Hydrosphere Under the Driving of Human Activity and Climate Change: Status, Evolution, and Strategies
1. The Critical Role of the Hydrosphere in the Earth’s System
2. Emerging Threats to Hydrospheric Stability
3. Knowledge Gaps in Hydrospheric Research
4. Papers in This Topic
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Wang, F.; Yang, H.; Zhang, Y.; Wang, S.; Liu, K.; Qi, Z.; Chai, X.; Wang, L.; Wang, W.; Banadkooki, F.B.; et al. Solute Geochemistry and Water Quality Assessment of Groundwater in an Arid Endorheic Watershed on Tibetan Plateau. Sustainability 2022, 14, 15593.
- Guo, B.; Yang, P.; Zhou, Y.; Ai, H.; Li, X.; Kang, R.; Lv, Y. Numerical Simulation of Carbon Tetrachloride Pollution-Traceability in Groundwater System of an Industrial City. Sustainability 2022, 14, 16113.
- Deng, S.; Li, C.; Jiang, X.; Zhao, T.; Huang, H. Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China. Water 2023, 15, 26.
- Wang, L.; Nie, Z.; Yuan, Q.; Liu, M.; Cao, L.; Zhu, P.; Lu, H.; Feng, B. Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin. Water 2023, 15, 457.
- Xu, M.; Hu, C.; Zhu, L.; Song, G.; Peng, W.; Yang, S.; Song, J. Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China. Water 2023, 15, 713.
- Yang, C.; Wu, J.; Li, P.; Wang, Y.; Yang, N. Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water 2023, 15, 772.
- An, G.; Kang, H.; Fu, R.; Xu, D.; Li, J. Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer. Water 2023, 15, 1710.
- Xu, R.; Gu, C.; Qiu, D.; Wu, C.; Mu, X.; Gao, P. Analysis of Runoff Changes in the Wei River Basin, China: Confronting Climate Change and Human Activities. Water 2023, 15, 2081.
- Zhu, Y.; Yang, H.; Xiao, Y.; Hao, Q.; Li, Y.; Liu, J.; Wang, L.; Zhang, Y.; Hu, W.; Wang, J. Identification of Hydrochemical Characteristics, Spatial Evolution, and Driving Forces of River Water in Jinjiang Watershed, China. Water 2024, 16, 45.
- Yang, S.; Zhao, Z.; Wang, S.; Xiao, S.; Xiao, Y.; Wang, J.; Wang, J.; Yuan, Y.; Ba, R.; Wang, N.; et al. Hydrogeochemical Insights into the Sustainable Prospects of Groundwater Resources in an Alpine Irrigation Area on Tibetan Plateau. Sustainability 2024, 16, 9229.
- Wang, X.; Gong, L.; Liu, Y.; Wang, Y.; Wang, Q.; Song, M.; Xiao, P.; Shi, Z. Investigating the Hydrological Relationship between the North Taihang Tunnel and Tianshengqiao Nine Falls. Water 2024, 16, 1549.
- Zhu, Y.; Liu, Y.; Xiao, Y.; Liu, J.; Zhao, Z.; Li, Y.; Hao, Q.; Liu, C.; Li, J. Construction of Ecological Security Patterns Incorporating Multiple Types of Ecological Service Functions for Developed Coastal Regions: A Case Study in Jinjiang Watershed, China. Land 2024, 13, 1227.
- Zheng, Z.-l.; Xie, B.; Wu, C.-m.; Zhou, L.; Zhang, K.; Zhang, B.-c.; Yang, P.-h. Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China. Water 2024, 16, 2859.
- Gana, B.; Rodes, J.M.A.; Díaz, P.; Balboa, A.; Frías, S.; Ávila, A.; Rivera, C.; Sáez, C.A.; Lavergne, C. Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile. Hydrology 2024, 11, 174.
- Yang, H.; Wei, J.; Shi, K. Hydrochemical and Isotopic Characteristics and the Spatiotemporal Differences of Surface Water and Groundwater in the Qaidam Basin, China. Water 2024, 16, 169.
- Zhang, J.; Laghari, A.A.; Guo, Q.; Liang, J.; Kumar, A.; Liu, Z.; Shen, Y.; Wei, Y. Evolution of Land Use and Its Hydrological Effects in the Fenhe River Basin Under the Production–Living–Ecological Space Perspective. Sustainability 2024, 16, 11170.
- Shi, J.; Zhang, Y.; Lai, Y.; Yang, R.; Cai, M.; Fan, S.; Gu, X. Study on Natural Attenuation of Groundwater Organic Pollutants by Integrating Microbial Community Dynamics and Isotope Analysis. Water 2025, 17, 555.
References
- Peters, N.E.; Böhlke, J.K.; Brooks, P.D.; Burt, T.P.; Gooseff, M.N.; Hamilton, D.P.; Mulholland, P.J.; Roulet, N.T.; Turner, J.V. 2.11—Hydrology and Biogeochemistry Linkages. In Treatise on Water Science; Wilderer, P., Ed.; Elsevier: Oxford, UK, 2011; pp. 271–304. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Yang, H.; Wang, L.; Han, J.; Hao, Q.; Wang, J.; Zhao, Z.; Hu, W.; Wang, S.; et al. Interaction regimes of surface water and groundwater in a hyper-arid endorheic watershed on Tibetan Plateau: Insights from multi-proxy data. J. Hydrol. 2024, 644, 132020. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The changing nature of groundwater in the global water cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef] [PubMed]
- Fitts, C.R. 1—Groundwater: The Big Picture. In Groundwater Science, 2nd ed.; Fitts, C.R., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 1–22. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, J.; Wan, J.; Xu, J.; Zheng, C.; Borthwick, A.G.L. Global river economic belts can become more sustainable by considering economic and ecological processes. Commun. Earth Environ. 2024, 5, 18. [Google Scholar] [CrossRef]
- Zardi, D. Atmosphere and ocean interactions. Rend. Lincei. Sci. Fis. E Nat. 2024, 35, 311–325. [Google Scholar] [CrossRef]
- Trofimov, V.T.; Korolev, V.A.; Kharkina, M.A. Ecological Functions as Fundamental Integral Characteristics of Peculiarities of Abiotic Environments of Ecosystem: Lithosphere, Pedosphere, Atmosphere, and Hydrosphere. Mosc. Univ. Geol. Bull. 2024, 79, 467–476. [Google Scholar] [CrossRef]
- Li, Q.; Li, P.; Elumalai, V. Identification and apportionment of groundwater pollution sources in the Guanzhong region based on PMF model. Hum. Ecol. Risk Assess. Int. J. 2025, 31, 30–52. [Google Scholar] [CrossRef]
- Yu, X.; Luo, L.; Hu, P.; Tu, X.; Chen, X.; Wei, J. Impacts of sea-level rise on groundwater inundation and river floods under changing climate. J. Hydrol. 2022, 614, 128554. [Google Scholar] [CrossRef]
- Hao, Q.; Shao, J.; Cui, Y.; Zhang, Q.; Huang, L. Optimization of groundwater artificial recharge systems using a genetic algorithm: A case study in Beijing, China. Hydrogeol. J. 2018, 26, 1749–1761. [Google Scholar] [CrossRef]
- Ou, J.; Ding, B.; Feng, P.; Chen, Y.; Yu, L.; Liu, D.L.; Srinivasan, R.; Zhang, X. How to stop groundwater drawdown in North China Plain? Combining agricultural management strategies and climate change. J. Hydrol. 2025, 647, 132352. [Google Scholar] [CrossRef]
- Taucare, M.; Viguier, B.; Figueroa, R.; Daniele, L. The alarming state of Central Chile’s groundwater resources: A paradigmatic case of a lasting overexploitation. Sci. Total Environ. 2024, 906, 167723. [Google Scholar] [CrossRef]
- Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-time evolution of land subsidence in the National Capital Region of India using ALOS-1 and Sentinel-1 SAR data: Evidence for groundwater overexploitation. J. Hydrol. 2022, 605, 127329. [Google Scholar] [CrossRef]
- Bockstiegel, M.; Richard-Cerda, J.C.; Muñoz-Vega, E.; Haghighi, M.H.; Motagh, M.; Lalehzari, R.; Schulz, S. Simulation of present and future land subsidence in the Rafsanjan plain, Iran, due to groundwater overexploitation using numerical modeling and InSAR data analysis. Hydrogeol. J. 2024, 32, 289–305. [Google Scholar] [CrossRef]
- Salcedo-Sánchez, E.R.; Esteller, M.V.; Garrido Hoyos, S.E.; Martínez-Morales, M. Groundwater optimization model for sustainable management of the Valley of Puebla aquifer, Mexico. Environ. Earth Sci. 2013, 70, 337–351. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Y.; Yang, S.; Zhao, Z.; Wang, S.; Xiao, S.; Wang, J.; Zhang, Y.; Wang, J.; Yuan, Y.; et al. Geochemical fingerprints, evolution, and driving forces of groundwater in an alpine basin on Tibetan Plateau: Insights from unsupervised machine learning and objective weight allocation approaches. J. Hydrol. Reg. Stud. 2024, 56, 102054. [Google Scholar] [CrossRef]
- Qu, S.; Wang, C.; Liang, X.; Luo, A.; Shi, Z.; Wang, G.; Yu, R. Regional characteristics of groundwater sulfate source and evolution in the multi-layer aquifer system of the northern Shaanxi coal mine base, northwestern China: Evidence from geochemical and isotopic fingerprints. J. Hazard. Mater. 2024, 480, 135866. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.; Xiao, D.; Zhu, Y.; Yin, S.; Zhang, Y. Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. CATENA 2022, 212, 106020. [Google Scholar] [CrossRef]
- Hu, W.; Xiao, Y.; Wang, L.; Zhang, Y.; Feng, M.; Shi, W.; He, C.; Wen, Y.; Yang, H.; Han, J.; et al. Spatial variability, source identification, and partitioning of groundwater constituents in a typical lakeside plain on Yungui Plateau. Process Saf. Environ. Prot. 2024, 191, 2402–2415. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, B.; Tuo, Y.; Zhan, X.; Xie, X. Chemical evolution characteristics and influencing factors of groundwater in the saline and fresh water funnel area in Hengshui City, North China. Sci. Rep. 2025, 15, 3276. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Du, F.; Zwiers, F.W.; Feng, G. Increasing certainty in projected local extreme precipitation change. Nat. Commun. 2025, 16, 850. [Google Scholar] [CrossRef]
- Boccaletti, G. Framing water problems with global statistics is both powerful and misleading. Nat. Water 2023, 1, 660–661. [Google Scholar] [CrossRef]
- Majumder, S.; Fatma, R. Alteration of shoreline in a macrotidal setting induced by rising sea level: A case study of Purba Medinipur coastal stretch. Mar. Pollut. Bull. 2025, 213, 117657. [Google Scholar] [CrossRef] [PubMed]
- Caillon, C.; Fleury, E.; Di Poi, C.; Gazeau, F.; Pernet, F. Food availability, but not tidal emersion, influences the combined effects of ocean acidification and warming on oyster physiological performance. Aquaculture 2025, 604, 742459. [Google Scholar] [CrossRef]
- Wang, F.; Yang, H.; Zhang, Y.; Wang, S.; Liu, K.; Qi, Z.; Chai, X.; Wang, L.; Wang, W.; Banadkooki, F.B.; et al. Solute Geochemistry and Water Quality Assessment of Groundwater in an Arid Endorheic Watershed on Tibetan Plateau. Sustainability 2022, 14, 15593. [Google Scholar] [CrossRef]
- Wang, L.; Nie, Z.; Yuan, Q.; Liu, M.; Cao, L.; Zhu, P.; Lu, H.; Feng, B. Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin. Water 2023, 15, 457. [Google Scholar] [CrossRef]
- Yang, H.; Wei, J.; Shi, K. Hydrochemical and Isotopic Characteristics and the Spatiotemporal Differences of Surface Water and Groundwater in the Qaidam Basin, China. Water 2024, 16, 169. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Z.; Wang, S.; Xiao, S.; Xiao, Y.; Wang, J.; Wang, J.; Yuan, Y.; Ba, R.; Wang, N.; et al. Hydrogeochemical Insights into the Sustainable Prospects of Groundwater Resources in an Alpine Irrigation Area on Tibetan Plateau. Sustainability 2024, 16, 9229. [Google Scholar] [CrossRef]
- An, G.; Kang, H.; Fu, R.; Xu, D.; Li, J. Investigation on the Hydrogeochemical Characteristics and Controlling Mechanisms of Groundwater in the Coastal Aquifer. Water 2023, 15, 1710. [Google Scholar] [CrossRef]
- Deng, S.; Li, C.; Jiang, X.; Zhao, T.; Huang, H. Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China. Water 2023, 15, 26. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, H.; Xiao, Y.; Hao, Q.; Li, Y.; Liu, J.; Wang, L.; Zhang, Y.; Hu, W.; Wang, J. Identification of Hydrochemical Characteristics, Spatial Evolution, and Driving Forces of River Water in Jinjiang Watershed, China. Water 2024, 16, 45. [Google Scholar] [CrossRef]
- Guo, B.; Yang, P.; Zhou, Y.; Ai, H.; Li, X.; Kang, R.; Lv, Y. Numerical Simulation of Carbon Tetrachloride Pollution-Traceability in Groundwater System of an Industrial City. Sustainability 2022, 14, 16113. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Y.; Lai, Y.; Yang, R.; Cai, M.; Fan, S.; Gu, X. Study on Natural Attenuation of Groundwater Organic Pollutants by Integrating Microbial Community Dynamics and Isotope Analysis. Water 2025, 17, 555. [Google Scholar] [CrossRef]
- Xu, M.; Hu, C.; Zhu, L.; Song, G.; Peng, W.; Yang, S.; Song, J. Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China. Water 2023, 15, 713. [Google Scholar] [CrossRef]
- Zheng, Z.-l.; Xie, B.; Wu, C.-m.; Zhou, L.; Zhang, K.; Zhang, B.-c.; Yang, P.-h. Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China. Water 2024, 16, 2859. [Google Scholar] [CrossRef]
- Xu, R.; Gu, C.; Qiu, D.; Wu, C.; Mu, X.; Gao, P. Analysis of Runoff Changes in the Wei River Basin, China: Confronting Climate Change and Human Activities. Water 2023, 15, 2081. [Google Scholar] [CrossRef]
- Gana, B.; Rodes, J.M.A.; Díaz, P.; Balboa, A.; Frías, S.; Ávila, A.; Rivera, C.; Sáez, C.A.; Lavergne, C. Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile. Hydrology 2024, 11, 174. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Xiao, Y.; Liu, J.; Zhao, Z.; Li, Y.; Hao, Q.; Liu, C.; Li, J. Construction of Ecological Security Patterns Incorporating Multiple Types of Ecological Service Functions for Developed Coastal Regions: A Case Study in Jinjiang Watershed, China. Land 2024, 13, 1227. [Google Scholar] [CrossRef]
- Zhang, J.; Laghari, A.A.; Guo, Q.; Liang, J.; Kumar, A.; Liu, Z.; Shen, Y.; Wei, Y. Evolution of Land Use and Its Hydrological Effects in the Fenhe River Basin Under the Production–Living–Ecological Space Perspective. Sustainability 2024, 16, 11170. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Li, P.; Wang, Y.; Yang, N. Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water 2023, 15, 772. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.; Liu, Y.; Wang, Y.; Wang, Q.; Song, M.; Xiao, P.; Shi, Z. Investigating the Hydrological Relationship between the North Taihang Tunnel and Tianshengqiao Nine Falls. Water 2024, 16, 1549. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wang, J.; Zhou, J. Hydrosphere Under the Driving of Human Activity and Climate Change: Status, Evolution, and Strategies. Sustainability 2025, 17, 3257. https://doi.org/10.3390/su17073257
Xiao Y, Wang J, Zhou J. Hydrosphere Under the Driving of Human Activity and Climate Change: Status, Evolution, and Strategies. Sustainability. 2025; 17(7):3257. https://doi.org/10.3390/su17073257
Chicago/Turabian StyleXiao, Yong, Jianping Wang, and Jinlong Zhou. 2025. "Hydrosphere Under the Driving of Human Activity and Climate Change: Status, Evolution, and Strategies" Sustainability 17, no. 7: 3257. https://doi.org/10.3390/su17073257
APA StyleXiao, Y., Wang, J., & Zhou, J. (2025). Hydrosphere Under the Driving of Human Activity and Climate Change: Status, Evolution, and Strategies. Sustainability, 17(7), 3257. https://doi.org/10.3390/su17073257