Circular Economy for the Sustainable Disposal and Reuse of Pruning Waste for Generating New Selective Materials
Abstract
:1. Introduction
1.1. Types of Solid Waste
1.2. Pruning Waste
1.2.1. Reuse Options
1.2.2. Mulching
1.2.3. Composting
1.2.4. Improving Soil Properties by Adding Amendments
1.2.5. Biochar Generation
1.2.6. Disease and Pest Management
1.2.7. Carbon Sequestration
1.2.8. Sustainable Farming Practice
1.2.9. Food Sources
1.3. Energy
1.3.1. Bioenergy Production
1.3.2. Pyrolysis
1.3.3. Combustion
1.3.4. Incineration
1.4. Economic Aspects
2. The Purpose of the Work
3. Materials and Methods
3.1. The Linear Programming Model with Boolean Variables
3.2. The Variables
3.3. The Objective Function
3.4. The Constraints
3.5. The Treatment Facilities
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.W.; Shin, H.C. Surface emission of landfill gas from solid waste landfill. Atmos. Environ. 2001, 35, 3445–3451. [Google Scholar]
- Cong, H.; Meng, H.; Chen, M.; Song, W.; Xing, H. Co-processing paths of agricultural and rural solid wastes for a circular economy based on the construction concept of “zero-waste city” in China. Circ. Econ. 2023, 2, 100065. [Google Scholar]
- Chen, C.; Zhai, M.; Wang, X.; Li, W.; Xu, Y.; Bao, Z. Analysis of the dynamics of common industrial solid waste based on input–output: A case study of Shanghai international metropolis in China. Waste Manag. 2024, 177, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.R.G.; Salomon, M.J.; Lowe, A.J.; Cavagnaro, T.R. Review microbial solutions to soil carbon sequestration. J. Clean. Prod. 2023, 417, 137993. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I.; Fai, C.M.; Liang, D.; Madsen, D.O. Mineral waste recycling, sustainable chemical engineering, and circular economy. Results Eng. 2024, 21, 101865. [Google Scholar] [CrossRef]
- Ramírez-Márquez, C.; Posadas-Paredes, T.; Raya-Tapia, A.Y.; Ponce-Ortega, J.M. Natural resource optimization and sustainability in society 5.0: A comprehensive review. Resources 2024, 13, 19. [Google Scholar] [CrossRef]
- Shah, P.; Yang, J.Z. When virtue is its own reward: How norms influence consumers’ willingness to recycle and reuse. Environ. Dev. 2023, 48, 100928. [Google Scholar]
- Muscas, D.; Orlandi, F.; Petrucci, R.; Proietti, C.; Ruga, L.; Fornaciari, M. Effects of urban tree pruning on ecosystem services performance. Trees For. People 2024, 15, 100503. [Google Scholar]
- Gertsakis, J.; Lewis, H. Sustainability and the Waste Management Hierarchy: A Discussion Paper on the Waste Management Hierarchy and Its Relationship to Sustainability; Product Stewardship Centre of Excellence, Institute for Sustainable Futures, University of Technology: Sydney, NSW, Australia, 2003; p. 25. [Google Scholar]
- Mpofu, A.B.; Kaira, W.M.; Oyekola, O.O.; Welz, P.J. Anaerobic co-digestion of tannery effluents: Process optimization for resource recovery, recycling and reuse in a circular bioeconomy. Process Saf. Environ. Prot. 2022, 158, 547–559. [Google Scholar]
- Hu, H.; Zeng, X.; Zheng, K.; Zeng, Z.; Dai, C.; Huo, X. Risk assessment and partitioning behavior of PFASs in environmental matrices from an e-waste recycling area. Sci. Total Environ. 2023, 905, 167707. [Google Scholar]
- Gordon, A.M.; Matilla, A.L.; Barrio, M.I.P.; Escamilla, A.C. From waste to resource: Exploring the recyclability and performance of gypsum-graphene nanofiber composites. Resour. Conserv. Recycl. Adv. 2024, 23, 200222. [Google Scholar] [CrossRef]
- Liu, X.; Asghari, V.; Lam, C.-M.; Hsu, S.-C.; Xuana, D.; Angulo, S.C.; John, V.M.; Basavaraj, A.S.; Gettu, R.; Xiao, J.; et al. Review discrepancies in life cycle assessment applied to concrete waste recycling: A structured review. J. Clean. Prod. 2024, 434, 140155. [Google Scholar]
- Guo, L.; Jina, Y.; Xiaoc, Y.; Tana, L.; Tiana, X.; Dinga, Y.; Hea, K.; Dua, A.; Lia, J.; Yia, Z.; et al. Energy-efficient and environmentally friendly production of starch rich duckweed biomass using nitrogen-limited cultivation. J. Clean. Prod. 2019, 251, 119726. [Google Scholar]
- Sang, J.; Li, Y.; Yang, J.; Wu, T.; Xiang, L.; Zhao, Y.; Guan, W.; Xu, J.; Maorong, C.M.; Singhal, S.C. Energy harvesting from algae using large-scale flat-tube solid oxide fuel cells. Cell Rep. Phys. Sci. 2023, 4, 101454. [Google Scholar] [CrossRef]
- Lavagi, V.; Kaplan, J.; Vidalakis, G.; Ortiz, M.; Rodriguez, M.V.; Amador, M.; Hopkins, F.; Ying, S.; Pagliaccia, D. Recycling agricultural waste to enhance sustainable greenhouse agriculture: Analyzing the cost-effectiveness and agronomic benefits of bokashi and biochar byproducts as soil amendments in citrus nursery production. Sustainability 2024, 16, 6070. [Google Scholar] [CrossRef]
- Vijaya, A.; Meisterknecht, J.P.S.; Angreani, L.S.; Wicaksono, H. Advancing sustainability in the automotive sector: A critical analysis of environmental, social, and governance (ESG) performance indicators. Clean. Environ. Syst. 2025, 16, 100248. [Google Scholar] [CrossRef]
- Verter, V.; Boyaci, T.; Galbreth, M. Design for reusability and product reuse under radical innovation. Sustain. Anal. Model. 2023, 3, 100021. [Google Scholar]
- Bubinek, R.; Knaack, U.; Cimpan, C. Reuse of consumer products: Climate account and rebound effects potential. Sustain. Prod. Consum. 2025, 54, 190–201. [Google Scholar]
- Dtie, U.N.E.P. Converting waste agricultural biomass into a resource. In Compendium of Technologies; United Nations Environment Program: Osaka, Japan, 2009. [Google Scholar]
- Grohmann, D.; Petrucci, R.; Torre, L.; Micheli, M.; Menconi, M.E. Street trees’ management perspectives: Reuse of Tilia sp.’s running waste for insulation purposes. Urban For. Urban Green. 2019, 38, 177–182. [Google Scholar]
- Lago, A.; Sanz, M.; Gordón, J.M.; Fermoso, J.; Pizarro, P.; Serrano, D.P.; Moreno, I. Enhanced production of aromatic hydrocarbons and phenols by catalytic co-pyrolysis of fruit and garden pruning wastes. J. Environ. Chem. Eng. 2022, 10, 107738. [Google Scholar]
- Kougioumtzis, M.A.; Tsiantzi, S.; Athanassiadou, E.; Karampinis, E.; Grammelis, P.; Kakaras, E. Valorization of olive tree pruning for the production of particleboards. Evaluation of the particleboard properties at different substitution levels. Ind. Crops Prod. 2023, 204, 117383. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Sun, Z.; Zheng, J.; Liu, E.; Feng, L.; Feng, C.; Si, P.; Bai, W.; Cai, Q.; et al. Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate. Agric. Water Manag. 2019, 212, 203–210. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Fan, D.; Jia, G.; Wang, Y.; Yu, X. The effectiveness of mulching practices on water erosion control: A global meta-analysis. Geoderma 2023, 438, 116643. [Google Scholar] [CrossRef]
- Sapakhova, Z.; Islamb, K.R.; Toishimanov, M.; Zhapar, K.; Daurov, D.; Daurova, A.; Raissova, N.; Kanat, R.; Shamekova, M.; Zhambakin, K. Mulching to improve sweet potato production. J. Agric. Food Res. 2024, 15, 101011. [Google Scholar] [CrossRef]
- Teutscherova, N.; Vazquez, F.; Santana, D.; Navas, M.; Masaguer, A.; Benito, M. Influence of pruning waste compost maturity and biocharon carbon dynamics in acid soil: Incubation study. Eur. J. Soil Biol. 2017, 78, 66–74. [Google Scholar] [CrossRef]
- Cestonaro, T.; de Vasconcelos-Barros, R.T.; de Matos, A.T.; Costa, M.A. Full scale composting of food waste and tree pruning: How large is the variation on the compost nutrients over time? Sci. Total Environ. 2021, 754, 142078. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Zhou, J.; Yuan, Q.; Hu, N. Fallen leaves are superior to tree pruning as bulking agents in aerobics composting disposing kitchen waste. Bioresour. Technol. 2022, 346, 126374. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Wiesmeier, M.; Hurtarte, L.C.C.; Fella, F.; Martínez-Mena, M.; Almagro, M.; Martínez, E.G.; Kögel-Knabner, I. Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Citrus tree orchard. Soil Tillage Res. 2021, 213, 105129. [Google Scholar] [CrossRef]
- Taguas, E.V.; Marín-Moreno, V.; Díez, C.M.; Mateos, L.; Barranco, D.; Mesas-Carrascosa, F.-J.; García-Ferrera, R.P.A.; Quero, J.L. Opportunities of super high-density olive orchard to improve soil quality: Management guidelines for application of pruning residues. J. Environ. Manag. 2021, 293, 112785. [Google Scholar] [CrossRef]
- Serrano, D.; Sánchez-Delgado, S.; Horvat, A.; Marugán-Cruz, C.; Batuecas, E.; Kelebopile, L.; Kwapinska, M. Non-recyclable municipal solid waste characterization and pyrolysis for energy recovery. Bioresour. Technol. 2025, 415, 131641. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Liu, Y.; Mendoza-Perilla, P.; Clavier, K.A.; Tolaymat, T.M.; Bowden, J.A.; Solo-Gabriele, H.M.; Townsend, T.G. Municipal solid waste incineration MSWI) ash co-disposal: Influence on per- and polyfluoroalkyl substances PFAS) concentration in landfill leachate. Waste Manag. 2022, 144, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Aguiar, E.; Gasco´, G.; Lado, M.; Méndez, A.; Paz-Ferreiro, J.; Paz-Gonzalez, A. New insights into the production, characterization and potential uses of vineyard pruning waste biochars. Waste Manag. 2023, 171, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Noguès, I.; Miritana, V.M.; Passatore, L.; Zacchini, M.; Peruzzi, E.; Carloni, S.; Pietrini, F.; Marabottini, R.; Chiti, T.; Massaccesi, L.; et al. Biochar soil amendment as carbon farming practice in a Mediterranean environment. Geoderma Reg. 2023, l33, e00634. [Google Scholar] [CrossRef]
- Ruan, R.; Wang, Y. Effects of biochar amendment on root growth and plant water status depend on maize genotypes. Agric. Water Manag. 2024, 293, 108688. [Google Scholar] [CrossRef]
- Shahrun, M.S.; Abdul-Rahman, M.H.; Baharom, N.A.; Jumat, F.; Saad, M.J.; Mail, M.F.; Zawawi, N.N.; Suherman, F.H.S. Design of a pyrolysis system and the characterization data of biochar produced from coconut shells, carambola pruning, and mango pruning using a low-temperature slow pyrolysis process. Data Brief 2024, 52, 109997. [Google Scholar] [CrossRef]
- Acosta, A.C.; Arias, C.A.; Biller, P.; Sørensen, P.; Marulanda, V.F.; Brix, H. Optimizing resource efficiency through hydrothermal carbonization and engineered wetland systems: A study on carbon sequestration and phosphorus recovery potential. J. Clean. Prod. 2024, 442, 140962. [Google Scholar] [CrossRef]
- Aare, A.K.; Lund, S.; Hauggaard-Nielsen, H. Exploring transitions towards sustainable farming practices through participatory research-the case of Danish farmers’ use of species mixtures. Agric. Syst. 2021, 189, 103053. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Papamichael, I.; Voukkali, I.; Gimeno, A.P.; Candel, M.B.A.; Navarro-Pedreño, J.; Zorpas, A.A.; Lucas, I.G. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass Bioenergy 2011, 35, 3453–3464. [Google Scholar] [CrossRef]
- Dangulla, M.; Manaf, L.A.; Aliero, M.M. The contribution of small and medium diameter trees to biomass and carbon pools in Yabo, Sokoto State, Nigeria. Acad. Environ. Sci. Sustain. 2025, 2, 1–12. [Google Scholar] [CrossRef]
- Lodato, C.; Hamelin, L.; Tonini, D.; Astrup, T.F. Towards sustainable methane supply from local bioresources: Anaerobic digestion, gasification, and gas upgrading. Appl. Energy 2022, 323, 119568. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Li, Y.; Han, L. Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure. Bioresour. Technol. 2020, 302, 122850. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Ruiz, L.R.; Pardo, R.; Ruiz, B.; Díaz-Somoano, M.; Calvo, L.F.; Paniaguac, S.; Fuentea, E. Progress and challenges in valorization of biomass waste from ornamental trees pruning through pyrolysis processes. Prospects in the bioenergy sector. Environ. Res. 2024, 249, 118388. [Google Scholar]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar]
- van-Pinxteren, D.; Engelhardt, V.; Mothes, F.; Poulain, L.; Fomba, K.W.; Spindler, G.; Cuesta-Mosquera, A.; Tuch, T.; Muller, T.; Wiedensohler, A.; et al. Residential wood combustion in Germany: A twin-site study of local village contributions to particulate pollutants and their potential health effects. ACS Environ. Au 2024, 4, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, P.; Cai, W.; Shi, Z.; Liu, J.; Cao, Y.; Li, W.; Wu, W.; Li, L.; Liu, J.; et al. Identifying administrative villages with an urgent demand for rural domestic sewage treatment at the county level: Decision making from China. Sustainability 2025, 17, 800. [Google Scholar] [CrossRef]
- Deng, J.; Liu, T.-S.; Yao, M.; Yi, X.; Bai, G.-X.; Huanga, Q.-R.; Li, Z. Comparative study of the combustion and kinetic characteristics of fresh and naturally aged pine wood. Fuel 2023, 343, 127962. [Google Scholar]
- Kougioumtzis, M.A.; Kanaveli, I.P.; Karampinis, E.; Elis, P.G.; Kakaras, E. Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency. Renew. Energy 2021, 171, 516–525. [Google Scholar]
- Robinson, J.S.; Leinweber, P. Effects of pyrolysis and incineration on the phosphorus fertilizer potential of bio-waste-and plant-based materials. Waste Manag. 2023, 172, 358–367. [Google Scholar]
- Jadlovec, M.; Výtisk, J.; Honus, S.; Pospišilík, V.; Bassel, N. Pollutants production, energy recovery and environmental impact of sewage sludge co-incineration with biomass pellets. Environ. Technol. Innov. 2023, 32, 103400. [Google Scholar]
- Zu, L.; Wu, D.; Lyu, S. How to move from conflict to opportunity in the not-in-my-backyard dilemma: A case study of the Asuwei waste incineration plant in Beijing. Environ. Impact Assess. Rev. 2024, 104, 107326. [Google Scholar]
- Yirijor, J.; Bere, A.A.T. Production and characterization of coconut shell charcoal-based bio-briquettes as an alternative energy source for rural communities. Heliyon 2024, 10, e35717. [Google Scholar] [PubMed]
- Medic, D. Investigation of Torrefaction Process Parameters and Characterization of Torrefied Biomass. A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2012; p. 128. [Google Scholar]
- Feofilova, E.P.; Mysyakina, I.S. Lignin: Chemical structure, biodegradation, and practical application a review. Appl. Biochem. Microbiol. 2016, 52, 573–581. [Google Scholar]
- Cassoni, A.C.; Costa, P.; Mota, I.; Vasconcelos, M.W.; Pintado, M. Recovery of lignins with antioxidant activity from Brewer’s spent grain and olive tree pruning using deep eutectic solvents. Chem. Eng. Res. Des. 2023, 192, 34–43. [Google Scholar]
- Cavinato, C.; Fatone, F.; Bolzonella, D.; Pavan, P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full-scale experiences. Bioresour. Technol. 2015, 101, 545–550. [Google Scholar]
- Rincón, E.; Espinosa, E.; García-Domínguez, M.T.; Balu, A.M.; Vilaplana, F.; Serrano, L.; Jimẻnez-Quero, A. Bioactive pectic polysaccharides from bay tree pruning waste: Sequential subcritical water extraction and application in active food packaging. Carbohydr. Polym. 2021, 272, 118477. [Google Scholar] [PubMed]
- Vercruysse, W.; Derison, F.; Joos, B.; Hardy, A.; Hamed, H.; Schreurs, S.; Safari, M.; Marchal, W. Biomass residue streams as potential feedstocks for the production of activated-carbon-based electrodes for supercapacitors. ACS Sustain. Resour. Manag. 2024, 1, 124–132. [Google Scholar]
- Amchova, P.; Siska, F.; Ruda-Kucerova, J. Food safety and health concerns of synthetic food colors: An update. Toxics 2024, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Pow, D.; Dawson, K.; Mitchell, D.R.G.; Rawal, A.; Hook, J.; Taherymoosavi, S.; Van-Zwieten, L.; Rust, J.; Donne, S.; et al. Feeding biochar to cows: An innovative solution for improving soil fertility and farm productivity. Pedosphere 2015, 25, 666–679. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Saygin, D.; Gielen, D.J.; Draeck, M.; Worrell, E.; Patel, M.K. Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers. Renew. Sustain. Energy Rev. 2014, 40, 1153–1167. [Google Scholar] [CrossRef]
- David, L.O.; Aigbavboa, C.; Adepoju, O.; Nnamdi, N. Applying circular economy strategies in mitigating the perfect storm: The built environment context. Sustain. Futures 2025, 9, 100444. [Google Scholar] [CrossRef]
- de Mesquita, R.M.F.; dal Prá, J.C.; Fontana, R.C.; Montipó, S.; Baudel, H.M.; Diebold, E.; Schneider, W.D.H.; Camassola, M. Processing of persimmon tree pruning waste through the circular economy: Lignin nanoparticles and cellulosic ethanol production. Renew. Energy 2025, 238, 121932. [Google Scholar] [CrossRef]
- Broitman, D.; Raviv, O.; Ayalon, O.; Kan, I. Designing an agricultural vegetative waste-management system under uncertain prices of treatment-technology output products. Waste Manag. 2018, 75, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Elqadhi, M.E.R.; Škrbić, S.V.; Mohamoud, O.A.; Ašonja, A.N. Energy integration of corn cob in the process of drying the corn seeds. Therm. Sci. 2024, 28, 3325–3336. [Google Scholar] [CrossRef]
- McDonald, L.J.; Pinto, A.S.S.; Arshad, M.N.; Rowe, R.L.; Donnison, I.; McManus, M. Techno-economic and life cycle assessments of waste recovery for crop growth in glasshouses. J. Clean. Prod. 2023, 432, 139650. [Google Scholar] [CrossRef]
- Díaz, L.; Seoñrans, S.; González, L.A.; Escalante, D.J. Assessment of the energy potential of agricultural residues in the Canary Islands: Promoting circular economy through bioenergy production. J. Clean. Prod. 2024, 437, 140735. [Google Scholar] [CrossRef]
- Castro, A.C.M.; Carvalho, J.P.; Ribeiro, M.C.S.; Meixedo, J.P.; Silva, F.J.G.; Fiúza, A.; Dini, L.M.L. An integrated recycling approach for GFRP pultrusion wastes: Recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets. J. Clean. Prod. 2014, 66, 420e430. [Google Scholar]
- Cheng, C.; Thompson, R.G. Application of boolean logic and GIS for determining suitable locations for temporary disaster waste management sites. Int. J. Disaster Risk Reduct. 2016, 20, 78–92. [Google Scholar]
- Kan, I.; Rapaport-Rom, M. Regional blending of fresh and saline irrigation water: Is it efficient? Water Resour. Res. 2012, 48, W07517. [Google Scholar] [CrossRef]
- LINGO. The Modeling Language and Optimizer; Technical Support: 312; LINGO/Win 64, 19.0.55 (5 May 2022), LINDO API 13.0.4099.342; Lingo Systems Inc.: Chicago, IL, USA, 2022; pp. 988–9421. [Google Scholar]
- Taha, H.A. Operations Research: An introduction, 10th ed.; Prentice Hall: Hoboken, NJ, USA, 2013; p. 848. [Google Scholar]
Treatment Method | The Process | Percentage of Pruning Waste | Product Outcome and Results | References |
---|---|---|---|---|
Mulching | Shredding for soil cover using straw, polyethylene, and plastic | 100 | Maintaining soil moisture and temperature | [24,25,26,27] |
Composting | Anaerobic wastes: sorting to desired calories; minimal contamination | 30–35 | Soil amendment: increased carbon addition and disease reduction | [28,29,30,55] |
Bio charcoaling | Closed thermochemical: 200–300 °C; similar to pyrolysis | 100 | Additive for electricity generation and heating | [33,36,37,38,56] |
Food production | Extracted polysaccharides; lignin | 40–60 | Supplementary food for humans | [57,58,59,60,61,62,63] |
Animal feed | Mixing according to ratio and animal species | 10–50 | Wet food as a substitute for fodder | [64] |
Pyrolysis | Anaerobic conversion of biomass: thermochemical: 300–900 °C | 100 | Heat for local use; biochar | [33,39,47,65] |
Combustion | High-temperature burning | 100 | Fuel; rocket propulsion | [23,51] |
Incineration | Heating primarily hazardous solid wastes | 100 | Flue gas; heating source | [53,54] |
Anaerobic digestion | Thermophilic: bacterial dismantling at 50–60 °C | 20–50 | Biogas for electricity; low-quality compost | [60] |
Steam generation | Biomass burning; fertilizers | 100 | Steam for industrial plants | [66] |
Geographical Region | Geographical–Agricultural Subdistrict | Agricultural Areas, Ha | Residual Pruning Wastes, Ton/Y | Residual Regional Pruning Wastes, Ton/Y |
---|---|---|---|---|
1 Northeast | Golan | 8249 | 54,857 | 155,219 |
Zefat | 17,863 | 85,692 | ||
The Jordan Valley | 3206 | 14,670 | ||
2 Northwest | Acre | 21,416 | 79,911 | 137,140 |
Hadera–Haifa | 13,811 | 57,229 | ||
3 North | Kinneret | 15,930 | 72,498 | 249,431 |
Jezrael | 38,338 | 176,933 | ||
4 Center | The Sharon | 10,896 | 54,088 | 85,887 |
Petach-Tikva | 7948 | 31,799 | ||
5 Southwest | Ashkelon | 48,674 | 220,791 | 283,045 |
Rehovot–Tel Aviv | 12,699 | 62,254 | ||
6 Southeast | Jerusalem | 6927 | 48,085 | 85,167 |
Ramla | 8537 | 37,082 | ||
7 South | Beer-Sheva-Besor | 74,341 | 323,739 | 344,024 |
Arava-Dead Sea | 4386 | 20,285 |
Dimension and Definitions of Variables/Comments | Meaning of Designation | Parameter Designation |
---|---|---|
i = 1, …, N | Number of geographic regions (7). | N |
1—North-East 2—North-West 3—North 4—Center 5—South-West 6—South-East 7—South | ||
j = 1, …, F | Number of alternative treatment options (4). | F |
1—Composting 2—Mulching 3—Steam generation 4—Biochar production | ||
Ton per year | Annual Amount of generated pruning in the i region. | wi |
Ton per year | Maximal capacity of treatment facility of type j. | cj |
Supplementary Boolean (binary) variable | bi | |
US$ per ton | Revenue from sale of the new product accepted at treatment site j (out of all raw material entered into the facility). | Pj |
US$ per ton | Mean investment in treating the pruning wastes in facility j. | vj |
US$ per ton | Operating and maintenance expenses in treating the pruning wastes in facility j. | oj |
Distances kilometer (km) based on mean values between district i and district k. | Mean weight distance of pruning wastes transportation from region i to region k. | dik |
US Dollars per ton per km | Cost of transporting the pruning wastes to the treatment facility. | tc |
Treatment Facility Type J | Treatment Type | Maximal Capacity, T/Y, Cj | Mean Investment in Treatment Facility, US$/T, Vj | Operation and Maintenance Expenses, US$/T, Oj | Final Value of Product, US$/T, Pj |
---|---|---|---|---|---|
1 | Compost preparation | 54,000 | 19 | 37 | 78 |
2 | Crushing and soil mulching and/or crumbling into the soils | 902,000 | 6 | 7 | 15 |
3 | Steam generation by raw material burning | 120,000 | 11 | 31 | 39 |
4 | Pyrolysis for biocharcoal production | 150,000 | 13 | 58 | 120 |
Region of Recycling | North-East | North-West | North | Center | South-West | South-East | South | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Golan | Zefat | The Jordan | Accre | Hadera+Haifa | Kinneret | Jezrael | The Sharon | Petach Tikva | Ashkelon | Rehovot+Tel-Aviv | Jerusalem | Ramla | Beer-Sheva | The Arava | ||
1 North-East | Golan | 37 | 94 | 87 | 118 | 84 | 99 | 147 | 204 | 218 | 204 | 190 | 189 | 247 | 322 | |
Zefat | 37 | 84 | 70 | 102 | 69 | 84 | 133 | 149 | 203 | 190 | 177 | 175 | 234 | 311 | ||
The Jordan | 94 | 84 | 76 | 73 | 43 | 47 | 79 | 99 | 148 | 133 | 117 | 116 | 174 | 249 | ||
2 North-West | Accre | 87 | 70 | 76 | 58 | 54 | 56 | 100 | 112 | 166 | 157 | 153 | 148 | 205 | 287 | |
Hadera+Haifa | 118 | 102 | 73 | 58 | 60 | 47 | 66 | 74 | 129 | 120 | 120 | 114 | 169 | 253 | ||
3 North | Kinneret | 84 | 69 | 43 | 54 | 60 | 36 | 84 | 101 | 154 | 141 | 130 | 127 | 186 | 265 | |
Jezrael | 99 | 84 | 47 | 56 | 47 | 36 | 70 | 86 | 140 | 127 | 119 | 115 | 173 | 253 | ||
4 Center | The Sharon | 147 | 133 | 79 | 100 | 66 | 84 | 70 | 41 | 91 | 78 | 75 | 69 | 125 | 208 | |
Petach Tikva | 204 | 149 | 99 | 112 | 74 | 101 | 86 | 41 | 76 | 67 | 75 | 67 | 117 | 201 | ||
5 South-West | Ashkelon | 218 | 203 | 148 | 166 | 129 | 154 | 140 | 91 | 76 | 40 | 72 | 65 | 72 | 155 | |
Rehovot+ Tel-Aviv | 204 | 190 | 133 | 157 | 120 | 141 | 127 | 78 | 67 | 40 | 53 | 45 | 71 | 156 | ||
6 South-East | Jerusalem | 190 | 177 | 117 | 153 | 120 | 130 | 119 | 75 | 75 | 72 | 53 | 30 | 78 | 155 | |
Ramla | 189 | 175 | 116 | 148 | 114 | 127 | 115 | 69 | 67 | 65 | 45 | 30 | 79 | 159 | ||
7 South | Beer-Sheva | 247 | 234 | 174 | 205 | 169 | 186 | 173 | 125 | 117 | 72 | 71 | 78 | 79 | 105 | |
The Arava | 322 | 311 | 249 | 287 | 253 | 265 | 253 | 208 | 201 | 155 | 156 | 155 | 159 | 105 |
Location of Recycling Facility | Use of Recycled PWs (Objective Function—10,358,879 US$/y) |
---|---|
Facility to be constructed in region 1—North-East | Soil mulching |
Facility to be constructed in region 2—North-West | Pyrolysis for biocharcoal production |
Facility to be constructed in region 3—North | Soil mulching |
Facility to be constructed in region 4—Center | Pyrolysis for biocharcoal production |
Facility to be constructed in region 5—South-West | Soil mulching |
Facility to be constructed in region 6—South-East | Pyrolysis for biocharcoal production |
Facility to be constructed in region 7—South | Soil mulching |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shwartz, G.; Oron, G. Circular Economy for the Sustainable Disposal and Reuse of Pruning Waste for Generating New Selective Materials. Sustainability 2025, 17, 3163. https://doi.org/10.3390/su17073163
Shwartz G, Oron G. Circular Economy for the Sustainable Disposal and Reuse of Pruning Waste for Generating New Selective Materials. Sustainability. 2025; 17(7):3163. https://doi.org/10.3390/su17073163
Chicago/Turabian StyleShwartz, Gal, and Gideon Oron. 2025. "Circular Economy for the Sustainable Disposal and Reuse of Pruning Waste for Generating New Selective Materials" Sustainability 17, no. 7: 3163. https://doi.org/10.3390/su17073163
APA StyleShwartz, G., & Oron, G. (2025). Circular Economy for the Sustainable Disposal and Reuse of Pruning Waste for Generating New Selective Materials. Sustainability, 17(7), 3163. https://doi.org/10.3390/su17073163