Energy-Efficient Technologies and Strategies for Feasible and Sustainable Plant Factory Systems
Abstract
:1. Introduction
2. Methodology
3. Overview of Reviewed Studies
4. Optimization of Crop Yield
4.1. Light Quality and Quantity
4.2. Temperature and Humidity
4.3. Carbon Dioxide Concentrations
4.4. Water and Nutrients
5. Optimization of the Energy System
5.1. Structural Designs
5.2. High-Density and Multi-Cropping Operations
5.3. Lighting System
5.4. HVAC System
5.5. Irrigation Systems
5.6. Decision Support System and Automation
6. Energy-Efficient Management Practices
6.1. Lighting Management
6.2. Crop Management
7. Utilization of Renewable Energy and Residual Resources
7.1. Renewable Energy
7.2. Residual Resources
8. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADN | active distribution network |
AI | artificial intelligence |
AMU | air mixing unit |
ASHP | air-source heat pump |
CEA | controlled-environment agriculture |
CI PPFD | canopy-intercepted PPFD |
CSP | concentrating solar power |
DLI | daily light integral |
DM | dry matter |
DSSC | dye-sensitized solar cell |
EMS | energy management system |
EUE | energy use efficiency |
GBHP | ground-based heat pump |
GH | greenhouse |
GHG | greenhouse gas |
HE | heat exchanger |
HVAC | heating, ventilation, and air conditioning |
LCP | light compensation point |
LED | light-emitting diode |
LUE | light use efficiency |
NFT | nutrient film technique |
OF | open-field |
OFP | optical fiber daylighting |
PAR | photosynthetically active radiation |
PF | plant factory |
PPFD | photosynthetic photon flux density |
PPFE | photosynthetic photon flux efficacy |
PV | photovoltaic |
UV | ultraviolet |
VPD | vapor pressure deficit |
References
- Zhang, L.; Yang, X.; Li, T.; Gan, R.; Wang, Z.; Peng, J.; Hu, J.; Guo, J.; Zhang, Y.; Li, Q.; et al. Plant Factory Technology Lights up Urban Horticulture in the Post-Coronavirus World. Hortic. Res. 2022, 9, uhac018. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhao, B.; Zhou, H.; Zhou, L.; Niu, K.; Jin, X.; Li, R.; Yuan, Y.; Zheng, Y. Digital Twins in Plant Factory: A Five-Dimensional Modeling Method for Plant Factory Transplanter Digital Twins. Agriculture 2023, 13, 1336. [Google Scholar] [CrossRef]
- Garcillanosa, M.M.; Batino, Z.M., Jr.; Gabuyo, E.A.; Mojica, T.L.; Mundo, M.A.D.; Impelido, D.G.; Sison, P.A.A. Efficient and Low-Cost Method of Smart Indoor Vertical Farming for Lactuca sativa L. with Machine Learning. Chem. Eng. Trans. 2023, 106, 535–540. [Google Scholar] [CrossRef]
- Jin, W.; Formiga Lopez, D.; Heuvelink, E.; Marcelis, L.F.M. Light Use Efficiency of Lettuce Cultivation in Vertical Farms Compared with Greenhouse and Field. Food Energy Secur. 2023, 12, e391. [Google Scholar] [CrossRef]
- Keyvan, P.; Roshandel, R. An Integrated Energy-Yield-Cost Model to Evaluate Clean Energy Solutions for Vertical Farms. Comput. Electron. Agric. 2024, 219, 108809. [Google Scholar] [CrossRef]
- Kim, B.-H.; Cho, J.-H. A Study on Modular Smart Plant Factory Using Morphological Image Processing. Electronics 2020, 9, 1661. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Chong, C.; Wang, C.-H.; Wang, X. A Decision Support Framework for the Design and Operation of Sustainable Urban Farming Systems. J. Clean. Prod. 2020, 268, 121928. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Sahu, S.; Limkar, S.; Singh, P.; Mishra, A.; Kumar, M.; Mutlu, R. Evaluation of Growth Responses of Lettuce and Energy Efficiency of the Substrate and Smart Hydroponics Cropping System. Sensors 2023, 23, 1875. [Google Scholar] [CrossRef]
- Verteramo Chiu, L.J.; Nicholson, C.F.; Gómez, M.I.; Mattson, N.S. A Meta-Analysis of Yields and Environmental Performance of Controlled-Environment Production Systems for Tomatoes, Lettuce and Strawberries. J. Clean. Prod. 2024, 469, 143142. [Google Scholar] [CrossRef]
- Blom, T.; Jenkins, A.; Pulselli, R.M.; van den Dobbelsteen, A.A.J.F. The Embodied Carbon Emissions of Lettuce Production in Vertical Farming, Greenhouse Horticulture, and Open-Field Farming in the Netherlands. J. Clean. Prod. 2022, 377, 134443. [Google Scholar] [CrossRef]
- Eaves, J.; Eaves, S. Comparing the Profitability of a Greenhouse to a Vertical Farm in Quebec. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2018, 66, 43–54. [Google Scholar] [CrossRef]
- Righini, I.; Graamans, L.; van Hoogdalem, M.; Carpineti, C.; Hageraats, S.; van Munnen, D.; Elings, A.; de Jong, R.; Wang, S.; Meinen, E.; et al. Protein Plant Factories: Production and Resource Use Efficiency of Soybean Proteins in Vertical Farming. J. Sci. Food Agric. 2024, 104, 6252–6261. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Hou, Y.; Lim, R.B.H.; Gaw, L.Y.F.; Richards, D.R.; Tan, H.T.W. Comparison of Vegetable Production, Resource-Use Efficiency and Environmental Performance of High-Technology and Conventional Farming Systems for Urban Agriculture in the Tropical City of Singapore. Sci. Total Environ. 2022, 807, 150621. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Energy Optimisation of Plant Factories and Greenhouses for Different Climatic Conditions. Energy Convers. Manag. 2021, 243, 114336. [Google Scholar] [CrossRef]
- Moosavi-Nezhad, M.; Salehi, R.; Aliniaeifard, S.; Winans, K.S.; Nabavi-Pelesaraei, A. An Analysis of Energy Use and Economic and Environmental Impacts in Conventional Tunnel and LED-Equipped Vertical Systems in Healing and Acclimatization of Grafted Watermelon Seedlings. J. Clean. Prod. 2022, 361, 132069. [Google Scholar] [CrossRef]
- Soofi, A.F.; Manshadi, S.D. Carbon-Aware Operation of Resilient Vertical Farms in Active Distribution Networks. IEEE Trans. Smart Grid 2024, 15, 431–443. [Google Scholar] [CrossRef]
- Xu, X. Multi-System Urban Waste-Energy Self-Circulation: Design of Urban Self-Circulation System Based on Emergy Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7538. [Google Scholar] [CrossRef]
- Pennisi, G.; Sanyé-Mengual, E.; Orsini, F.; Crepaldi, A.; Nicola, S.; Ochoa, J.; Fernandez, J.A.; Gianquinto, G. Modelling Environmental Burdens of Indoor-Grown Vegetables and Herbs as Affected by Red and Blue LED Lighting. Sustainability 2019, 11, 4063. [Google Scholar] [CrossRef]
- Martin, M.; Weidner, T.; Gullström, C. Estimating the Potential of Building Integration and Regional Synergies to Improve the Environmental Performance of Urban Vertical Farming. Front. Sustain. Food Syst. 2022, 6, 849304. [Google Scholar] [CrossRef]
- Toboso-Chavero, S.; Villalba, G.; Gabarrell Durany, X.; Madrid-López, C. More than the Sum of the Parts: System Analysis of the Usability of Roofs in Housing Estates. J. Ind. Ecol. 2021, 25, 1284–1299. [Google Scholar] [CrossRef]
- Borland, P.L.; McDonnell, K.; Harty, M. Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods. Energies 2023, 16, 6704. [Google Scholar] [CrossRef]
- Martin, M.; Poulikidou, S.; Molin, E. Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming. Sustainability 2019, 11, 6724. [Google Scholar] [CrossRef]
- Daniels, A.; Fink, M.; Leibold, M.; Wollherr, D.; Asseng, S. Optimal Control for Indoor Vertical Farms Based on Crop Growth. IFAC-Pap. 2023, 56, 9887–9893. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant Factories versus Greenhouses: Comparison of Resource Use Efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Kaya, A.; Erturk, H.; Yalcin, R.A. Energy Efficiency of Solar Illuminated Vertical Farms with Different Illumination Strategies. Energy 2024, 307, 132609. [Google Scholar] [CrossRef]
- Carotti, L.; Graamans, L.; Puksic, F.; Butturini, M.; Meinen, E.; Heuvelink, E.; Stanghellini, C. Plant Factories Are Heating Up: Hunting for the Best Combination of Light Intensity, Air Temperature and Root-Zone Temperature in Lettuce Production. Front. Plant Sci. 2021, 11, 592171. [Google Scholar] [CrossRef]
- Carotti, L.; Pistillo, A.; Zauli, I.; Meneghello, D.; Martin, M.; Pennisi, G.; Gianquinto, G.; Orsini, F. Improving Water Use Efficiency in Vertical Farming: Effects of Growing Systems, Far-Red Radiation and Planting Density on Lettuce Cultivation. Agric. Water Manag. 2023, 285, 108365. [Google Scholar] [CrossRef]
- Jin, W.; Urbina, J.L.; Heuvelink, E.; Marcelis, L.F.M. Adding Far-Red to Red-Blue Light-Emitting Diode Light Promotes Yield of Lettuce at Different Planting Densities. Front. Plant Sci. 2021, 11, 609977. [Google Scholar] [CrossRef]
- Ptak, M.; Wasieńko, S.; Makuła, P. A New Approach to Vertical Plant Cultivation Maximises Crop Efficiency. Sustainability 2024, 16, 7189. [Google Scholar] [CrossRef]
- Sheibani, F.; Bourget, M.; Morrow, R.C.; Mitchell, C.A. Close-Canopy Lighting, an Effective Energy-Saving Strategy for Overhead Sole-Source LED Lighting in Indoor Farming. Front. Plant Sci. 2023, 14, 1215919. [Google Scholar] [CrossRef]
- Avgoustaki, D.D. Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand. Energies 2019, 12, 3980. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Li, J.; Xydis, G. Basil Plants Grown under Intermittent Light Stress in a Small-Scale Indoor Environment: Introducing Energy Demand Reduction Intelligent Technologies. Food Control. 2020, 118, 107389. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Energy Cost Reduction by Shifting Electricity Demand in Indoor Vertical Farms with Artificial Lighting. Biosyst. Eng. 2021, 211, 219–229. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Landolfo, M.; Pistillo, A.; Crepaldi, A.; Nicola, S.; Fernández, J.A.; Marcelis, L.F.M.; Gianquinto, G. Optimal Photoperiod for Indoor Cultivation of Leafy Vegetables and Herbs. Eur. J. Hortic. Sci. 2020, 85, 329–338. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal Light Intensity for Sustainable Water and Energy Use in Indoor Cultivation of Lettuce and Basil under Red and Blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Boucher, L.; Nguyen, T.-T.-A.; Brégard, A.; Pepin, S.; Dorais, M. Optimizing Light Use Efficiency and Quality of Indoor Organically Grown Leafy Greens by Using Different Lighting Strategies. Agronomy 2023, 13, 2582. [Google Scholar] [CrossRef]
- Lanoue, J.; St. Louis, S.; Little, C.; Hao, X. Continuous Lighting Can Improve Yield and Reduce Energy Costs While Increasing or Maintaining Nutritional Contents of Microgreens. Front. Plant Sci. 2022, 13, 983222. [Google Scholar] [CrossRef]
- Bagnerini, P.; Gaggero, M.; Ghio, M.; Malerba, F.; Malerba, M.A. Adaptive Vertical Farm for Fresh Food Production in Orbital Stations and Future Lunar Settlements. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022; pp. 402–407. [Google Scholar]
- Tang, H.C.K.; Cheng, T.Y.S.; Wong, J.C.Y.; Cheung, R.C.C.; Lam, A.H.F. Aero-Hydroponic Agriculture IoT System. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 741–746. [Google Scholar]
- Kobayashi, Y.; Kotilainen, T.; Carmona-García, G.; Leip, A.; Tuomisto, H.L. Vertical Farming: A Trade-off between Land Area Need for Crops and for Renewable Energy Production. J. Clean. Prod. 2022, 379, 134507. [Google Scholar] [CrossRef]
- Talbot, M.-H.; Monfet, D. Analysing the Influence of Growing Conditions on Both Energy Load and Crop Yield of a Controlled Environment Agriculture Space. Appl. Energy 2024, 368, 123406. [Google Scholar] [CrossRef]
- Pay, M.L.; Christensen, J.; He, F.; Roden, L.C.; Ahmed, H.; Foo, M. A Comparative Study of FLL and PLL in Boost PFC Converter Control for Smart Greenhouse Farming Application. In Proceedings of the 2023 IEEE International Conference on Agrosystem Engineering, Technology & Applications (AGRETA), Shah Alam, Malaysia, 9 September 2023; pp. 62–67. [Google Scholar]
- Tiu, A.L.; Odulio, C.M. A Dimmable Open-Loop Resonant LED Driver for a Horticulture Grow Light. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 2357–2361. [Google Scholar]
- Raju, G.S.R.; Pavitra, E.; Patnam, H.; Varaprasad, G.L.; Chodankar, N.R.; Patil, S.J.; Ranjith, K.S.; Rao, M.V.B.; Yu, J.S.; Park, J.Y.; et al. Rationalized Crystal Structure Augmented Highly Efficient Far-Red-Emitting Double Perovskite Niobate Phosphor for Indoor Plant Growth LED Applications. J. Alloys Compd. 2022, 903, 163881. [Google Scholar] [CrossRef]
- Joensuu, K.; Kotilainen, T.; Räsänen, K.; Rantanen, M.; Usva, K.; Silvenius, F. Assessment of Climate Change Impact and Resource-Use Efficiency of Lettuce Production in Vertical Farming and Greenhouse Production in Finland: A Case Study. Int. J. Life Cycle Assess. 2024, 29, 1932–1944. [Google Scholar] [CrossRef]
- Minyailo, A.M.; Pekur, I.V.; Kornaga, V.I.; Minyailo, M.A.; Pekur, D.V.; Sorokin, V.M. Optimizing the Spectral Composition of Light from LED Phytolighting Systems to Improve Energy Efficiency. Semicond. Phys. Quantum Electron. Optoelectron. 2023, 26, 463–469. [Google Scholar] [CrossRef]
- Olvera-Gonzalez, E.; Escalante-Garcia, N.; Myers, D.; Ampim, P.; Obeng, E.; Alaniz-Lumbreras, D.; Castaño, V. Pulsed LED-Lighting as an Alternative Energy Savings Technique for Vertical Farms and Plant Factories. Energies 2021, 14, 1603. [Google Scholar] [CrossRef]
- Wong, T.I.; Zhou, X. Uniform Lighting of High-Power LEDs at a Short Distance to Plants for Energy-Saving and High-Density Indoor Farming. Photonics 2024, 11, 394. [Google Scholar] [CrossRef]
- Verma, T.; Zhi Wei, N.T.; Gao, F.; Yu, H.; Filho, R.S. Optimizing Indoor Farming: Deep Learning for Predicting Plant Growth under LED Light Treatments. In Proceedings of the 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, 25–27 June 2024; pp. 1051–1056. [Google Scholar]
- Martin, M.; Elnour, M.; Siñol, A.C. Environmental Life Cycle Assessment of a Large-Scale Commercial Vertical Farm. Sustain. Prod. Consum. 2023, 40, 182–193. [Google Scholar] [CrossRef]
- Ten Caat, N.; Graamans, L.; Tenpierik, M.; van den Dobbelsteen, A. Towards Fossil Free Cities—A Supermarket, Greenhouse & Dwelling Integrated Energy System as an Alternative to District Heating: Amsterdam Case Study. Energies 2021, 14, 347. [Google Scholar] [CrossRef]
- Casamayor, J.; Su, D.; Ren, Z. Comparative Life Cycle Assessment of LED Lighting Products. Light. Res. Technol. 2018, 50, 801–826. [Google Scholar] [CrossRef]
- Canatoy, R.C.; Jeong, S.T.; Cho, S.R.; Galgo, S.J.C.; Kim, P.J. Importance of Biochar as a Key Amendment to Convert Rice Paddy into Carbon Negative. Sci. Total Environ. 2023, 873, 162331. [Google Scholar] [CrossRef]
- Galgo, S.J.C.; Canatoy, R.C.; Lim, J.Y.; Park, H.C.; Kim, P.J. A Potential of Iron Slag-Based Soil Amendment as a Suppressor of Greenhouse Gas (CH4 and N2O) Emissions in Rice Paddy. Front. Environ. Sci. 2024, 12, 1290969. [Google Scholar] [CrossRef]
- Ali, B. CEA’s Growth Prospects Look Good, but Can Every Start-up Be a Winner? Agri Invest. 2022. Available online: https://www.agriinvestor.com/ceas-growth-prospects-look-good-but-can-every-start-up-be-a-winner/ (accessed on 7 March 2025).
- Parida, P.K.; Eagan, S.; Ramanujam, K.; Sengodan, R.; Uthandi, S.; Ettiyagounder, P.; Rajagounder, R. Machine Learning Approaches for Estimation of the Fraction of Absorbed Photosynthetically Active Radiation and Net Photosynthesis Rate of Maize Using Multi-Spectral Sensor. Heliyon 2024, 10, e34117. [Google Scholar] [CrossRef]
- Esteban, R.; Barrutia, O.; Artetxe, U.; Fernández-Marín, B.; Hernández, A.; García-Plazaola, J.I. Internal and External Factors Affecting Photosynthetic Pigment Composition in Plants: A Meta-Analytical Approach. New Phytol. 2015, 206, 268–280. [Google Scholar] [CrossRef]
- Kume, A.; Akitsu, T.; Nasahara, K.N. Why Is Chlorophyll b Only Used in Light-Harvesting Systems? J. Plant Res. 2018, 131, 961–972. [Google Scholar] [CrossRef]
- Liu, J.; van Iersel, M.W. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef]
- Liu, H.; Lin, R.; Deng, X.W. Photobiology: Light signal transduction and photomorphogenesis. J. Integr. Plant Biol. 2020, 62, 1267. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource Use Efficiency of Indoor Lettuce (Lactuca sativa L.) Cultivation as Affected by Red:Blue Ratio Provided by LED Lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Zhao, S.; Li, X.; Kang, Y.; Lin, Y.; Wu, Y.; Yang, Z. Photomorphogenesis and Photosynthetic Trait Changes in Melon Seedlings Responding to Red and Blue Light. Horticulturae 2024, 10, 961. [Google Scholar] [CrossRef]
- Gao, D.; Ji, X.; Pei, W.; Zhang, X.; Li, F.; Han, Q.; Zhang, S. Thermal Management and Energy Efficiency Analysis of Planar-Array LED Water-Cooling Luminaires in Vertical Farming Systems for Saffron. Case Stud. Therm. Eng. 2023, 51, 103535. [Google Scholar] [CrossRef]
- Kong, Y.; Nemali, A.; Mitchell, C.; Nemali, K. Spectral Quality of Light Can Affect Energy Consumption and Energy-Use Efficiency of Electrical Lighting in Indoor Lettuce Farming. HortScience 2019, 54, 865–872. [Google Scholar] [CrossRef]
- Jones, M.A. Using Light to Improve Commercial Value. Hortic. Res. 2018, 5, 47. [Google Scholar] [CrossRef]
- Ji, Y.; Ouzounis, T.; Courbier, S.; Kaiser, E.; Nguyen, P.T.; Schouten, H.J.; Visser, R.G.F.; Pierik, R.; Marcelis, L.F.M.; Heuvelink, E. Far-Red Radiation Increases Dry Mass Partitioning to Fruits but Reduces Botrytis cinerea Resistance in Tomato. Environ. Exp. Bot. 2019, 168, 103889. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Viršilė, A.; Jankauskienė, J.; Sakalauskienė, S.; Samuolienė, G.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Miliauskienė, J.; Vaštakaitė, V.; et al. Effect of Supplemental UV-A Irradiation in Solid-State Lighting on the Growth and Phytochemical Content of Microgreens. Int. Agrophysics 2015, 29, 13–22. [Google Scholar] [CrossRef]
- Pandey, A.; Agrawal, M.; Agrawal, S.B. Ultraviolet-B and Heavy Metal-Induced Regulation of Secondary Metabolites in Medicinal Plants: A Review. Metabolites 2023, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving Production of Plant Secondary Metabolites through Biotic and Abiotic Elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Thoma, F.; Somborn-Schulz, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Front. Plant Sci. 2020, 11, 497. [Google Scholar] [CrossRef]
- Carotti, L.; Potente, G.; Pennisi, G.; Ruiz, K.B.; Biondi, S.; Crepaldi, A.; Orsini, F.; Gianquinto, G.; Antognoni, F. Pulsed LED Light: Exploring the Balance between Energy Use and Nutraceutical Properties in Indoor-Grown Lettuce. Agronomy 2021, 11, 1106. [Google Scholar] [CrossRef]
- Arcasi, A.; Mauro, A.W.; Napoli, G.; Tariello, F.; Vanoli, G.P. Energy and Cost Analysis for a Crop Production in a Vertical Farm. Appl. Therm. Eng. 2024, 239, 122129. [Google Scholar] [CrossRef]
- Baccioli, A.; Capannoli, L.; Di Lorenzo, G.; Incrocci, L.; Pardossi, A.; Bischi, A. Modeling Production and Energy Needs of a Vertical Farm. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 103–107. [Google Scholar]
- Engler, N.; Krarti, M. Optimal Designs for Net Zero Energy Controlled Environment Agriculture Facilities. Energy Build. 2022, 272, 112364. [Google Scholar] [CrossRef]
- Shasteen, K.C.; Kacira, M. Predictive Modeling and Computer Vision-Based Decision Support to Optimize Resource Use in Vertical Farms. Sustainability 2023, 15, 7812. [Google Scholar] [CrossRef]
- Greenham, K.; McClung, C.R. Integrating Circadian Dynamics with Physiological Processes in Plants. Nat. Rev. Genet. 2015, 16, 598–610. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W.; Zhang, Y.; Zhou, C.; Shao, M. Morphological and Physiological Stress Responses of Lettuce to Different Intensities of Continuous Light. Front. Plant Sci. 2019, 10, 1440. [Google Scholar] [CrossRef]
- Liu, W.; Liu, B.; Wu, Q. High-Intensity Continuous Light from Red–Blue Light-Emitting Diodes Improved Yield, Nutritional Quality and Reactive Oxygen Species Accumulation in Two Leaf-Color Lettuces. Biology 2024, 13, 1077. [Google Scholar] [CrossRef] [PubMed]
- Bafort, F.; Kohnen, S.; Maron, E.; Bouhadada, A.; Ancion, N.; Crutzen, N.; Jijakli, M.H. The Agro-Economic Feasibility of Growing the Medicinal Plant Euphorbia Peplus in a Modified Vertical Hydroponic Shipping Container. Horticulturae 2022, 8, 256. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Palma-Dias, R.; Escalona, V.H. The Effect of Light Intensity and Photoperiod on the Yield and Antioxidant Activity of Beet Microgreens Produced in an Indoor System. Horticulturae 2023, 9, 493. [Google Scholar] [CrossRef]
- Hermida-Carrera, C.; Kapralov, M.V.; Galmés, J. Rubisco Catalytic Properties and Temperature Response in Crops. Plant Physiol. 2016, 171, 2549–2561. [Google Scholar] [CrossRef]
- Suganami, M.; Suzuki, Y.; Tazoe, Y.; Yamori, W.; Makino, A. Co-Overproducing Rubisco and Rubisco Activase Enhances Photosynthesis in the Optimal Temperature Range in Rice. Plant Physiol. 2021, 185, 108–119. [Google Scholar] [CrossRef]
- Graamans, L.; van den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant Factories; Crop Transpiration and Energy Balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Inoue, T.; Sunaga, M.; Ito, M.; Yuchen, Q.; Matsushima, Y.; Sakoda, K.; Yamori, W. Minimizing VPD Fluctuations Maintains Higher Stomatal Conductance and Photosynthesis, Resulting in Improvement of Plant Growth in Lettuce. Front. Plant Sci. 2021, 12, 646144. [Google Scholar] [CrossRef]
- Wijewardene, I.; Shen, G.; Zhang, H. Enhancing Crop Yield by Using Rubisco Activase to Improve Photosynthesis under Elevated Temperatures. Stress Biol. 2021, 1, 2. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Zhao, X.; Li, J.; Yu, X.; Zhang, Y.; Zhao, X.; Li, J. Systemic Effects of the Vapor Pressure Deficit on the Physiology and Productivity of Protected Vegetables. Veg. Res. 2023, 3, 20. [Google Scholar] [CrossRef]
- Middleby, K.B.; Cheesman, A.W.; Cernusak, L.A. Impacts of Elevated Temperature and Vapour Pressure Deficit on Leaf Gas Exchange and Plant Growth across Six Tropical Rainforest Tree Species. New Phytol. 2024, 243, 648–661. [Google Scholar] [CrossRef]
- Bruhn, D.; Newman, F.; Hancock, M.; Povlsen, P.; Slot, M.; Sitch, S.; Drake, J.; Weedon, G.P.; Clark, D.B.; Pagter, M.; et al. Nocturnal Plant Respiration Is under Strong Non-Temperature Control. Nat. Commun. 2022, 13, 5650. [Google Scholar] [CrossRef]
- Fricke, W. Night-Time Transpiration—Favouring Growth? Trends Plant Sci. 2019, 24, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Peraudeau, S.; Lafarge, T.; Roques, S.; Quiñones, C.O.; Clement-Vidal, A.; Ouwerkerk, P.B.F.; Van Rie, J.; Fabre, D.; Jagadish, K.S.V.; Dingkuhn, M. Effect of Carbohydrates and Night Temperature on Night Respiration in Rice. J. Exp. Bot. 2015, 66, 3931–3944. [Google Scholar] [CrossRef]
- Pimentel, J.; Balázs, L.; Friedler, F. Optimization of Vertical Farms Energy Efficiency via Multiperiodic Graph-Theoretical Approach. J. Clean. Prod. 2023, 416, 137938. [Google Scholar] [CrossRef]
- Asgari, N.; Jamil, U.; Pearce, J.M. Net Zero Agrivoltaic Arrays for Agrotunnel Vertical Growing Systems: Energy Analysis and System Sizing. Sustainability 2024, 16, 6120. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, W.; Chen, X.; Wang, F.; Wang, H.; Zhang, J.; Liu, L. Modeling and Simulation of Temperature Control System in Plant Factory Using Energy Balance. Int. J. Agric. Biol. Eng. 2021, 14, 66–75. [Google Scholar] [CrossRef]
- Carmo, A.P.M.D.; Freitas, M.S.M.; Machado, L.C.; Silva, L.d.S.; Petri, D.J.C.; Vimercati, J.C.; Matos, C.R.R.; Mathias, L.; Vieira, I.J.C.; de Carvalho, A.J.C. Electrical Conductivity of Nutrient Solutions Affects the Growth, Nutrient Levels, and Content and Composition of Essential Oils of Acmella oleracea (L.) R. K. Jansen from Southeastern Brazil. J. Agric. Food Res. 2024, 15, 100968. [Google Scholar] [CrossRef]
- Cerozi, B.d.S.; Fitzsimmons, K. The Effect of pH on Phosphorus Availability and Speciation in an Aquaponics Nutrient Solution. Bioresour. Technol. 2016, 219, 778–781. [Google Scholar] [CrossRef]
- Ban, B. Mathematical Model and Simulation for Nutrient-Plant Interaction Analysis. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; pp. 1531–1536. [Google Scholar]
- Custos, J.-M.; Moyne, C.; Sterckeman, T. How Root Nutrient Uptake Affects Rhizosphere pH: A Modelling Study. Geoderma 2020, 369, 114314. [Google Scholar] [CrossRef]
- Feng, H.; Fan, X.; Miller, A.J.; Xu, G. Plant Nitrogen Uptake and Assimilation: Regulation of Cellular pH Homeostasis. J. Exp. Bot. 2020, 71, 4380–4392. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Kumar, K.S.A.; Metan, J.; Hemanth, R.; Akash, N.; N, S. Smart Sprouts: Fuzzy Logic-Driven IoT-Based Smart Water Management System for Vertical Farming. In Proceedings of the 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 September 2023; pp. 382–387. [Google Scholar]
- Patil, S.T.; Kadam, U.S.; Mane, M.S.; Mahale, D.M.; Dhekale, J.S. Hydroponic Growth Media (Substrate): A Review. Int. Res. J. Pure Appl. Chem. 2020, 21, 106–113. [Google Scholar] [CrossRef]
- Graamans, L.; Tenpierik, M.; van den Dobbelsteen, A.; Stanghellini, C. Plant Factories: Reducing Energy Demand at High Internal Heat Loads through Façade Design. Appl. Energy 2020, 262, 114544. [Google Scholar] [CrossRef]
- Pertry, I.; Bleyaert, P.; Demyttenaere, P.; Demeulemeester, M. Agrotopia, a Living Lab for High-Tech Urban Horticulture within Europe. Acta Hortic. 2018, 1215, 153–158. [Google Scholar] [CrossRef]
- Chavan, S.G.; Maier, C.; Alagoz, Y.; Filipe, J.C.; Warren, C.R.; Lin, H.; Jia, B.; Loik, M.E.; Cazzonelli, C.I.; Chen, Z.H.; et al. Light-Limited Photosynthesis under Energy-Saving Film Decreases Eggplant Yield. Food Energy Secur. 2020, 9, e245. [Google Scholar] [CrossRef]
- Don Chua, W.F.; Lim, C.L.; Koh, Y.Y.; Kok, C.L. A Novel IoT Photovoltaic-Powered Water Irrigation Control and Monitoring System for Sustainable City Farming. Electronics 2024, 13, 676. [Google Scholar] [CrossRef]
- Ilies, E.; Marinca, M.; Bularka, S.; Vajda, M.; Albulescu, D.; Seiculescu, C. Proposal of Energy Independent Greenhouse. In Proceedings of the 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, Romania, 27–30 October 2021; pp. 177–180. [Google Scholar]
- Wang, L.; Iddio, E. Energy Performance Evaluation and Modeling for an Indoor Farming Facility. Sustain. Energy Technol. Assess. 2022, 52, 102240. [Google Scholar] [CrossRef]
- Harbick, K.; Albright, L.D. Comparison of Energy Consumption: Greenhouses and Plant Factories. Acta Hortic. 2016, 1134, 285–292. [Google Scholar] [CrossRef]
- Soussi, Y.; Bahi, H.; Mastouri, H.; El Bouazouli, A. An Embedded Concept for Sustainable Building. Mater. Today Proc. 2023, 72, 3556–3563. [Google Scholar] [CrossRef]
- Insausti, P.; Ploschuk, E.L.; Izaguirre, M.M.; Podworny, M. The Effect of Sunlight Interception by Sooty Mold on Chlorophyll Content and Photosynthesis in Orange Leaves (Citrus sinensis L.). Eur. J. Plant Pathol. 2015, 143, 559–565. [Google Scholar] [CrossRef]
- Ke, X.; Yoshida, H.; Hikosaka, S.; Goto, E. Photosynthetic Photon Flux Density Affects Fruit Biomass Radiation-Use Efficiency of Dwarf Tomatoes under LED Light at the Reproductive Growth Stage. Front. Plant Sci. 2023, 14, 1076423. [Google Scholar] [CrossRef]
- Ryu, G.-H.; Ryu, H.-Y. Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes. J. Opt. Soc. Korea 2015, 19, 311–316. [Google Scholar] [CrossRef]
- Cen, J.; Li, Z.; Wang, Y.; Jiang, F.; Liao, S.; Liang, F. Heat Pump-Based Novel Energy System for High-Power LED Lamp Cooling and Waste Heat Recovery. In Advanced Cooling Technologies and Applications. Murshed, S.; IntechOpen: London, UK, 2019; p. 54. [Google Scholar]
- Blom, T.; Jenkins, A.; van den Dobbelsteen, A. Synergetic Integration of Vertical Farms and Buildings: Reducing the Use of Energy, Water, and Nutrients. Front. Sustain. Food Syst. 2023, 7, 1227672. [Google Scholar] [CrossRef]
- Bernardo, M.; Fajardo, A.; Medina, R. End-Product of Solar-Sharing Smart Lighting Artificial Intelligence Driven Platform for High-Valued Crops (Lactuca sativa) on Indoor Hydroponics Syste. In Proceedings of the 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC), Malacca, Malaysia, 17 December 2022; pp. 160–165. [Google Scholar]
- Bernardo, M.S. DLI and PPFD Throughput of Solar and AI-Based Smart Lighting Apply on Illumination Stratums. In Proceedings of the 2023 IEEE 11th Conference on Systems, Process & Control (ICSPC), Malacca, Malaysia, 16 December 2023; pp. 171–176. [Google Scholar]
- Yoo, K.-S.; Lee, C.-S.; Hyun, D.-H. Investigation of the Angular Distribution of Luminous Intensity in the Symmetric Optical System of a COB LED High Bay. J. Korean Soc. Manuf. Technol. Eng. 2014, 23, 609–617. [Google Scholar] [CrossRef]
- Balasus, J.; Blank, J.; Babilon, S.; Hegemann, T.; Khanh, T.Q. Energy Efficient Lighting in Plant Factories: Addressing Utilance. Agronomy 2021, 11, 2570. [Google Scholar] [CrossRef]
- Choubchilangroudi, A.; Zarei, A. Investigation the Effectiveness of Light Reflectors in Transmitting Sunlight into the Vertical Farm Depth to Reduce Electricity Consumption. Clean. Eng. Technol. 2022, 7, 100421. [Google Scholar] [CrossRef]
- Huang, J.J.; Guan, Z.; Hong, X.; Zhou, W. Performance Evaluation of a Novel Adjustable Lampshade-Type Reflector (ALR) in Indoor Farming Practice Using Choy Sum (Brassica rapa Var. Parachinensis). Front. Plant Sci. 2023, 13, 1057553. [Google Scholar] [CrossRef]
- Agati, G.; Franchetti, B.; Rispoli, F.; Venturini, P. Thermo-Fluid Dynamic Analysis of the Air Flow inside an Indoor Vertical Farming System. Appl. Therm. Eng. 2024, 236, 121553. [Google Scholar] [CrossRef]
- Robbiani, G.; Törn, E. Intermittent Light Scheduling for Energy Cost Reduction in Vertical Farming. IEEE Technol. Soc. Mag. 2024, 43, 81–90. [Google Scholar] [CrossRef]
- Blom, T.; Jenkins, A.; van den Dobbelsteen, A.A.J.F. Synergetic Urbanism: A Theoretical Exploration of a Vertical Farm as Local Heat Source and Flexible Electricity User. Sustain. Cities Soc. 2024, 103, 105267. [Google Scholar] [CrossRef]
- Pacak, A.; Jurga, A.; Drąg, P.; Pandelidis, D.; Kaźmierczak, B. A Long-Term Analysis of the Possibility of Water Recovery for Hydroponic Lettuce Irrigation in Indoor Vertical Farm. Part 1: Water Recovery from Exhaust Air. Appl. Sci. 2020, 10, 8907. [Google Scholar] [CrossRef]
- Jurga, A.; Pacak, A.; Pandelidis, D.; Kaźmierczak, B. A Long-Term Analysis of the Possibility of Water Recovery for Hydroponic Lettuce Irrigation in an Indoor Vertical Farm. Part 2: Rainwater Harvesting. Appl. Sci. 2021, 11, 310. [Google Scholar] [CrossRef]
- Sadeghi, H.; Ijaz, A.; Singh, R.M. Current Status of Heat Pumps in Norway and Analysis of Their Performance and Payback Time. Sustain. Energy Technol. Assess. 2022, 54, 102829. [Google Scholar] [CrossRef]
- Song, C.; Li, Y.; Rajeh, T.; Ma, L.; Zhao, J.; Li, W. Application and Development of Ground Source Heat Pump Technology in China. Prot. Control Mod. Power Syst. 2021, 6, 17. [Google Scholar] [CrossRef]
- Dadpour, D.; Deymi-Dashtebayaz, M.; Hoseini-Modaghegh, A.; Abbaszadeh-Bajgiran, M.; Soltaniyan, S.; Tayyeban, E. Proposing a New Method for Waste Heat Recovery from the Internal Combustion Engine for the Double-Effect Direct-Fired Absorption Chiller. Appl. Therm. Eng. 2022, 216, 119114. [Google Scholar] [CrossRef]
- Gupta, R.; Puri, I.K. Waste Heat Recovery in a Data Center with an Adsorption Chiller: Technical and Economic Analysis. Energy Convers. Manag. 2021, 245, 114576. [Google Scholar] [CrossRef]
- Viscito, L.; Lillo, G.; Napoli, G.; Mauro, A.W. Waste Heat Driven Multi-Ejector Cooling Systems: Optimization of Design at Partial Load; Seasonal Performance and Cost Evaluation. Energies 2021, 14, 5663. [Google Scholar] [CrossRef]
- Hunt, J.D.; de Assis Brasil Weber, N.; Zakeri, B.; Diaby, A.T.; Byrne, P.; Filho, W.L.; Schneider, P.S. Deep Seawater Cooling and Desalination: Combining Seawater Air Conditioning and Desalination. Sustain. Cities Soc. 2021, 74, 103257. [Google Scholar] [CrossRef]
- Caruana, R.; De Antonellis, S.; Marocco, L.; Guilizzoni, M. Modeling of Indirect Evaporative Cooling Systems: A Review. Fluids 2023, 8, 303. [Google Scholar] [CrossRef]
- Kirkby, E.A. Introduction, Definition, and Classification of Nutrients. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 3–9. ISBN 978-0-12-819773-8. [Google Scholar]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced Efficiency Fertilisers: A Review of Formulation and Nutrient Release Patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef]
- Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination. Agronomy 2024, 14, 1896. [Google Scholar] [CrossRef]
- Treeratanaporn, T.; Tosupareokmongkol, B.; Teparat, T.; Onarun, K. Indoor Hydroponics Farming by Using Photovoltaic Generating with IoT Analytics. In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), Taichung, Taiwan, 14–16 April 2023; pp. 262–265. [Google Scholar]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-Energy Nexus: A Review of Methods and Tools for Macro-Assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Fayiah, M.; Dong, S.; Singh, S.; Kwaku, E.A. A Review of Water–Energy Nexus Trend, Methods, Challenges and Future Prospects. Int. J. Energy Water Res. 2020, 4, 91–107. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A Review of the Water-Energy Nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Qu, H.; Yu, Z.G.; Zhang, Y.; Eey, T.J.; Zhang, Y.-W.; Tan, S.C. A Moisture-Hungry Copper Complex Harvesting Air Moisture for Potable Water and Autonomous Urban Agriculture. Adv. Mater. 2020, 32, 2002936. [Google Scholar] [CrossRef]
- Haloui, D.; Oufaska, K.; Oudani, M.; EL Yassini, K. A Multi-Criteria Decision-Making Approach for the Sustainable Location of Urban Farms: Towards Farming 4.0. In Proceedings of the 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), Rome, Italy, 3–6 July 2023; pp. 111–116. [Google Scholar]
- Labrador, C.G.; Ong, A.C.L.; Baldovino, R.G.; Valenzuela, I.C.; Culaba, A.B.; Dadios, E.P. Optimization of Power Generation and Distribution for Vertical Farming with Wireless Sensor Network. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–6. [Google Scholar]
- Zhukovskii, K.; Ovsiannikova, P.; Jhunjhunwala, P.; Scarabaggio, P.; Carli, R.; Dotoli, M.; Vyatkin, V. Energy Consumption Optimisation for Horticultural Facilities. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; pp. 1–8. [Google Scholar]
- Penuela, J.; Ben, C.; Boldyrev, S.; Gentzbittel, L.; Ouerdane, H. The Indoor Agriculture Industry: A Promising Player in Demand Response Services. Appl. Energy 2024, 372, 123756. [Google Scholar] [CrossRef]
- Arabzadeh, V.; Miettinen, P.; Kotilainen, T.; Herranen, P.; Karakoc, A.; Kummu, M.; Rautkari, L. Urban Vertical Farming with a Large Wind Power Share and Optimised Electricity Costs. Appl. Energy 2023, 331, 120416. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Yang, Z. Research on Temperature and Light Control System of Vertical Farm Based on PLC. In Proceedings of the 2023 International Conference on Networking, Informatics and Computing (ICNETIC), Palermo, Italy, 29–31 May 2023; pp. 320–324. [Google Scholar]
- Bouzebiba, H.; Hadj Abdelkader, O.; Pedro Aguiar, A. IoT Based Sustainable Management of Plant Light Requirements in Vertical Farming. In Proceedings of the 2023 IEEE 9th World Forum on Internet of Things (WF-IoT), Aveiro, Portugal, 12–27 October 2023; pp. 1–6. [Google Scholar]
- Hadj Abdelkader, O.; Bouzebiba, H.; Pena, D.; Aguiar, A.P. Energy-Efficient IoT-Based Light Control System in Smart Indoor Agriculture. Sensors 2023, 23, 7670. [Google Scholar] [CrossRef]
- Inn, A.; Hassan, R.; Daud, Z.; Usman, S. Internet of Things for Smart Solar Energy: An IoT Farm Development. In Proceedings of the 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, 16–17 February 2022; pp. 1–5. [Google Scholar]
- Meshram, N.; Prasad, B.; Ranjan, P.; Johari, N.M. Scaling Vertical Farming from Micro to Macro Using Wireless Network for Smart Agriculture. In Proceedings of the 2021 IEEE Bombay Section Signature Conference (IBSSC), Gwalior, India, 18–20 November 2021; pp. 1–5. [Google Scholar]
- Waluyo, W.; Widura, A.; Hadiatna, F.; Anugerah, D. Comparative Power and Energy Consumptions between Scheduled and Fuzzy Controlling on an IoT-Based Vertical Farming. In Proceedings of the 2021 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Bandung, Indonesia, 5–6 October 2021; pp. 278–282. [Google Scholar]
- Chen, H.-T.; Huang, Y.-C.; Rashidi, S.; Chen, B.-L.; Yan, W.-M. Numerical and Experimental Studies on Heat Transfer Characteristics and Ventilation for Indoor Vertical Farming System. Therm. Sci. Eng. Prog. 2024, 52, 102667. [Google Scholar] [CrossRef]
- Delorme, M.; Santini, A. Energy-Efficient Automated Vertical Farms. Omega 2022, 109, 102611. [Google Scholar] [CrossRef]
- Jayalath, T.C.; van Iersel, M.W.; Ferrarezi, R.S. The Energy Requirement for Supplemental Greenhouse Lighting Can Be Reduced by Considering ‘Excess’ Light from the Previous Day. Plants 2024, 13, 652. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Gomez, A.M.; van Iersel, M.W. Lowering the Target DLI Following Sunny Days Can Reduce Lighting Costs in Greenhouse Lettuce Production. In Proceedings of the 2021 ASHS Annual Conference, Denver, CO, USA, 5–9 August 2021. [Google Scholar]
- Song, S.; Kusuma, P.; Carvalho, S.D.; Li, Y.; Folta, K.M. Manipulation of Seedling Traits with Pulsed Light in Closed Controlled Environments. Environ. Exp. Bot. 2019, 166, 103803. [Google Scholar] [CrossRef]
- Thirukumaran, K.; Nagarajan, K.; Vadivel, N.; Saitheja, V.; Manivannan, V.; Prabukumar, G.; Parasuraman, P.; Kalarani, M.K.; Karthikeyan, R.; Sendhilvel, V. Enhancing Cotton Production and Sustainability through Multi-Tier Cropping Systems: Growth, Efficiency, and Profitability Analysis. Agronomy 2024, 14, 1049. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Xing, K.; Liao, L.; Xie, P.; Xiao, M.; Zhao, W. Development of a Solar-Tracking System for Horizontal Single-Axis PV Arrays Using Spatial Projection Analysis. Energies 2023, 16, 4008. [Google Scholar] [CrossRef]
- Ariffin, M.R.; Shafie, S.; Hassan, W.Z.W.; Azis, N.; Ya’acob, M.E. Conceptual Design of Hybrid Photovoltaic-Thermoelectric Generator (PV/TEG) for Automated Greenhouse System. In Proceedings of the 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Putrajaya, Malaysia, 13–14 December 2017; pp. 309–314. [Google Scholar]
- Mohd Shatar, N.; Abdul Rahman, M.A.; Muhtazaruddin, M.N.; Shaikh Salim, S.A.Z.; Singh, B.; Muhammad-Sukki, F.; Bani, N.A.; Mohd Saudi, A.S.; Ardila-Rey, J.A. Performance Evaluation of Unconcentrated Photovoltaic-Thermoelectric Generator Hybrid System under Tropical Climate. Sustainability 2019, 11, 6192. [Google Scholar] [CrossRef]
- Shatar, N.M.; Abdul Rahman, M.A.A.; Shaikh Salim, S.A.Z.; Ariff, M.H.M.; Muhtazaruddin, M.N.; Badlisah, A.K.A. Design of Photovoltaic-Thermoelectric Generator (PV-TEG) Hybrid System for Precision Agriculture. In Proceedings of the 2018 IEEE 7th International Conference on Power and Energy (PECon), Lumpur, Malaysia, 3–4 December 2018; pp. 50–55. [Google Scholar]
- Khalaf, K.A.; Gamil, A.; Attiya, B.; Cuello, J. Exploring the Potential of Concentrating Solar Power Technologies for Vertical Farming in Arid Regions: The Case of Western Iraq. Energy Sustain. Dev. 2023, 77, 101310. [Google Scholar] [CrossRef]
- Merin, J.V.; Reyes, R.C.; Sevilla, R.V.; Caballero, J.M.F.; Dela Cuesta, T.R.P.; Paredes, R.J.M.; Pastor, R.M.; Ramos, R.T.; Tandog, G.O. Automated Greenhouse Vertical Farming With Wind and Solar Hybrid Power System. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar]
- Xie, S.; Martinez-Vazquez, P.; Baniotopoulos, C. Wind Flow Characteristics on a Vertical Farm with Potential Use of Energy Harvesting. Buildings 2024, 14, 1278. [Google Scholar] [CrossRef]
- Ausanka, K.; Asiabanpour, B. Evaluation of a Passive Optical Fiber Daylighting System for Plant Growth. In Proceedings of the 2019 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 7–8 February 2019; pp. 1–6. [Google Scholar]
- Vu, D.T.; Nghiem, V.T.; Tien, T.Q.; Hieu, N.M.; Minh, K.N.; Vu, H.; Shin, S.; Vu, N.H. Optimizing Optical Fiber Daylighting System for Indoor Agriculture Applications. Sol. Energy 2022, 247, 1–12. [Google Scholar] [CrossRef]
- Tekelioglu, M.; Wood, B.D. Thermal Management of the Polymethylmethacrylate (PMMA) Core Optical Fiber for Use in Hybrid Solar Lighting. In Proceedings of the ASME 2003 International Solar Energy Conference, Kohala Coast, HI, USA, 15–18 March 2003. [Google Scholar]
- Yalçın, R.A.; Ertürk, H. Improving Crop Production in Solar Illuminated Vertical Farms Using Fluorescence Coatings. Biosyst. Eng. 2020, 193, 25–36. [Google Scholar] [CrossRef]
- Elkamel, M.; Valencia, A.; Zhang, W.; Zheng, Q.P.; Chang, N.-B. Multi-Agent Modeling for Linking a Green Transportation System with an Urban Agriculture Network in a Food-Energy-Water Nexus. Sustain. Cities Soc. 2023, 89, 104354. [Google Scholar] [CrossRef]
- Bambara, J.; Athienitis, A. Experimental Evaluation and Energy Modeling of a Greenhouse Concept with Semi-Transparent Photovoltaics. Energy Procedia 2015, 78, 435–440. [Google Scholar] [CrossRef]
- Finger, D.C.; Saevarsdottir, G.; Svavarsson, H.G.; Björnsdóttir, B.; Arason, S.; Böhme, L. Improved Value Generation from Residual Resources in Iceland: The First Step Towards a Circular Economy. Circ. Econ. Sustain. 2021, 1, 525–543. [Google Scholar] [CrossRef]
- Ekici, B.; Turkcan, O.F.S.F.; Turrin, M.; Sariyildiz, I.S.; Tasgetiren, M.F. Optimising High-Rise Buildings for Self-Sufficiency in Energy Consumption and Food Production Using Artificial Intelligence: Case of Europoint Complex in Rotterdam. Energies 2022, 15, 660. [Google Scholar] [CrossRef]
- Shao, Y.; Li, J.; Zhou, Z.; Hu, Z.; Zhang, F.; Cui, Y.; Chen, H. The Effects of Vertical Farming on Indoor Carbon Dioxide Concentration and Fresh Air Energy Consumption in Office Buildings. Build. Environ. 2021, 195, 107766. [Google Scholar] [CrossRef]
- Lagua, E.; Mun, H.-S.; Ampode, K.M.B.; Chem, V.; Park, H.-R.; Kim, Y.-H.; Yang, C.-J. Monitoring Using Artificial Intelligence Reveals Critical Links between Housing Conditions and Respiratory Health in Pigs. J. Anim. Behav. Biometeorol. 2024, 12, 2024008. [Google Scholar] [CrossRef]
- Lagua, E.B.; Mun, H.-S.; Ampode, K.M.B.; Park, H.-R.; Sharifuzzaman, M.; Hasan, M.K.; Kim, Y.-H.; Yang, C.-J. Minimum Carbon Dioxide Is a Key Predictor of the Respiratory Health of Pigs in Climate-Controlled Housing Systems. Porc. Health Manag. 2024, 10, 59. [Google Scholar] [CrossRef]
- Fan, S.; Li, A.; ter Heijne, A.; Buisman, C.J.N.; Chen, W.-S. Heat Potential, Generation, Recovery and Utilization from Composting: A Review. Resour. Conserv. Recycl. 2021, 175, 105850. [Google Scholar] [CrossRef]
Crops Species | Data | Areas | Systems | Contribution to Energy Usage (%) | SEC (kWh kgFW−1) | SWC (L kgFW−1) | Space Efficiency (kgFW m−3) | References |
---|---|---|---|---|---|---|---|---|
Lettuce | M | Riyadh, Naples and Stockholm | Lighting | 65–85 | 20.37–37.41 | 120.19 | [72] | |
Cooling | 15–20 | |||||||
Heating | 10–15 | |||||||
Circulating Fans | <1 | |||||||
M | Istanbul, Hong Kong and Oslo | Lighting | 29.35–76.57 | 26.68–66.97 | 9.83 | [25] | ||
Cooling | 17.34–70.58 | |||||||
Heating | 0.00–3.85 | |||||||
Others | 0.07–2.25 | |||||||
Lighting | 47.67–85.37 | 37.91–67.90 | 9.83 | |||||
Cooling | 17.34–52.33 | |||||||
Heating | 0.00–1.39 | |||||||
Others | ||||||||
M | Iran | Lighting | 77.50 | 11.34 | 56.37 | [5] | ||
Cooling | 3.00 | |||||||
Dehumidification | 18.50 | |||||||
Others | 1.00 | |||||||
E | Poland | Lighting | 49.90 | 7.63 | 5.12 | 320.36 | [29] | |
HVAC | 40.40 | |||||||
Automation and Irrigation | 9.70 | |||||||
M | Canada | Lighting | 42–50 | 10.28–32.72 | 38.57–112.33 | [41] | ||
Cooling | 23–35 | |||||||
Dehumidification | 14–26 | |||||||
Heating | 1–9 | |||||||
M | Italy | Lighting | 89–93 | 4.74–4.95 | [73] | |||
Cooling | 4.00 | |||||||
Heating | 3–7 | |||||||
M | Hungary | Lighting | 68.60 | [91] | ||||
HVAC | 17.88 | |||||||
Others | 13.51 | |||||||
E | USA | 1.2–2.2 | [30] | |||||
E | Italy | 8.13 | 18.55 | [71] | ||||
11.56 | 18.32 | |||||||
M | Sweden, Netherlands, and UAE | Lighting | 50.00 | [102] | ||||
Cooling | 14.00 | |||||||
Heating | 2.00 | |||||||
Dehumidification | 34.00 | |||||||
E | Italy | 14.7–21.3 | [61] | |||||
M | USA | Lighting | 44.00 | [108] | ||||
Heating | 38.00 | |||||||
Cooling | 18.00 | |||||||
USA | Lighting | 50.00 | ||||||
Heating | 40.00 | |||||||
Cooling | 10.00 | |||||||
Lettuce | E | Italy | Lighting | >77 | 14.80–25.50 | 12.90–21.30 | [18] | |
Basil | 34.00–50.60 | 22.70–26.20 | ||||||
Rocket | 35.80–48.50 | 38.30–55.60 | ||||||
Chicory | 53.40–63.00 | 39.40–49.60 | ||||||
Lettuce, Kale, Herbs (Basil, Parsley, Oregano, Rosemary), Tomatoes, Beans, and Strawberries | M | Canada | Lighting | 88.55 | [92] | |||
Cooling | 4.86 | |||||||
Heating | 6.08 | |||||||
Irrigation | 0.51 | |||||||
Lettuce, Tomato, Broccoli, Bell Pepper, Spinach, Zucchini, etc. | M | Reykjavik Region | 15.60 | [14] | ||||
Stockholm Region | 16.00 | |||||||
Tasmania | 16.00 | |||||||
Massachusetts | 16.30 | |||||||
Tokyo | 17.20 | |||||||
Santiago | 17.30 | |||||||
Gauteng | 17.50 | |||||||
Maricopa | 18.90 | |||||||
Singapore | 20.40 | |||||||
UAE | 20.10 | |||||||
Soybean | E | Netherland | 292–505 | 30–59 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, H.-S.; Lagua, E.B.; Hong, S.-K.; Ryu, S.-B.; Sharifuzzaman, M.; Hasan, M.K.; Kim, Y.-H.; Yang, C.-J. Energy-Efficient Technologies and Strategies for Feasible and Sustainable Plant Factory Systems. Sustainability 2025, 17, 3259. https://doi.org/10.3390/su17073259
Mun H-S, Lagua EB, Hong S-K, Ryu S-B, Sharifuzzaman M, Hasan MK, Kim Y-H, Yang C-J. Energy-Efficient Technologies and Strategies for Feasible and Sustainable Plant Factory Systems. Sustainability. 2025; 17(7):3259. https://doi.org/10.3390/su17073259
Chicago/Turabian StyleMun, Hong-Seok, Eddiemar Baguio Lagua, Seong-Ki Hong, Sang-Bum Ryu, Md Sharifuzzaman, Md Kamrul Hasan, Young-Hwa Kim, and Chul-Ju Yang. 2025. "Energy-Efficient Technologies and Strategies for Feasible and Sustainable Plant Factory Systems" Sustainability 17, no. 7: 3259. https://doi.org/10.3390/su17073259
APA StyleMun, H.-S., Lagua, E. B., Hong, S.-K., Ryu, S.-B., Sharifuzzaman, M., Hasan, M. K., Kim, Y.-H., & Yang, C.-J. (2025). Energy-Efficient Technologies and Strategies for Feasible and Sustainable Plant Factory Systems. Sustainability, 17(7), 3259. https://doi.org/10.3390/su17073259