challenges of Air Pollution Control at an Advanced Semiconductor Fab. Aerosol Air Qual. Res. 2023, 23, 230034. [Google Scholar] [CrossRef]
- Villard, A.; Lelah, A.; Brissaud, D. Drawing a Chip Environmental Profile: Environmental Indicators for the Semiconductor Industry. J. Clean. Prod. 2015, 86, 98–109. [Google Scholar] [CrossRef]
- Mai, J.-L.; Cai, X.-C.; Luo, D.-Y.; Zeng, Y.; Guan, Y.-F.; Gao, W.; Chen, S.-J. Spatiotemporal Variations, Sources, and Atmospheric Transformation Potential of Volatile Organic Compounds in an Industrial Zone Based on High-Resolution Measurements in Three Plants. Sci. Total Environ. 2024, 923, 171352. [Google Scholar] [CrossRef]
- TSMC. Resources: Sustainability Reports and Documents—TSMC Corporate Social Responsibility. Available online: https://esg.tsmc.com/en/resources/documents.html (accessed on 25 January 2025).
- TSMC. TSMC ESG—TSMC Leads the Industry to Develop Dual-Rotor Zeolite Concentrators. Reduction Rate of Volatile Organic Gas Emissions Achieves 99.5%. Available online: https://esg.tsmc.com/en-US/articles/31 (accessed on 26 March 2025).
- TSMC. TSMC ESG—TSMC Optimizes Air Pollution Control Equipment, Reducing Nitrogen Oxide Emissions by 65%. Available online: https://esg.tsmc.com/en-US/articles/272 (accessed on 26 March 2025).
- Boyd, S.B. Life-Cycle Assessment of Semiconductors; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 978-1-4419-9988-7. [Google Scholar]
- Den, W.; Chen, C.-H.; Luo, Y.-C. Revisiting the Water-Use Efficiency Performance for Microelectronics Manufacturing Facilities: Using Taiwan’s Science Parks as a Case Study. Water-Energy Nexus 2018, 1, 116–133. [Google Scholar] [CrossRef]
- Frost, K.; Hua, I. Quantifying Spatiotemporal Impacts of the Interaction of Water Scarcity and Water Use by the Global Semiconductor Manufacturing Industry. Water Resour. Ind. 2019, 22, 100115. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, N.; Chen, Z.; Chen, X.; Cai, H.; Wu, Y. Environmental Data and Facts in the Semiconductor Manufacturing Industry: An Unexpected High Water and Energy Consumption Situation. Water Cycle 2023, 4, 47–54. [Google Scholar] [CrossRef]
- TSMC. TSMC Arizona and U.S. Department of Commerce Announce Up to US$6.6 Billion in Proposed CHIPS Act Direct Funding, the Company Plans Third Leading-Edge Fab in Phoenix. Available online: https://pr.tsmc.com/schinese/news/3122 (accessed on 26 March 2025).
- Intel. Intel and the Environment—Water Restoration in Arizona. Available online: https://www.intel.com/content/www/us/en/environment/water-restoration-arizona.html (accessed on 26 March 2025).
- Team S.E. Samsung Semiconductor Will Use Wastewater for Chip Production. Available online: https://smartwatermagazine.com/news/smart-water-magazine/samsung-semiconductor-will-use-wastewater-chip-production (accessed on 26 March 2025).
- NIST Waste Management in Semiconductor Facilities. Available online: https://www.nist.gov/chips/chips-incentives-funding-opportunities/environmental-division/waste-management-semiconductor (accessed on 25 January 2025).
- Platzer, M.D.; Sargent, J.F. US Semiconductor Manufacturing: Industry Trends, Global Competition, Federal Policy; Congressional Research Service: New York, NY, USA, 2016.
- Kumar, A.; Thorbole, A.; Gupta, R.K. Sustaining the Future: Semiconductor Materials and Their Recovery. Mater. Sci. Semicond. Process. 2025, 185, 108943. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association: Bonn, Germany; Geneva, Switzerland; Rotterdam, The Netherlands, 2020; ISBN 9789280891140. [Google Scholar]
- Apple. Apple Commits to Be 100 Percent Carbon Neutral for Its Supply Chain and Products by 2030. Available online: https://www.apple.com/newsroom/2020/07/apple-commits-to-be-100-percent-carbon-neutral-for-its-supply-chain-and-products-by-2030/ (accessed on 10 June 2024).
- Zhang, X.; Xiao, H.; Hu, X.; Zhang, Y. Effects of Reduced Electric Field on Sulfur Hexafluoride Removal for a Double Dielectric Barrier Discharge Reactor. IEEE Trans. Plasma Sci. 2018, 46, 563–570. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Ong, E. Advancements in Greenhouse Gas Emission Reduction Methodology for Fluorinated Compounds and N2O in the Semiconductor Industry via Abatement Systems. Front. Energy Res. 2024, 11, 1234486. [Google Scholar] [CrossRef]
- Nagapurkar, P.; Nandy, P.; Nimbalkar, S. Cleaner Chips: Decarbonization in Semiconductor Manufacturing. Sustainability 2024, 16, 218. [Google Scholar] [CrossRef]
- Shin, D.; Kim, J.; Lee, C.S. Evaluation of V2O5 Film-Based Electrochromic Device with Dry-Deposited Ion Storage Layer. Int. J. Precis. Eng. Manuf. 2023, 24, 119–128. [Google Scholar] [CrossRef]
- Lee, Y.; Seo, S.; Oh, I.-K.; Lee, S.; Kim, H. Effects of O2 Plasma Treatment on Moisture Barrier Properties of SiO2 Grown by Plasma-Enhanced Atomic Layer Deposition. Ceram. Int. 2019, 45, 17662–17668. [Google Scholar] [CrossRef]
- Baek, S.Y.; Park, J.; Koh, T.; Kim, D.; Woo, J.; Jung, J.; Park, S.J.; Lee, C.; Choi, C. Achievement of Green and Sustainable CVD Through Process, Equipment and Systematic Optimization in Semiconductor Fabrication. Int. J. Precis. Eng. Manuf.-Green Tech. 2024, 11, 1295–1316. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, A.; Kim, M.-W.; Alaei, A.; Lee, S.S. Nanoconfining Solution-Processed Organic Semiconductors for Emerging Optoelectronics. Chem. Soc. Rev. 2021, 50, 9375–9390. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Rathi, R.; Misharwal, J.; Sinhmar, B.; Kumari, S.; Dalal, J.; Kumar, A. Evolution in Lithography Techniques: Microlithography to Nanolithography. Nanomaterials 2022, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Park, Y.; Ban, W.; Youn, C.; Lee, S.; Yang, J.; Jung, D.; Choi, T. Effect of Plasma Power on Properties of Hydrogenated Amorphous Silicon Carbide Hardmask Films Deposited by PECVD. Vacuum 2020, 174, 109187. [Google Scholar] [CrossRef]
- Sinioros, P.; Haidari, A.A.; Manousakis, N.; Lasithiotakis, M.; Tzoraki, O. Renovation and Reuse of Waste Electrical and Electronic Equipment in the Direction of Eco-Design. In Product Design; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Rene, E.R.; Sethurajan, M.; Kumar Ponnusamy, V.; Kumar, G.; Bao Dung, T.N.; Brindhadevi, K.; Pugazhendhi, A. Electronic Waste Generation, Recycling and Resource Recovery: Technological Perspectives and Trends. J. Hazard. Mater. 2021, 416, 125664. [Google Scholar] [CrossRef]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.-H.A. Advancements in the Treatment and Processing of Electronic Waste with Sustainability: A Review of Metal Extraction and Recovery Technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. In Solar Panels and Photovoltaic Materials; IntechOpen: Rijeka, Croatia, 2018; Volume 30. [Google Scholar]
- Bradwell, D.J.; Osswald, S.; Wei, W.; Barriga, S.A.; Ceder, G.; Sadoway, D.R. Recycling ZnTe, CdTe, and Other Compound Semiconductors by Ambipolar Electrolysis. J. Am. Chem. Soc. 2011, 133, 19971–19975. [Google Scholar] [CrossRef]
- Mishra, G.; Jha, R.; Meshram, A.; Singh, K.K. A Review on Recycling of Lithium-Ion Batteries to Recover Critical Metals. J. Environ. Chem. Eng. 2022, 10, 108534. [Google Scholar] [CrossRef]
- Bahaloo-Horeh, N.; Vakilchap, F.; Mousavi, S.M. Bio-Hydrometallurgical Methods for Recycling Spent Lithium-Ion Batteries. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 161–197. ISBN 978-3-030-31834-5. [Google Scholar]
- Zhan, L.; Xia, F.; Ye, Q.; Xiang, X.; Xie, B. Novel Recycle Technology for Recovering Rare Metals (Ga, In) from Waste Light-Emitting Diodes. J. Hazard. Mater. 2015, 299, 388–394. [Google Scholar] [CrossRef]
- Shen, C.; Tran, P.P.; Minh Ly, P.T. Chemical Waste Management in the U.S. Semiconductor Industry. Sustainability 2018, 10, 1545. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective Water/Wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications towards Sustainable Development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Rochlitz, L.; Steinberger, M.; Oechsner, R.; Weber, A.; Schmitz, S.; Schillinger, K.; Wolff, M.; Bayler, A. Second Use or Recycling of Hydrogen Waste Gas from the Semiconductor Industry—Economic Analysis and Technical Demonstration of Possible Pathways. Int. J. Hydrogen Energy 2019, 44, 17168–17184. [Google Scholar] [CrossRef]
- Nagapurkar, P.; Das, S. Economic and Embodied Energy Analysis of Integrated Circuit Manufacturing Processes. Sustain. Comput. Inform. Syst. 2022, 35, 100771. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate Change and Industrial F-Gases: A Critical and Systematic Review of Developments, Sociotechnical Systems and Policy Options for Reducing Synthetic Greenhouse Gas Emissions. Renew. Sustain. Energy Rev. 2021, 141, 110759. [Google Scholar] [CrossRef]
- Choi, J.; Kim, B.; Im, S.; Yoo, G. Supervised Multivariate Kernel Density Estimation for Enhanced Plasma Etching Endpoint Detection. IEEE Access 2022, 10, 25580–25590. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, K.; Li, Y. Implementation Principles of Optimal Control Technology for the Reduction of Greenhouse Gases in Semiconductor Industry. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2023; Volume 394, p. 01031. [Google Scholar]
- Minimizing Greenhouse Gases—Samsung. Available online: https://semiconductor.samsung.com/emea/sustainability/environment/climate-action/we-are-minimizing-greenhouse-gases-until-we-hit-zero (accessed on 26 March 2025).
- Raoux, S. Fluorinated Greenhouse Gas and Net-Zero Emissions from the Electronics Industry: The Proof Is in the Pudding. Carbon Manag. 2023, 14, 2179941. [Google Scholar] [CrossRef]
- Lee, S.; Park, G.; Kim, D.; Kim, K. Analysis of Plasma and Gas Characteristics According to the Recovery Process Using a New Alternative Gas. Sci. Adv. Mater. 2024, 16, 280–285. [Google Scholar] [CrossRef]
- Allgood, C.C. Fluorinated Gases for Semiconductor Manufacture: Process Advances in Chemical Vapor Deposition Chamber Cleaning. J. Fluor. Chem. 2003, 122, 105–112. [Google Scholar] [CrossRef]
- Pedersen, H.; Barry, S.T.; Sundqvist, J. Green CVD—Toward a Sustainable Philosophy for Thin Film Deposition by Chemical Vapor Deposition. J. Vac. Sci. Technol. A 2021, 39, 051001. [Google Scholar] [CrossRef]
- Illuzzi, F.; Thewissen, H. Perfluorocompounds Emission Reduction by the Semiconductor Industry. J. Integr. Environ. Sci. 2010, 7, 201–210. [Google Scholar] [CrossRef]
- Kazazis, D.; Santaclara, J.G.; van Schoot, J.; Mochi, I.; Ekinci, Y. Extreme Ultraviolet Lithography. Nat. Rev. Methods Primers 2024, 4, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Wang, L.; Wu, X.; He, J.; Huang, W.; Ouyang, C.; Chen, D.; Keshta, B.E. Advanced Lithography Materials: From Fundamentals to Applications. Adv. Colloid Interface Sci. 2024, 329, 103197. [Google Scholar] [CrossRef]
- Fu, N.; Liu, Y.; Ma, X.; Chen, Z. EUV Lithography: State-of-the-Art Review. J. Microelectron. Manuf. 2019, 2, 19020202. [Google Scholar] [CrossRef]
- Ober, C.K.; Käfer, F.; Yuan, C. Recent Developments in Photoresists for Extreme-Ultraviolet Lithography. Polymer 2023, 280, 126020. [Google Scholar] [CrossRef]
- Jadwiszczak, J.; Kelly, D.J.; Guo, J.; Zhou, Y.; Zhang, H. Plasma Treatment of Ultrathin Layered Semiconductors for Electronic Device Applications. ACS Appl. Electron. Mater. 2021, 3, 1505–1529. [Google Scholar] [CrossRef]
- Mullen, E.; Morris, M.A. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. Nanomaterials 2021, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, Q.; Tian, J.; Li, X.; Li, N.; Peng, Y.; Li, X.; Zhao, Y.; He, C.; Wu, S.; et al. Low Power Flexible Monolayer MoS2 Integrated Circuits. Nat. Commun. 2023, 14, 3633. [Google Scholar] [CrossRef]
- Song, C.; Zhao, G.; Wu, B. Applications of Low-Power Design in Semiconductor Chips. J. Ind. Eng. Appl. Sci. 2024, 2, 54–59. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Khandelwal, V.; Tang, X.; Li, X. Wide Bandgap Semiconductor-Based Integrated Circuits. Chip 2023, 2, 100072. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, C.; Li, L.; Wang, Y.; Wang, Q.; Tian, J.; Huang, Z.; Huang, B.; Zhang, Y.; Li, X.; et al. Medium-Scale Flexible Integrated Circuits Based on 2D Semiconductors. Nat. Commun. 2024, 15, 10833. [Google Scholar] [CrossRef]
- Lee, A.; Naquash, A.; Lee, M.; Chaniago, Y.D.; Lim, H. Exploitation of Distillation for Energy-Efficient and Cost-Effective Environmentally Benign Process of Waste Solvents Recovery from Semiconductor Industry. Sci. Total Environ. 2022, 841, 156743. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Wang, S. A Generic Design Optimization Framework for Semiconductor Cleanroom Air-Conditioning Systems Integrating Heat Recovery and Free Cooling for Enhanced Energy Performance. Energy 2024, 286, 129600. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, Y.; Hu, X.; Xu, Y.; Chen, Y.; Kosonen, R. Waste Heat Recoveries in Data Centers: A Review. Renew. Sustain. Energy Rev. 2023, 188, 113777. [Google Scholar] [CrossRef]
- Walden, D.S. Semiconductors in Industrial Waste Heat Collection Improvements. Ph.D. Thesis, West Texas A&M University, Canyon, TX, USA, 2021. [Google Scholar]
- Farhat, O.; Faraj, J.; Hachem, F.; Castelain, C.; Khaled, M. A Recent Review on Waste Heat Recovery Methodologies and Applications: Comprehensive Review, Critical Analysis and Potential Recommendations. Clean. Eng. Technol. 2022, 6, 100387. [Google Scholar] [CrossRef]
- Oyedepo, S.O.; Fakeye, B.A. Waste heat recovery technologies: Pathway to sustainable energy development. J. Therm. Eng. 2021, 7, 324–348. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chiou, Y.-B.; Chein, R.-Y.; Uan, J.-Y.; Wang, X.-D. Power Generation of Thermoelectric Generator with Plate Fins for Recovering Low-Temperature Waste Heat. Appl. Energy 2022, 306, 118012. [Google Scholar] [CrossRef]
- Cresko, J.; Rightor, E.; Carpenter, A.; Peretti, K.; Elliott, N.; Nimbalkar, S.; Morrow, W.R., III; Hasanbeigi, A.; Hedman, B.; Supekar, S.; et al. U.S. Department of Energy’s Industrial Decarbonization Roadmap; USDOE Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2022.
- Gallagher, E.; Ragnarsson, L.-Å.; Rolin, C. Sustainable Semiconductor Manufacturing: The Role of Lithography. IEEE Trans. Semicond. Manuf. 2024, 37, 440–444. [Google Scholar] [CrossRef]
- Pirson, T.; Delhaye, T.P.; Pip, A.G.; Le Brun, G.; Raskin, J.-P.; Bol, D. The Environmental Footprint of IC Production: Review, Analysis, and Lessons from Historical Trends. IEEE Trans. Semicond. Manuf. 2023, 36, 56–67. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chong, D.; Xu, Z.; Li, L.; Hu, Y. Carbon Taxation in Singapore’s Semiconductor Sector: A Mini-Review on GHG Emission Metrics and Reporting. Carbon Res. 2023, 2, 49. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). EIA China Increased Electricity Generation Annually from 2000 to 2020. Available online: https://www.eia.gov/todayinenergy/detail.php?id=53959 (accessed on 26 March 2025).
- U.S. Energy Information Administration (EIA). Short-Term Energy Outlook—U.S. Energy Information Administration (EIA); U.S. Energy Information Administration (EIA): Washington, DC, USA, 2025.
- U.S. Energy Information Administration (EIA). EIA Japan’s Energy Policies Aim for Increased Zero-Carbon Electricity Generation. Available online: https://www.eia.gov/todayinenergy/detail.php?id=61944 (accessed on 26 March 2025).
- Renewable Energy Institute South Korea. Low Renewable Energy Ambitions Result in High Nuclear and Fossil Power Dependencies; Renewable Energy Institute: Daejeon, Republic of Korea, 2024. [Google Scholar]
- Tang, Z.; Yang, Y.; Blaabjerg, F. Power Electronics: The Enabling Technology for Renewable Energy Integration. CSEE J. Power Energy Syst. 2022, 8, 39–52. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Lu, W.-M.; Tran, P.P.; Pham, T.A.K. Sustainable Energy and Semiconductors: A Bibliometric Investigation. Sustainability 2024, 16, 6548. [Google Scholar] [CrossRef]
- TSMC. TSMC Becomes the World’s First Semiconductor Company to Join RE100, Committed to 100% Renewable Energy Usage. Available online: https://esg.tsmc.com/en/update/greenManufacturing/caseStudy/37/index.html (accessed on 26 January 2025).
- Intel Renewable Electricity White Paper. Available online: https://www.intel.com/content/www/us/en/environment/renewable-electricity-white-paper.html (accessed on 26 January 2025).
- Lin, F.; Lin, S.-W.; Lu, W.-M. Dynamic Eco-Efficiency Evaluation of the Semiconductor Industry: A Sustainable Development Perspective. Environ. Monit. Assess. 2019, 191, 435. [Google Scholar] [CrossRef]
- Ni, H.-P.; Chong, W.O.; Chou, J.-S. Optimizing HVAC Systems for Semiconductor Fabrication: A Data-Intensive Framework for Energy Efficiency and Sustainability. J. Build. Eng. 2024, 89, 109397. [Google Scholar] [CrossRef]
- Chien, C.-F.; Chen, Y.-J.; Han, Y.-T.; Wu, Y.-C. Industry 3.5 for Optimizing Chiller Configuration for Energy Saving and an Empirical Study for Semiconductor Manufacturing. Resour. Conserv. Recycl. 2021, 168, 105247. [Google Scholar] [CrossRef]
- Chang, K.-H.; Tsai, C.-C.; Wang, C.-H.; Chen, C.-J.; Lin, C.-M. Optimizing the Energy Efficiency of Chiller Systems in the Semiconductor Industry through Big Data Analytics and an Empirical Study. J. Manuf. Syst. 2021, 60, 652–661. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Wang, S. Energy Performance and Energy Conservation Technologies for High-Tech Cleanrooms: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2023, 183, 113532. [Google Scholar] [CrossRef]
- Chen, Y.-Q.; Zhou, B.; Zhang, M.; Chen, C.-M. Using IoT Technology for Computer-Integrated Manufacturing Systems in the Semiconductor Industry. Appl. Soft Comput. 2020, 89, 106065. [Google Scholar] [CrossRef]
- Bauer, H.; Patel, M.; Veira, J. Internet of Things: Opportunities and Challenges for Semiconductor Companies; McKinsey Insights: New York, NY, USA, 2015. [Google Scholar]
- Jang, S.-W.; Kim, G.-Y. A Monitoring Method of Semiconductor Manufacturing Processes Using Internet of Things–Based Big Data Analysis. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717721810. [Google Scholar] [CrossRef]
- Nižetić, S.; Šolić, P.; López-de-Ipiña González-de-Artaza, D.; Patrono, L. Internet of Things (IoT): Opportunities, Issues and Challenges towards a Smart and Sustainable Future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef] [PubMed]
- Yanambaka, V.P.; Mohanty, S.P.; Kougianos, E. Making Use of Semiconductor Manufacturing Process Variations: FinFET-Based Physical Unclonable Functions for Efficient Security Integration in the IoT. Analog. Integr. Circuits Signal Process. 2017, 93, 429–441. [Google Scholar] [CrossRef]
- TSMC. TSMC ESG—Three Innovations of TSMC AI-Powered Water Chiller System Improve Energy-Efficiency. Available online: https://esg.tsmc.com/en-US/e-paper/202211 (accessed on 26 March 2025).
- Tareq, A.A.; Rana, M.J.; Mostofa, M.R.; Rahman, M.S. Impact of IoT and Embedded System on Semiconductor Industry A Case Study. Control Syst. Optim. Lett. 2024, 2, 211–216. [Google Scholar] [CrossRef]
- Li, B.; Chen, R.-S.; Liu, C.-Y. Using Intelligent Technology and Real-Time Feedback Algorithm to Improve Manufacturing Process in IoT Semiconductor Industry. J. Supercomput. 2021, 77, 4639–4658. [Google Scholar] [CrossRef]
- Fitriani, R.O.; Long, B.D.; Barma, M.C.; Riaz, M.; Sabri, M.F.M.; Said, S.M.; Saidur, R. A Review on Nanostructures of High-Temperature Thermoelectric Materials for Waste Heat Recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659. [Google Scholar] [CrossRef]
- Savani, I.; Waage, M.H.; Børset, M.; Kjelstrup, S.; Wilhelmsen, Ø. Harnessing Thermoelectric Power from Transient Heat Sources: Waste Heat Recovery from Silicon Production. Energy Convers. Manag. 2017, 138, 171–182. [Google Scholar] [CrossRef]
- Ononogbo, C.; Nwosu, E.C.; Nwakuba, N.R.; Nwaji, G.N.; Nwufo, O.C.; Chukwuezie, O.C.; Chukwu, M.M.; Anyanwu, E.E. Opportunities of Waste Heat Recovery from Various Sources: Review of Technologies and Implementation. Heliyon 2023, 9, e13590. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.S.; Patil, A.V.; Dighavkar, C.G.; Adole, V.A.; Tupe, U.J. Synthesis Techniques and Applications of Rare Earth Metal Oxides Semiconductors: A Review. Chem. Phys. Lett. 2022, 796, 139555. [Google Scholar] [CrossRef]
- TSMC. TSMC ESG—TSMC’s New Business Collaboration Standards: Carbon Reduction Performance as a Key Supplier Selection Criterion. Available online: https://esg.tsmc.com/en-US/articles/340 (accessed on 26 January 2025).
- Xu, T.; Zheng, X.; Ji, B.; Xu, Z.; Bao, S.; Zhang, X.; Li, G.; Mei, J.; Li, Z. Green Recovery of Rare Earth Elements under Sustainability and Low Carbon: A Review of Current Challenges and Opportunities. Sep. Purif. Technol. 2024, 330, 125501. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global Demand for Rare Earth Resources and Strategies for Green Mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Stratiotou Efstratiadis, V.; Michailidis, N. Sustainable Recovery, Recycle of Critical Metals and Rare Earth Elements from Waste Electric and Electronic Equipment (Circuits, Solar, Wind) and Their Reusability in Additive Manufacturing Applications: A Review. Metals 2022, 12, 794. [Google Scholar] [CrossRef]
- Hwang, B.-N.; Huang, C.-Y.; Wu, C.-H. A TOE Approach to Establish a Green Supply Chain Adoption Decision Model in the Semiconductor Industry. Sustainability 2016, 8, 168. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, J.-W. Integrating Suppliers into Green Product Innovation Development: An Empirical Case Study in the Semiconductor Industry. Bus. Strategy Environ. 2011, 20, 527–538. [Google Scholar] [CrossRef]
- Chen, P.-K.; Ye, Y.; Wen, M.-H. Efficiency of Metaverse on the Improvement of the Green Procurement Policy of Semiconductor Supply Chain—Based on Behaviour Perspective. Resour. Policy 2023, 86, 104213. [Google Scholar] [CrossRef]
- Bui, T.-D. Assessing Sustainable Supply Chain Transparency Practices in Taiwan Semiconductor Industry: A Hierarchical Interdependence Approach. Int. J. Prod. Econ. 2024, 272, 109245. [Google Scholar] [CrossRef]
- Son, Y.; Ko, W.-J.; Ulrich, P.; Sarilmis, R.; Ehm, H. Transportation Product Carbon Footprint: A Framework for Semiconductor Supply Chain. In Proceedings of the 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 15–18 December 2024; pp. 1841–1852. [Google Scholar]
- Eslamipoor, R. An Optimization Model for Green Supply Chain by Regarding Emission Tax Rate in Incongruous Vehicles. Model. Earth Syst. Environ. 2023, 9, 227–238. [Google Scholar] [CrossRef]
- Eslamipoor, R. A Two-Stage Stochastic Planning Model for Locating Product Collection Centers in Green Logistics Networks. Clean. Logist. Supply Chain 2023, 6, 100091. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Yuan, C.; Li, X.; Jiang, Z. A Network Flow Approach to Optimal Scheduling in Supply Chain Logistics. arXiv 2024, arXiv:2411.17544. [Google Scholar]
- Hwang, B.-N.; Shen, Y.-C. Decision Making for Third Party Logistics Supplier Selection in Semiconductor Manufacturing Industry: A Nonadditive Fuzzy Integral Approach. Math. Probl. Eng. 2015, 2015, 918602. [Google Scholar] [CrossRef]
- Ullah, M. Impact of Transportation and Carbon Emissions on Reverse Channel Selection in Closed-Loop Supply Chain Management. J. Clean. Prod. 2023, 394, 136370. [Google Scholar] [CrossRef]
- Mönch, L.; Uzsoy, R.; Fowler, J.W. A Survey of Semiconductor Supply Chain Models Part I: Semiconductor Supply Chains, Strategic Network Design, and Supply Chain Simulation. Int. J. Prod. Res. 2018, 56, 4524–4545. [Google Scholar]
- Chien, C.-F.; Kuo, H.-A.; Lin, Y.-S. Smart Semiconductor Manufacturing for Pricing, Demand Planning, Capacity Portfolio and Cost for Sustainable Supply Chain Management. Int. J. Logist. Res. Appl. 2024, 27, 193–216. [Google Scholar]
- Lerman, L.V.; Benitez, G.B.; Müller, J.M.; de Sousa, P.R.; Frank, A.G. Smart Green Supply Chain Management: A Configurational Approach to Enhance Green Performance through Digital Transformation. Supply Chain Manag. Int. J. 2022, 27, 147–176. [Google Scholar] [CrossRef]
- Fore, V.; Khanna, A.; Tomar, R.; Mishra, A. Intelligent Supply Chain Management System. In Proceedings of the 2016 International Conference on Advances in Computing and Communication Engineering (ICACCE), Durban, South Africa, 28–29 November 2016; pp. 296–302. [Google Scholar]
- Evtodieva, T.E.; Chernova, D.V.; Ivanova, N.V.; Wirth, J. The Internet of Things: Possibilities of Application in Intelligent Supply Chain Management. In Digital Transformation of the Economy: Challenges, Trends and New Opportunities; Ashmarina, S., Mesquita, A., Vochozka, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 395–403. [Google Scholar]
- Yan, J.; Xin, S.; Liu, Q.; Xu, W.; Yang, L.; Fan, L.; Chen, B.; Wang, Q. Intelligent Supply Chain Integration and Management Based on Cloud of Things. Int. J. Distrib. Sens. Netw. 2014, 10, 624839. [Google Scholar] [CrossRef]
- Wu, L.; Yue, X.; Jin, A.; Yen, D.C. Smart Supply Chain Management: A Review and Implications for Future Research. Int. J. Logist. Manag. 2016, 27, 395–417. [Google Scholar] [CrossRef]
- Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial Intelligence Applications in Supply Chain Management. Int. J. Prod. Econ. 2021, 241, 108250. [Google Scholar] [CrossRef]
- Blanco, C.; Caro, F.; Corbett, C.J. The State of Supply Chain Carbon Footprinting: Analysis of CDP Disclosures by US Firms. J. Clean. Prod. 2016, 135, 1189–1197. [Google Scholar] [CrossRef]
- Blanco, C.C. Supply Chain Carbon Footprinting and Climate Change Disclosures of Global Firms. Prod. Oper. Manag. 2021, 30, 3143–3160. [Google Scholar] [CrossRef]
- Yang, Y.; Park, Y.; Smith, T.M.; Kim, T.; Park, H.-S. High-Resolution Environmentally Extended Input–Output Model to Assess the Greenhouse Gas Impact of Electronics in South Korea. Environ. Sci. Technol. 2022, 56, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, A.; Keogh, J.G.; Treiblmaier, H. Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management. Future Internet 2019, 11, 161. [Google Scholar] [CrossRef]
- Sallam, K.; Mohamed, M.; Mohamed, A.W. Internet of Things (IoT) in Supply Chain Management: Challenges, Opportunities, and Best Practices. Sustain. Mach. Intell. J. 2023, 2, 1–32. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Simske, S.J.; Stafford, T.; Treiblmaier, H. Potentials of Blockchain Technologies for Supply Chain Collaboration: A Conceptual Framework. Int. J. Logist. Manag. 2021, 32, 973–994. [Google Scholar] [CrossRef]
- SIA. SIA Comments on EPA Revisions to Subpart I of the GHG Reporting Rule. Available online: https://www.semiconductors.org/wp-content/uploads/2022/10/SIA-comments-on-EPA-revisions-to-Subpart-I-of-the-GHG-Reporting-Rule-10.5.2022.pdf (accessed on 26 January 2025).
- SIA Semiconductor PFAS Consortium. Available online: https://www.semiconductors.org/pfas/ (accessed on 26 January 2025).
- Dahlmann, F.; Roehrich, J.K. Sustainable Supply Chain Management and Partner Engagement to Manage Climate Change Information. Bus. Strategy Environ. 2019, 28, 1632–1647. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain Technology and Its Relationships to Sustainable Supply Chain Management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef]
- Fiehrer, K.; Esparza, A.; Burki, T.; Qian, L. Circularity in Intel’s Semiconductor Manufacturing: Recovery and Reuse; Intel: Santa Clara, CA, USA, 2019. [Google Scholar]
- Mo, J.Y. Technological Innovation and Its Impact on Carbon Emissions: Evidence from Korea Manufacturing Firms Participating Emission Trading Scheme. Technol. Anal. Strateg. Manag. 2022, 34, 47–57. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Liang, T.; Jin, Y.-L.; Shen, B. The Impact of Carbon Trading on Economic Output and Carbon Emissions Reduction in China’s Industrial Sectors. Appl. Energy 2020, 260, 114290. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, W.; Zhao, Z.; Wang, S.; Huang, G.Q. Do Fairness Concerns Matter for ESG Decision-Making? Strategic Interactions in Digital Twin-Enabled Sustainable Semiconductor Supply Chain. Int. J. Prod. Econ. 2024, 276, 109370. [Google Scholar] [CrossRef]
- Ahmad, R.A.R.; Palaniappan, T.; Azmi, N.A. Environmental, social, and governance (ESG) disclosure and firms financial indicators: Analysis of semiconductor industry. Insight J. 2023, 10, 221–241. [Google Scholar]
- Nikolka, M.; Göke, S.; Burkacky, O.; Spiller, P.; Patel, M. Unlocking Net-Zero in Semiconductor Manufacturing. Nat. Rev. Electr. Eng. 2024, 1, 487–488. [Google Scholar] [CrossRef]
Focus | Technology and Measure | References |
---|---|---|
Manufacturing | Installing combustion or thermal abatement systems is an effective approach to removing SF6 emissions. | [45] |
Installing fluorinated greenhouse gas abatement systems is designed to reduce various greenhouse gas emissions, particularly those generated during the etching process in the semiconductor industry. | [46] | |
Installing data acquisition and monitoring systems enables real-time tracking and management of greenhouse gas emissions across the entire production line. | [47] | |
Optimizing plasma-assisted atomic layer deposition (ALD) process parameters, developing high-throughput ALD systems, and innovating new precursors. | [48,49] | |
Implementing green chemical vapor deposition spin-on dielectrics (SOD) can reduce the consumption of polysilazanes and the petroleum-based solvents used to dissolve and cure polysilazanes. | [50] | |
Gradually reducing cleaning gases and introducing additive gases, such as nitrogen, can help minimize NF₃ emissions. | [50] | |
By adjusting parameters such as temperature and pressure to compensate for variations in film properties, N₂O emissions can be reduced. | [50] | |
Optimizing existing solvent transfer methods, such as filling the first stack channel holes with acetylene during the etching process, can enhance efficiency and reduce solvent consumption. | [51,52,53] | |
Replacing natural gas-powered equipment with plasma-wet and thermal-wet scrubbers allows for the use of electricity as an oxidation and neutralization source, as well as a catalyst for treating carbon-based exhaust gases, reducing reliance on fossil fuels. | [50] | |
Recycling | Refurbished electronic devices containing semiconductors can be resold in the secondary market, extending their lifespan and reducing electronic waste. | [42,54] |
Recoverable materials can be extracted from large volumes of semiconductor electronic waste through shredding, crushing, and various classification techniques. | [55,56] | |
Chemicals are used to separate and extract valuable and hazardous substances from semiconductors, enabling their reuse in other products, e.g., bipolar electrolysis can achieve a purity of over 99% for recovered semiconductor compounds and devices. | [57,58] | |
Metallurgical recovery aims to extract metals from discarded semiconductors by controlling metallurgical conditions, e.g., pyrometallurgical processes under vacuum conditions enable the decomposition of GaN, GaAs, and InGaN at lower temperatures, enriching key elements and preventing contamination. | [59,60,61] | |
Techniques such as distillation, adsorption, and membrane separation can recover organic solvents from discarded photoresist materials. | [62] | |
By using chemical coagulation and reverse osmosis, suspended oxide particles can be removed and chemical oxygen demand in wastewater reduced, facilitating the reuse of reclaimed water. | [63] | |
Hydrogen recovery through electrochemical hydrogen compression (EHC) is a promising method for reutilizing hydrogen waste gas in the semiconductor industry, offering significant cost potential and flexibility for the future. | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Yang, Y. Sustainable Transition of the Global Semiconductor Industry: Challenges, Strategies, and Future Directions. Sustainability 2025, 17, 3160. https://doi.org/10.3390/su17073160
Yin Y, Yang Y. Sustainable Transition of the Global Semiconductor Industry: Challenges, Strategies, and Future Directions. Sustainability. 2025; 17(7):3160. https://doi.org/10.3390/su17073160
Chicago/Turabian StyleYin, Yilong, and Yi Yang. 2025. "Sustainable Transition of the Global Semiconductor Industry: Challenges, Strategies, and Future Directions" Sustainability 17, no. 7: 3160. https://doi.org/10.3390/su17073160
APA StyleYin, Y., & Yang, Y. (2025). Sustainable Transition of the Global Semiconductor Industry: Challenges, Strategies, and Future Directions. Sustainability, 17(7), 3160. https://doi.org/10.3390/su17073160