Exploring Research Trends on Climate Change: Insights into Port Resilience and Sustainability
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Temporal Trends, Phases in Research Focus, and Thematic Trends
4.2. Keyword Analysis
4.3. Methodological Approaches
4.4. Data Utilization
4.5. Geographic Focus and Scale
4.6. Research Topic, Disciplinary Scope, and Concept Co-Occurrence
4.7. Publication Sources
4.8. Bibliographic Coupling and Citations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate change risk to global port operations. Nat. Clim. Change 2021, 11, 14–20. [Google Scholar] [CrossRef]
- Azarkamand, S.; Ferré, G.; Darbra, R.M. Calculating the Carbon Footprint in ports by using a standardized tool. Sci. Total Environ. 2020, 734, 139407. [Google Scholar] [CrossRef]
- Yingjun, Z.; Jahan, S.; Qamruzzaman, M. Technological Innovation, Trade Openness, Natural Resources, and Environmental Sustainability in Egypt and Turkey: Evidence from Load Capacity Factor and Inverted Load Capacity Factor with Fourier Functions. Sustainability 2024, 16, 8643. [Google Scholar] [CrossRef]
- Azarkamand, S.; Wooldridge, C.; Darbra, R.M. Review of initiatives and methodologies to reduce CO2 emissions and climate change effects in ports. Int. J. Environ. Res. Public Health 2020, 17, 3858. [Google Scholar] [CrossRef]
- Portillo Juan, N.; Negro Valdecantos, V.; del Campo, J.M. Review of the impacts of climate change on ports and harbours and their adaptation in Spain. Sustainability 2020, 14, 7507. [Google Scholar] [CrossRef]
- Becker, A.; Inoue, S.; Fischer, M.; Schwegler, B. Climate change impacts on international seaports: Knowledge, perceptions, and planning efforts among port administrators. Clim. Change 2012, 110, 5–29. [Google Scholar] [CrossRef]
- Becker, A.; Ng, A.K.; McEvoy, D.; Mullett, J. Implications of climate change for shipping: Ports and supply chains. Wiley Interdiscip. Rev. Clim. Change 2018, 9, e508. [Google Scholar] [CrossRef]
- Ng, A.K.; Song, S. The environmental impacts of pollutants generated by routine shipping operations on ports. Ocean Coast. Manag. 2010, 53, 301–311. [Google Scholar] [CrossRef]
- Bailey, D.; Solomon, G. Pollution prevention at ports: Clearing the air. Environ. Impact Assess. Rev. 2004, 24, 749–774. [Google Scholar] [CrossRef]
- Pash, H.S.; Ebadi, T.; Pourahmadi, A.; Parhizkar, Y.R. Analysis of most important indices in environmental impacts assessment of ports. Civ. Eng. J. 2017, 3, 868–880. [Google Scholar] [CrossRef]
- AAPA. American Association of Port Authorities. Environmental Management Handbook; American Association of Port Authorities: Washington, DC, USA, 1998. [Google Scholar]
- Wang, T. Adapting to the risks and uncertainties posed by climate change on ports. In Proceedings of the 14th International Conference of Research and Development in Mechanical Industry (RaDMI), London, UK, 2–4 July 2014; Volume VIII. [Google Scholar]
- Sierra, J.P.; Casanovas, I.; Mösso, C.; Mestres, M.; Sanchez-Arcilla, A. Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different scenarios of sea level rise. Reg. Environ. Change 2016, 16, 1457–1468. [Google Scholar] [CrossRef]
- Yang, Y.C.; Ge, Y.E. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244. [Google Scholar] [CrossRef]
- Christodoulou, A.; Christidis, P.; Demirel, H. Sea-level rise in ports: A wider focus on impacts. Marit. Econ. Logist. 2019, 21, 482–496. [Google Scholar] [CrossRef]
- Gallivan, F.; Bailey, K.; O’Rourke, L. Planning for impacts of climate change at US ports. Transp. Res. Rec. 2009, 2100, 15–21. [Google Scholar] [CrossRef]
- Devendran, L.; Menhat, M.; Hanafiah, R.; Yatim, N.I.; Ali, N.A.; Mohd Zaideen, I.M. Adapting to the impacts of climate change on port operation. Aust. J. Marit. Ocean Aff. 2023, 15, 107–126. [Google Scholar] [CrossRef]
- Kurt, I. Planning Ports in Changing Climate-Sea Level Rise and Floating Ports. In Proceedings of the 11th Global Conference on Global Warming (GCGW 2023), Istanbul, Turkey, 14–16 June 2023. Available at SSRN 4663227. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D. Chapter 13: Sea Level Change. In Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Humboldt State University Sea Level Rise Initiative: Arcata, CA, USA, 2013; pp. 1137–1216. [Google Scholar]
- Barbier, E.B. Policy: Hurricane Katrina’s lessons for the world. Nature 2015, 524, 285–287. [Google Scholar] [CrossRef]
- Binder, S.B.; Baker, C.K.; Barile, J.P. Rebuild or relocate? Resilience and postdisaster decision-making after Hurricane Sandy. Am. J. Community Psychol. 2015, 56, 180–196. [Google Scholar] [CrossRef]
- Arora, B.; Aditya, A. Weather impacts on seaborne trade: A new model to explain port activity in the era of climate change. Marit. Econ. Logist. 2024, 1–27. [Google Scholar] [CrossRef]
- Balica, S.F.; Wright, N.G.; van der Meulen, F. A flood vulnerability index for coastal cities and Its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef]
- Abdelhafez, M.A.; Ellingwood, B.; Mahmoud, H. Vulnerability of seaports to hurricanes and sea level rise in a changing climate: A case study for mobile, AL. Coast. Eng. 2021, 167, 103884. [Google Scholar] [CrossRef]
- Notteboom, T.; Pallis, A.; Rodrigue, J.P. Port Economics, Management and Policy; Routledge: London, UK, 2022. [Google Scholar]
- Smith, A.B.; Katz, R.W. US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards 2013, 67, 387–410. [Google Scholar] [CrossRef]
- León-Mateos, F.; Sartal, A.; López-Manuel, L.; Quintas, M.A. Adapting our sea ports to the challenges of climate change: Development and validation of a Port Resilience Index. Mar. Policy 2021, 130, 104573. [Google Scholar] [CrossRef]
- Nursey-Bray, M.; Blackwell, B.; Brooks, B.; Campbell, M.L.; Goldsworthy, L.; Pateman, H.; Rodrigues, I.; Roome, M.; Wright, J.T.; Francis, J.; et al. Vulnerabilities and adaptation of ports to climate change. J. Environ. Plan. Manag. 2013, 56, 1021–1045. [Google Scholar] [CrossRef]
- Ng, A.K.; Chen, S.L.; Cahoon, S.; Brooks, B.; Yang, Z. Climate change and the adaptation strategies of ports: The Australian experiences. Res. Transp. Bus. Manag. 2013, 8, 186–194. [Google Scholar] [CrossRef]
- Saizar, A. Assessment of impacts of a potential sea-level rise on the coast of Montevideo, Uruguay. Clim. Res. 1997, 9, 73–79. [Google Scholar] [CrossRef]
- Hunter, J.; Coleman, R.; Pugh, D. The sea level at Port Arthur, Tasmania, from 1841 to the present. Geophys. Res. Lett. 2003, 30, 1401. [Google Scholar] [CrossRef]
- Gravelle, G.; Mimura, N. Vulnerability assessment of sea-level rise in Viti Levu, Fiji Islands. Sustain. Sci. 2008, 3, 171–180. [Google Scholar] [CrossRef]
- Alsahli, M.M.; AlHasem, A.M. Vulnerability of Kuwait coast to sea level rise. Geogr. Tidsskr.-Dan. J. Geogr. 2016, 116, 56–70. [Google Scholar] [CrossRef]
- Becker, A.; Hippe, A.; Mclean, E.L. Cost and materials required to retrofit US seaports in response to sea level rise: A thought exercise for climate response. J. Mar. Sci. Eng. 2017, 5, 44. [Google Scholar] [CrossRef]
- Roshni, T.; Sajid, K.; Samui, P. Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India. Ocean Syst. Eng. 2017, 7, 319–328. [Google Scholar]
- Galiatsatou, P.; Makris, C.; Prinos, P. Optimized reliability based upgrading of rubble mound breakwaters in a changing climate. J. Mar. Sci. Eng. 2018, 6, 92. [Google Scholar] [CrossRef]
- Gracia, V.; Sierra, J.P.; Gómez, M.; Pedrol, M.; Sampé, S.; García-León, M.; Gironella, X. Assessing the impact of sea level rise on port operability using LiDAR-derived digital elevation models. Remote Sens. Environ. 2019, 232, 111318. [Google Scholar] [CrossRef]
- Sierra, J.P. Economic impact of overtopping and adaptation measures in Catalan ports due to sea level rise. Water 2019, 11, 1440. [Google Scholar] [CrossRef]
- Esteban, M.; Takagi, H.; Nicholls, R.J.; Fatma, D.; Pratama, M.B.; Kurobe, S.; Yi, X.; Ikeda, I.; Mikami, T.; Valenzuela, P.; et al. Adapting ports to sea-level rise: Empirical lessons based on land subsidence in Indonesia and Japan. Marit. Policy Manag. 2020, 47, 937–952. [Google Scholar] [CrossRef]
- Patil, R.G.; Deo, M.C. Sea level rise and shoreline change under changing climate along the Indian Coastline. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 05020002. [Google Scholar] [CrossRef]
- Maravelakis, N.; Kalligeris, N.; Lynett, P.J.; Skanavis, V.L.; Synolakis, C.E. Wave overtopping due to harbour resonance. Coast. Eng. 2021, 169, 103973. [Google Scholar] [CrossRef]
- Allen, T.R.; McLeod, G.; Hutt, S. Sea level rise exposure assessment of US East Coast cargo container terminals. Marit. Policy Manag. 2022, 49, 577–599. [Google Scholar] [CrossRef]
- Čepienė, E.; Dailidytė, L.; Stonevičius, E.; Dailidienė, I. Sea level rise impact on compound coastal river flood risk in Klaipėda city (Baltic Coast, Lithuania). Water 2022, 14, 414. [Google Scholar] [CrossRef]
- Jebbad, R.; Sierra, J.P.; Mösso, C.; Mestres, M.; Sánchez-Arcilla, A. Assessment of harbour inoperability and adaptation cost due to sea level rise. Application to the port of Tangier-Med (Morocco). Appl. Geogr. 2022, 138, 102623. [Google Scholar] [CrossRef]
- Chang, T.H.; Wang, H.Y. Analysis and Exploration of the Impact of Average Sea Level Change on Navigational Safety in Ports. Water 2023, 15, 2570. [Google Scholar] [CrossRef]
- Raj, N.; Brown, J. Prediction of Mean Sea Level with GNSS-VLM Correction Using a Hybrid Deep Learning Model in Australia. Remote Sens. 2023, 15, 2881. [Google Scholar] [CrossRef]
- Chambers, D. Policing and climate change. Aust. J. Emerg. Manag. 2011, 26, 52–59. [Google Scholar]
- Becker, A.; Caldwell, M.R. Stakeholder perceptions of seaport resilience strategies: A case study of Gulfport (Mississippi) and Providence (Rhode Island). Coast. Manag. 2015, 43, 1–34. [Google Scholar] [CrossRef]
- Blok, A.; Tschötschel, R. World port cities as cosmopolitan risk community: Mapping urban climate policy experiments in Europe and East Asia. Environ. Plan. C Gov. Policy 2016, 34, 717–736. [Google Scholar] [CrossRef]
- Fenton, P. The role of port cities and transnational municipal networks in efforts to reduce greenhouse gas emissions on land and at sea from shipping–An assessment of the World Ports Climate Initiative. Mar. Policy 2017, 75, 271–277. [Google Scholar] [CrossRef]
- Ng, A.K.; Wang, T.; Yang, Z.; Li, K.X.; Jiang, C. How is business adapting to climate change impacts appropriately? Insight from the commercial port sector. J. Bus. Ethics 2018, 150, 1029–1047. [Google Scholar]
- Ng, A.K.; Zhang, H.; Afenyo, M.; Becker, A.; Cahoon, S.; Chen, S.L.; Esteban, M.; Ferrari, C.; Lau, Y.; Lee, P.T.W.; et al. Port decision maker perceptions on the effectiveness of climate adaptation actions. Coast. Manag. 2018, 46, 148–175. [Google Scholar] [CrossRef]
- Bond, P. Blue Economy threats, contradictions and resistances seen from South Africa. J. Political Ecol. 2019, 26, 341–362. [Google Scholar] [CrossRef]
- Brewer, T.L. Black Carbon and Other Air Pollutants in Italian Ports and Coastal Areas: Problems, Solutions and Implications for Policies. Appl. Sci. 2020, 10, 8544. [Google Scholar] [CrossRef]
- Lin, Y.; Ng, A.K.; Zhang, A.; Xu, Y.; He, Y. Climate change adaptation by ports: The attitude of Chinese port organizations. Marit. Policy Manag. 2020, 47, 873–884. [Google Scholar] [CrossRef]
- Alnafisah, N.; Alsmari, E.; Alshehri, A.; Binsuwadan, J. Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory. Energies 2024, 17, 904. [Google Scholar] [CrossRef]
- Pian, F.; Xu, L.; Chen, Y.; Lee, S.H. Global emission taxes and port privatization policies under international competition. Sustainability 2020, 12, 6595. [Google Scholar] [CrossRef]
- Alamoush, A.S.; Ölçer, A.I.; Ballini, F. Port greenhouse gas emission reduction: Port and public authorities’ implementation schemes. Res. Transp. Bus. Manag. 2022, 43, 100708. [Google Scholar] [CrossRef]
- Liu, X. The supervision and multi-sectoral guarantee mechanism of the global marine sulphur limit—Assessment from Chinese shipping industry. Front. Mar. Sci. 2022, 9, 1028388. [Google Scholar] [CrossRef]
- Botana, C.; Fernández, E.; Feijoo, G. Towards a green port strategy: The decarbonisation of the port of vigo (nw spain). Sci. Total Environ. 2023, 856, 159198. [Google Scholar] [CrossRef] [PubMed]
- Chalastani, V.I.; Pantelidis, A.; Feloni, E.; Papadimitriou, A.; Tsaimou, C.N.; Nisiforou, O.; Tsoukala, V.K. Development of a Complex Vulnerability Index for Fishing Shelters—The Case of Cyprus. J. Mar. Sci. Eng. 2023, 11, 1880. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H.; Lyu, Y. Emission reduction technologies for shipping supply chains under carbon tax with knowledge sharing. Ocean Coast. Manag. 2023, 246, 106869. [Google Scholar] [CrossRef]
- Parsmo, R.; Ytreberg, E.; Verdaasdonk, M.; Fridell, E. Environmental discounts for Swedish ports and fairways: A ship owner perspective. Mar. Policy 2024, 159, 105950. [Google Scholar] [CrossRef]
- Osthorst, W.; Mänz, C. Types of cluster adaptation to climate change. Lessons from the port and logistics sector of Northwest Germany. Marit. Policy Manag. 2012, 39, 227–248. [Google Scholar] [CrossRef]
- Becker, A.H.; Acciaro, M.; Asariotis, R.; Cabrera, E.; Cretegny, L.; Crist, P.; Esteban, M.; Mather, A.; Messner, S.; Naruse, S.; et al. A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society. Clim. Change 2013, 120, 683–695. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; Sierra, J.P.; Brown, S.; Casas-Prat, M.; Nicholls, R.J.; Lionello, P.; Conte, D. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Change 2016, 16, 2471–2484. [Google Scholar] [CrossRef]
- Mutombo, K.; Ölçer, A. Towards port infrastructure adaptation: A global port climate risk analysis. WMU J. Marit. Aff. 2017, 16, 161–173. [Google Scholar] [CrossRef]
- Yang, Z.; Ng, A.K.; Lee, P.T.W.; Wang, T.; Qu, Z.; Rodrigues, V.S.; Pettit, S.; Harris, I.; Zhang, D.; Lau, Y.Y. Risk and cost evaluation of port adaptation measures to climate change impacts. Transp. Res. Part D Transp. Environ. 2018, 61, 444–458. [Google Scholar] [CrossRef]
- Ng, A.K.; Monios, J.; Zhang, H. Climate adaptation management and institutional erosion: Insights from a major Canadian port. J. Environ. Plan. Manag. 2019, 62, 586–610. [Google Scholar] [CrossRef]
- Morris, L.L. Stakeholder collaboration as a pathway to climate adaptation at coastal ports. Marit. Policy Manag. 2020, 47, 953–967. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Lopes, C.L.; Sousa, M.C.; Gomez-Gesteira, M.; Dias, J.M. Flooding conditions at Aveiro Port (Portugal) within the framework of projected climate change. J. Mar. Sci. Eng. 2021, 9, 595. [Google Scholar] [CrossRef]
- Itoh, R.; Zhang, A. How should ports share risk of natural and climate change disasters? Analytical modelling and implications for adaptation investments. Econ. Transp. 2023, 33, 100301. [Google Scholar] [CrossRef]
- Chowdhooree, I.; Aziz, T.; Rashid, M.J.; Hossain, M. Climate change adaptation through nature-based solution: Examining the case of Thakurani Khal of Mongla Port Municipality, Bagerhat Bangladesh. Int. J. Disaster Resil. Built Environ. 2024, 15, 474–493. [Google Scholar] [CrossRef]
- Rashid, M.J.; Chowdhooree, I.; Aziz, T.; Hossain, M. Determining the climate adaptive capacity of urban actors: A case study of Mongla port-town in Bangladesh. Int. J. Disaster Resil. Built Environ. 2024, 15, 617–635. [Google Scholar] [CrossRef]
- Morel, G.; Lima, F.R.; Martell-Flores, H.; Hissel, F. Tools for an integrated systems approach to sustainable port city planning. urbe. Rev. Bras. De Gestão Urbana 2013, 5, 39–49. [Google Scholar] [CrossRef]
- Bjerkan, K.Y.; Ryghaug, M. Diverging pathways to port sustainability: How social processes shape and direct transition work. Technol. Forecast. Soc. Change 2021, 166, 120595. [Google Scholar] [CrossRef]
- Argyriou, I.; Sifakis, N.; Tsoutsos, T. Ranking measures to improve the sustainability of Mediterranean ports based on multicriteria decision analysis: A case study of Souda port, Chania, Crete. Environ. Dev. Sustain. 2022, 24, 6449–6466. [Google Scholar] [CrossRef]
- Cunha, D.R.; Pereira, N.N.; Moneva, J.M. Port sustainability initiatives: A study of brazilian public ports. Rev. De Gestão E Secr. 2023, 14, 12674–12693. [Google Scholar] [CrossRef]
- Diniz, N.V.; Cunha, D.R.; de Santana Porte, M.; Oliveira, C.B.M. Disclosure of the sustainable development goals in the maritime industry and port sector. Rev. De Gestão E Secr. 2023, 14, 8129–8149. [Google Scholar] [CrossRef]
- Garg, A.; Naswa, P.; Shukla, P.R. Energy infrastructure in India: Profile and risks under climate change. Energy Policy 2015, 81, 226–238. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Nguyen, P.Q.P.; Nguyen, T.P. Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam. Int. J. Renew. Energy Dev. 2022, 11, 950–962. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Elkafas, A.G.; Seddiek, I.S. Application of renewable energy systems in seaports towards sustainability and decarbonization: Energy, environmental and economic assessment. Renew. Energy 2024, 228, 120690. [Google Scholar] [CrossRef]
- Sierra, J.P.; Genius, A.; Lionello, P.; Mestres, M.; Mösso, C.; Marzo, L. Modelling the impact of climate change on harbour operability: The Barcelona port case study. Ocean Eng. 2017, 141, 64–78. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Li, K.X. Green port marketing for sustainable growth and development. Transp. Policy 2019, 84, 73–81. [Google Scholar] [CrossRef]
- Poletan Jugović, T.; Agatić, A.; Gračan, D.; Šekularac–Ivošević, S. Sustainable activities in Croatian marinas–towards the “green port” concept. Pomorstvo 2022, 36, 318–327. [Google Scholar] [CrossRef]
- Le, S.T.; Nguyen, T.H. The development of green ports in emerging nations: A case study of Vietnam. Sustainability 2023, 15, 13502. [Google Scholar] [CrossRef]
- Linder, A.J. CO2 restrictions and cargo throughput limitations at California ports: A closer look at AB 32 and port-to-port shipping. Public Work. Manag. Policy 2010, 14, 374–391. [Google Scholar] [CrossRef]
- Saraçoğlu, H.; Deniz, C.; Kılıç, A. An investigation on the effects of ship sourced emissions in Izmir Port, Turkey. Sci. World J. 2013, 1, 218324. [Google Scholar] [CrossRef]
- Rodrigues, V.S.; Pettit, S.; Harris, I.; Beresford, A.; Piecyk, M.; Yang, Z.; Ng, A. UK supply chain carbon mitigation strategies using alternative ports and multimodal freight transport operations. Transp. Res. Part E Logist. Transp. Rev. 2015, 78, 40–56. [Google Scholar] [CrossRef]
- Zhao, N.; Schofield, N.; Niu, W. Energy storage system for a port crane hybrid power-train. IEEE Trans. Transp. Electrif. 2016, 2, 480–492. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. The activity-based methodology to assess ship emissions-A review. Environ. Pollut. 2017, 231, 87–103. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Assessment of shipping emissions on four ports of Portugal. Environ. Pollut. 2017, 231, 1370–1379. [Google Scholar] [CrossRef]
- Li, X.; Kuang, H.; Hu, Y. Carbon mitigation strategies of port selection and multimodal transport operations—A case study of northeast China. Sustainability 2019, 11, 4877. [Google Scholar] [CrossRef]
- Alzahrani, A.; Petri, I.; Rezgui, Y. Analysis and simulation of smart energy clusters and energy value chain for fish processing industries. Energy Rep. 2020, 6, 534–540. [Google Scholar] [CrossRef]
- Roy, A.; Auger, F.; Olivier, J.C.; Schaeffer, E.; Auvity, B. Design, sizing, and energy management of microgrids in harbor areas: A review. Energies 2020, 13, 5314. [Google Scholar] [CrossRef]
- Kim, K. Characteristics of economic and environmental benefits of shore power use by container-ship size. J. Mar. Sci. Eng. 2022, 10, 622. [Google Scholar] [CrossRef]
- Kanrak, M.; Lau, Y.Y.; Ling, X.; Traiyarach, S. Cruise shipping network of ports in and around the emission control areas: A network structure perspective. Marit. Bus. Rev. 2023, 8, 372–388. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Pan, W. Controlling marine greenhouse gas emissions in Hong Kong: Policy considerations. Marit. Policy Manag. 2023, 50, 1136–1146. [Google Scholar] [CrossRef]
- Makram, M.; Bassam, A.M.; Tawfik, A.A.; Yehia, W. Assessment of Onshore Renewable Energy Power Supply for Ship’s Emissions Reduction in Port Said West Port. J. Mar. Sci. Appl. 2024, 23, 506–524. [Google Scholar] [CrossRef]
- Shu, Y.; Han, B.; Song, L.; Yan, T.; Gan, L.; Zhu, Y.; Zheng, C. Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes. Appl. Energy 2024, 367, 123382. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Comeaux, R.S.; Allison, M.A.; Bianchi, T.S. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuar. Coast. Shelf Sci. 2012, 96, 81–95. [Google Scholar] [CrossRef]
- Winnes, H.; Styhre, L.; Fridell, E. Reducing GHG emissions from ships in port areas. Res. Transp. Bus. Manag. 2015, 17, 73–82. [Google Scholar] [CrossRef]
- Zeng, S.; Li, G.; Wu, S.; Dong, Z. The impact of green technology innovation on carbon emissions in the context of carbon neutrality in China: Evidence from spatial spillover and nonlinear effect analysis. Int. J. Environ. Res. Public Health 2022, 19, 730. [Google Scholar] [CrossRef] [PubMed]
- Verschuur, J.; Koks, E.; Hall, J. The implications of large-scale containment policies on global maritime trade during the COVID-19 pandemic. arXiv 2020, arXiv:2010.15907. [Google Scholar]
- Jiang, C.; Zheng, S.; Ng, A.K.; Ge, Y.E.; Fu, X. The climate change strategies of seaports: Mitigation vs. adaptation. Transp. Res. Part D Transp. Environ. 2020, 89, 102603. [Google Scholar] [CrossRef]
- Elgin, C.; Özgür, G.; Cantekin, K. Measuring green technology adoption across countries. Sustain. Dev. 2023, 31, 1–11. [Google Scholar] [CrossRef]
Keyword | Frequency | Keyword | Frequency |
---|---|---|---|
Climate Change | 65 | Wave | 18 |
Impact | 50 | System | 17 |
Port | 45 | Scenario | 17 |
Management | 37 | Policy | 17 |
Model | 33 | Competition | 17 |
Adaptation | 29 | Performance | 16 |
Sea Level/Sea-Level Rise | 26 | Air Pollution | 15 |
Transport | 22 | Coast/Coastal | 15 |
Emission | 21 | Resilience | 15 |
Vulnerability | 21 | City | 14 |
Sustainability | 18 | Disaster | 13 |
Strategy | 18 | Risk | 13 |
Methods | Frequency | Percent (%) |
---|---|---|
Review | 146 | 33.40 |
Various Statistical Methods | 133 | 30.43 |
Case Study | 49 | 11.21 |
Modeling/Mapping | 34 | 7.78 |
Scenario-Based Methods | 27 | 6.17 |
Simulation | 17 | 3.89 |
MCDM | 12 | 2.74 |
Content Analysis | 11 | 2.51 |
Experiment | 5 | 1.14 |
Focus Group | 2 | 0.457 |
Publication Sources | Frequency | Percent (%) |
---|---|---|
Sustainability | 12 | 3.773585 |
Journal of Marine Science And Engineering | 11 | 3.459119 |
Marine Policy | 7 | 2.201258 |
Maritime Policy Management | 4 | 1.257862 |
Water | 4 | 1.257862 |
Applied Sciences-Basel | 3 | 0.943396 |
Coastal Engineering | 3 | 0.943396 |
Frontiers In Marine Science | 3 | 0.943396 |
Journal of Coastal Research | 3 | 0.943396 |
Transportation Research Part D-Transport And Environment | 3 | 0.943396 |
Energies | 2 | 0.628931 |
Ocean Coastal Management | 2 | 0.628931 |
Maritime Economics Logistics | 2 | 0.628931 |
Environmental Science and Pollution Research | 2 | 0.628931 |
Computers Industrial Engineering | 2 | 0.628931 |
International Journal Of Disaster Resilience In The Built Environment | 2 | 0.628931 |
Transportation Research Record | 2 | 0.628931 |
Remote Sensing | 2 | 0.628931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türkistanlı, T.T.; Özispa, N.; Tuğdemir Kök, G.; Özdemir, Ü.; Pehlivan, D. Exploring Research Trends on Climate Change: Insights into Port Resilience and Sustainability. Sustainability 2025, 17, 3542. https://doi.org/10.3390/su17083542
Türkistanlı TT, Özispa N, Tuğdemir Kök G, Özdemir Ü, Pehlivan D. Exploring Research Trends on Climate Change: Insights into Port Resilience and Sustainability. Sustainability. 2025; 17(8):3542. https://doi.org/10.3390/su17083542
Chicago/Turabian StyleTürkistanlı, Taha Talip, Nergis Özispa, Gökçe Tuğdemir Kök, Ünal Özdemir, and Davut Pehlivan. 2025. "Exploring Research Trends on Climate Change: Insights into Port Resilience and Sustainability" Sustainability 17, no. 8: 3542. https://doi.org/10.3390/su17083542
APA StyleTürkistanlı, T. T., Özispa, N., Tuğdemir Kök, G., Özdemir, Ü., & Pehlivan, D. (2025). Exploring Research Trends on Climate Change: Insights into Port Resilience and Sustainability. Sustainability, 17(8), 3542. https://doi.org/10.3390/su17083542