An Appraisal of the Constraints, Opportunities, and Farmers’ Needs and Preferences of Oil Palm for Sustainable Production and Improvement in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Sampling Method
2.3. Sample Size Determination
- where
- n = the required sample size; = the table value of chi-square for 1 degree of freedom at the desired confidence level (3.841), i.e., (1.96 × 1.96 = 3.8416), with a 95% confidence level (standard value is 1.96); N = the population size; P = the population proportion/variance in the population (that is set at 0.50 to provide maximum sample size); and = the degree of accuracy/margin of error at 5% (standard value of 0.05).
2.4. Data Collection
2.5. Data Analysis
2.6. Limitations of This Study
3. Results
3.1. Description of Households
3.2. Socio-Economic Activities
3.3. Oil Palm Production Constraints
3.4. Access to Extension Service and Improved Oil Palm Seedlings
3.5. Use of Fertilizers for Oil Palm Production
3.6. Weed Management in Oil Palm Production
3.7. Intercropping of Oil Palm with Major Annual Crops
3.8. Oil Palm Types Cultivated in the Study Area
3.9. Farmers Preferred Traits of Oil Palm Types
4. Discussion
4.1. Description of Households
4.2. Crop Management Practices
4.3. Fertilizer Application
4.4. Weeding
4.5. Intercropping in Oil Palm
4.6. Access to Extension Services
4.7. Farmers’ Perceptions of Types of Oil Palm Genotypes Grown
4.8. Farmers Preferred Traits of Oil Palm
4.9. Oil Palm Production Constraints
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corley, R.H.V.; Tinker, P.B.H. The Oil Palm; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Murphy, D.J.; Goggin, K.; Paterson, R.R.M. Oil palm in the 2020s and beyond: Challenges and solutions. CABI Agric. Biosci. 2021, 2, 39. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Naito, D.; Moeliono, M.; Mitani, Y.; Susaeta, A.I. Oil palm-and rubber-driven deforestation in Indonesia and Malaysia (2000–2021) and efforts toward zero deforestation commitments. Agrofor. Syst. 2025, 99, 20. [Google Scholar] [CrossRef]
- Trend, G.M.; Outlook, L. 1 Palm Oil Business. In The Palm Oil Export Market: Trends, Challenges, and Future Strategies for Sustainability; Taylor & Francis: New York, NY, USA, 2025; Volume 1. [Google Scholar]
- Ali, M.S.; Vaiappuri, S.K.; Tariq, S. Malaysian Oil Palm Industry: A View on the Economic, Social, and Environmental Aspects. In Economics and Environmental Responsibility in the Global Beverage Industry; IGI Global: Hershey, PA, USA, 2024; pp. 268–284. [Google Scholar]
- NBS. National Sample Census of Agriculture 2019/20: National Report; National Bureau of Statistics (NBS): Dodoma, Tanzania, 2021; p. 361.
- Kannan, P.; Mansor, N.H.; Rahman, N.K.; Peng, T.; Mazlan, S.M. A review on the malaysian sustainable palm oil certification process among independent oil palm smallholders. J. Oil Palm Res. 2021, 33, 171–180. [Google Scholar] [CrossRef]
- Mwatawala, H.W.; Maguta, M.M.; Kazanye, A.E. Factors Influencing the Adoption of Improved Oil Palm Variety in Kigoma Rural District of Tanzania. Rural. Plan. J. 2022, 24, 18–37. [Google Scholar]
- Suzana, M.; Zulkifli, Y.; Marhalil, M.; Rajanaidu, N.; Ong-Abdullah, M. Principal component and cluster analyses on Tanzania oil palm Elaeis guineensis Jacq. germplasm. J. Oil Palm Res. 2020, 32, 24–33. [Google Scholar]
- Chambers, R. Rural Appraisal: Rapid, Relaxed and Participatory; Institute of Development Studies: Brighton, UK, 1992; Volume 311. [Google Scholar]
- Akpo, E.; Vissoh, P.; Tossou, R.; Crane, T.; Kossou, D.; Richards, P.; Stomph, T.-J.; Struik, P. A participatory diagnostic study of the oil palm (Elaeis guineensis) seed system in Benin. NJAS-Wagening. J. Life Sci. 2012, 60–63, 15–27. [Google Scholar] [CrossRef]
- Andersen, A.O.; Bruun, T.B.; Egay, K.; Fenger, M.; Klee, S.; Pedersen, A.F.; Pedersen, L.M.L.; Villanueva, V.S. Negotiating development narratives within large-scale oil palm projects on village lands in Sarawak, Malaysia. Geogr. J. 2016, 182, 364–374. [Google Scholar] [CrossRef]
- De Vos, R.; Delabre, I. Spaces for participation and resistance: Gendered experiences of oil palm plantation development. Geoforum 2018, 96, 217–226. [Google Scholar] [CrossRef]
- Delabre, I.; Okereke, C. Palm oil, power, and participation: The political ecology of social impact assessment. Environ. Plan. E Nat. Space 2020, 3, 642–662. [Google Scholar] [CrossRef]
- Teklu, D.H.; Shimelis, H.; Tesfaye, A.; Abady, S. Appraisal of the sesame production opportunities and constraints, and farmer-preferred varieties and traits, in eastern and southwestern Ethiopia. Sustainability 2021, 13, 11202. [Google Scholar] [CrossRef]
- Skinner, C.J. Probability proportional to size (PPS) sampling. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Sample size determination table. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Al-Subaihi, A.A. Sample size determination. Influencing factors and calculation strategies for survey research. Neurosci. J. 2003, 8, 79–86. [Google Scholar]
- Yaseen, M.; Thapa, N.; Visetnoi, S.; Ali, S.; Saqib, S.E. Factors determining the farmers’ decision for adoption and non-adoption of oil palm cultivation in Northeast Thailand. Sustainability 2023, 15, 1595. [Google Scholar] [CrossRef]
- Negera, M.; Alemu, T.; Hagos, F.; Haileslassie, A. Determinants of adoption of climate smart agricultural practices among farmers in Bale-Eco region, Ethiopia. Heliyon 2022, 8, e09824. [Google Scholar] [CrossRef] [PubMed]
- Serebrennikov, D.; Thorne, F.; Kallas, Z.; McCarthy, S.N. Factors influencing adoption of sustainable farming practices in Europe: A systemic review of empirical literature. Sustainability 2020, 12, 9719. [Google Scholar] [CrossRef]
- Muzira, D.R.; Bondai, B.M. Perception of educators towards the adoption of education 5.0: A case of a state university in Zimbabwe. East Afr. J. Educ. Soc. Sci. 2020, 1, 43–53. [Google Scholar]
- Rosenbusch, N.; Brinckmann, J.; Bausch, A. Is innovation always beneficial? A meta-analysis of the relationship between innovation and performance in SMEs. J. Bus. Ventur. 2011, 26, 441–457. [Google Scholar]
- Dalla Corte, V.F.; Dabdab Waquil, P.; Stiegert, K. Wheat industry: Which factors influence innovation? J. Technol. Manag. Innov. 2015, 10, 11–17. [Google Scholar] [CrossRef]
- Bonney, L.; Clark, R.; Collins, R.; Fearne, A. From serendipity to sustainable competitive advantage: Insights from Houston’s Farm and their journey of co-innovation. Supply Chain. Manag. Int. J. 2007, 12, 395–399. [Google Scholar] [CrossRef]
- Goh, K.J.; Mahamooth, T.N.; Ng, H.P.; Teo, C.B.; Liew, Y.A. Managing soil environment and its major impact on oil palm nutrition and productivity in Malaysia. Adv. Agriecological Res. Sdn. Bhd 2016, 11, 1–71. [Google Scholar]
- Simanjuntak, W.F.; Kusuma, R.M.; Wiyatiningsih, S.; Zulperi, D. Pest and Disease Challenges in Oil Palm (Elaeis guineensis Jacq) Seedling in Sukamara, Central Borneo. Agriverse 2025, 1, 12–22. [Google Scholar]
- Fuady, Z.; Satriawan, H.; Ernawita. Early growth of porang (Amorphophallus oncophyllus) with planting distance adjustment under oil palm plantation. In Proceedings of the The 7th International Conference on Agriculture, Environment, and Food Security 2023, Medan, Indonesia, 26–27 September 2023; IOP Publishing: Bristol, UK, 2023. [Google Scholar]
- Valentina, L.; Seephuak, P.; Boonchareon, K.; Chotikamas, T.; Vanichpakorn, P.; Sripaoraya, S. Effects of plant materials and plant densities on pineapple (Ananas comosus var. srivijaya) growth under intercropping with young oil palm (Elaeis guineensis Jacq.) in lowland área. Int. J. Agric. Technol. 2024, 20, 1639–1654. [Google Scholar]
- Maldaner, L.F.; Molin, J.P.; da Silva, E.R.O. Spatial–temporal analysis to investigate the influence of in-row plant spacing on the sugarcane yield. Sugar Tech 2024, 26, 194–206. [Google Scholar] [CrossRef]
- Yeshiwas, Y.; Alemayehu, M.; Adgo, E. Influence of cultivar and plant density on the growth, bulb yield and quality traits of onion (Allium cepa L.). Sci. Rep. 2024, 14, 30729. [Google Scholar] [CrossRef]
- Azahari, D. Impact of chemical fertilizer on soil fertility of oil palm plantations in relation to productivity and environment. In Proceedings of the 3rd International Conference on Natural Resources and Environmental Conservation (ICNREC 2022), Bogor, Indonesia, 27 October 2022; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Damayanti, Y.; Nainggolan, S.; Nurchaini, D.S.; Rahmawati, S.E. Technical Efficiency Analysis of Fertilizer use for Oil Palm Plantations Self-Help Patterns in Muaro Jambi Regency using Methods Data Envelopment Analysis. Int. J. Hortic. Agric. Food Sci. (IJHAF) 2023, 7, 8–14. [Google Scholar] [CrossRef]
- Wahyuningsih, R.; Marchand, L.; Pujianto; Suhardi; Caliman, J. Impact of inorganic fertilizer to soil biological activity in an oil palm plantation. In Proceedings of the The 1st International Conference on Natural Resources and Environmental Conservation (ICNREC): “Impact of Oil Palm Plantation on Physical and Chemical Environment, Biodiversity and Local Social Economic”, Bogor, Indonesia, 23 October 2018; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Sahari, B.; Hendarjanti, H.; Yusran, A.; Ibrahim, M.I.M.; Ramadhan, G.F.; Prabowo, R. Weed diversity in oil palm plantation: Benefit from the unexpected ground cover community. In Proceedings of the 3rd International Symposium on Transdisciplinary Approach for Knowledge Co-Creation in Sustainability (ISTAKCOS-2022), Bogor, Indonesia, 31 August–2 September 2022; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Iddris, N.A.-A.; Formaglio, G.; Paul, C.; von Groß, V.; Chen, G.; Angulo-Rubiano, A.; Berkelmann, D.; Brambach, F.; Darras, K.F.A.; Krashevska, V.; et al. Mechanical weeding enhances ecosystem multifunctionality and profit in industrial oil palm. Nat. Sustain. 2023, 6, 683–695. [Google Scholar] [CrossRef]
- Ali, N.B.M.; Karim, M.F.A.; Saharizan, N.; Adnan, N.S.; Mazri, N.H.; Fikri, N.A.; Amaludin, N.A.; Zakaria, R. Weeds diversity in oil palm plantation at Segamat, Johor. In Proceedings of the 3rd Asia Pacific Regional Conference on Food Security (ARCoFS 2021), Kelantan, Malaysia, 9 March 2021. [Google Scholar]
- Formaglio, G.; Veldkamp, E.; Damris, M.; Tjoa, A.; Corre, M.D. Mulching with pruned fronds promotes the internal soil N cycling and soil fertility in a large-scale oil palm plantation. Biogeochemistry 2021, 154, 63–80. [Google Scholar] [CrossRef]
- Namanji, S.; Ssekyewa, C.; Slingerland, M. Intercropping Food and Cash Crops with Oil Palm–Experiences in Uganda and Why it Makes Sense; Ecological Trends Alliance Texts: Kampala, Uganda, 2021. [Google Scholar]
- van Leeuwen, S. Analysis of a Pineapple-Oil Palm Intercropping System in Malaysia. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2019. [Google Scholar]
- Agele, S.O.; Charles, F.E.; Obi, A.E.; Agbona, A.I. Oil Palm-Based Cropping Systems of the Humid Tropics: Addressing Production Sustainability, Resource Efficiency, Food Security and Livelihood Challenges. In Elaeis Guineensis; InTech Open: Rijeka, Croatia, 2022; p. 279. [Google Scholar]
- Razak, S.A.; Saadun, N.; Azhar, B.; Lindenmayer, D.B. Smallholdings with high oil palm yield also support high bird species richness and diverse feeding guilds. Environ. Res. Lett. 2020, 15, 094031. [Google Scholar] [CrossRef]
- Dhandapani, S.; Girkin, N.T.; Evers, S.; Ritz, K.; Sjögersten, S. Is intercropping an environmentally-wise alternative to established oil palm monoculture in tropical peatlands? Front. For. Glob. Change 2020, 3, 70. [Google Scholar] [CrossRef]
- Koussihouèdé, H.; Aholoukpè, H.; Adjibodou, J.; Hinkati, H.; Dubos, B.; Chapuis-Lardy, L.; Barthès, B.G.; Amadji, G.; Clermont-Dauphin, C. Comparative analysis of nutritional status and growth of immature oil palm in various intercropping systems in southern Benin. Exp. Agric. 2020, 56, 371–386. [Google Scholar] [CrossRef]
- Peng, T.S.; Lyndon, N.; Hashim, K.; Aman, Z. The role of social media applications in palm oil extension services in Malaysia. Akademika 2021, 91, 145–156. [Google Scholar]
- Somanje, A.N.; Mohan, G.; Saito, O. Evaluating farmers’ perception toward the effectiveness of agricultural extension services in Ghana and Zambia. Agric. Food Secur. 2021, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Lawal, K.F. Perceived Effectiveness of Public Extension Services Among Maize Based Smallholder Farmers in Kwara State, Nigeria. Master’s Thesis, Kwara State University, Malete, Nigeria, 2023. [Google Scholar]
- Basaruddin, N.H.; Kannan, P.; Hashim, K.; Johari, M.A.; Dahari, N.; Isnin, M.K.A. Acceptance Level of Independent Oil Palm Smallholders in Malaysia Towards Extension Services. Int. J. Mod. Trends Soc. Sci. 2021, 4, 17–33. [Google Scholar] [CrossRef]
- Cloete, P.; Bahta, Y.T.; Marunga, M.; Lombard, W.A. Perception and understanding of agricultural extension: Perspective of farmers and public agricultural extension in Taba Nchu. S. Afr. J. Agric. Ext. 2019, 47, 14–31. [Google Scholar] [CrossRef]
- Somyong, S.; Walayaporn, K.; Jomchai, N.; Hassan, S.H.; Yodyingyong, T.; Phumichai, C.; Limsrivilai, A.; Saklang, A.; Suvanalert, S.; Sonthirod, C.; et al. Identifying a DELLA gene as a height controlling gene in oil palm. Chiang Mai J. Sci. 2019, 46, 32–45. [Google Scholar]
- Mrema, E.; Shimelis, H.; Laing, M.; Bucheyeki, T. Farmers’ perceptions of sorghum production constraints and Striga control practices in semi-arid areas of Tanzania. Int. J. Pest Manag. 2017, 63, 146–156. [Google Scholar] [CrossRef]
- Kagimbo, F.; Shimelis, H.; Sibiya, J. Sweet potato weevil damage, production constraints, and variety preferences in western Tanzania: Farmers’ perception. J. Crop Improv. 2018, 32, 107–123. [Google Scholar] [CrossRef]
- Abubakar, A.; Ishak, M.Y. Exploring the intersection of digitalization and sustainability in oil palm production: Challenges, opportunities, and future research agenda. Environ. Sci. Pollut. Res. 2024, 31, 50036–50055. [Google Scholar] [CrossRef]
Districts | Altitude (Masl) | Latitude | Longitude | Annual Rainfall (mm) | Temp Average (°C) | Relative Humidity (%) | Wind Speed (m/s) |
---|---|---|---|---|---|---|---|
Kigoma Urban | 786 | −4.83571 | 29.67765 | 1112.7 | 23.8 | 75.67 | 2.77 |
Kigoma Rural | 920 | −4.78422 | 29.76672 | 1087 | 22,5 | 85.81 | 2.40 |
Uvinza | 1087 | −5.21104 | 29.84361 | 986 | 21.3 | 89.05 | 2.51 |
Districts | Wards | Latitude | Longitude | Altitude | Number of Sampled Farmers | Villages |
---|---|---|---|---|---|---|
Uvinza | Ilagala | −5.162811 | 29.826670 | 764.6 | 20 | Ilagala, Sambara |
Kandaga | −4.961684 | 29.844719 | 1005.6 | 58 | Kandaga, Kalenge, Mlela | |
Mwakizega | −5.094654 | 29.814871 | 805.2 | 10 | Mwakizega, Kabeba | |
Kigoma Rural | Bitale | −4.749048 | 29.694431 | 988.1 | 44 | Kizenga, Bitale |
Mahembe | −4.809049 | 29.735140 | 958.0 | 28 | Mahembe, Chakabwimba | |
Mungonya | −4.851562 | 29.695223 | 834.4 | 28 | Msimba, Kamala | |
Simbo | −4.882163 | 29.740887 | 808.7 | 25 | Simbo, Matiazo, Kasuku | |
Mkongolo | −4.693834 | 29.714690 | 1062.6 | 22 | Mkongolo, Nyamhozya | |
Mwandiga | −4.839023 | 29.661537 | 820.4 | 44 | Mwandiga, Kibingo, Bigabiro, Kiganza | |
Nkungwe | −4.822669 | 29.790406 | 880.8 | 20 | Nkungwe, Bigere | |
Kigoma Urban | Businde | −4.884062 | 29.699048 | 779.2 | 26 | Mungonya, Msufini |
Kagera | −4.884011 | 29.698896 | 775.6 | 67 | Mgumile, Kagera, Kanswa |
Variables | Category | Districts | Overall (n = 392) | Chi-Square Statistics | ||||
---|---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square Value | p-Value | |||
Gender | Male | 74 | 181 | 68 | 323 | 2 | 7.362 | 0.025 |
Female | 14 | 30 | 25 | 69 | ||||
Education level | Primary | 76 | 177 | 61 | 314 | 6 | 25.087 | 0.000 |
Secondary | 1 | 16 | 11 | 28 | ||||
College | 1 | 3 | 0 | 4 | ||||
Illiterate | 10 | 15 | 21 | 46 | ||||
Age | <35 years | 2 | 8 | 7 | 17 | 2 | 3.34 | 0.189 |
>35 years | 86 | 203 | 86 | 375 |
Primary Occupation | Districts | Overall (n = 392) | Chi-Square Statistics | ||||
---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square Value | p-Value | ||
Crop farming | 86 | 201 | 90 | 377 | 6 | 5.36 | 0.499 |
Livestock production | 0 | 0 | 1 | 1 | |||
Trade | 2 | 9 | 2 | 13 | |||
Hired worker | 0 | 1 | 0 | 1 |
Production Constraints | Category | District | Overall (n = 392) | Chi-Square Statistics | ||||
---|---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square | p-Value | |||
Lack of improved plating material | Yes | 79 | 174 | 71 | 324 | 2 | 5.698 | 0.058 |
No | 9 | 37 | 22 | 68 | ||||
Lack of suitable production technologies | Yes | 53 | 84 | 41 | 178 | 2 | 10.529 | 0.005 |
No | 35 | 127 | 52 | 214 | ||||
Poor soil health | Yes | 19 | 49 | 15 | 83 | 2 | 1.958 | 0.376 |
No | 69 | 162 | 78 | 309 | ||||
Lack of capital | Yes | 60 | 159 | 65 | 284 | 2 | 2.000 | 0.368 |
No | 28 | 52 | 28 | 108 | ||||
Lack of fertilizers | Yes | 48 | 112 | 29 | 189 | 2 | 14.218 | 0.001 |
No | 40 | 99 | 64 | 203 | ||||
Unavailability of labor | Yes | 55 | 80 | 15 | 150 | 2 | 41.181 | 0.000 |
No | 33 | 131 | 78 | 242 | ||||
Erratic rainfall | Yes | 9 | 32 | 9 | 50 | 2 | 2.399 | 0.301 |
No | 79 | 179 | 84 | 342 | ||||
Diseases and insect pests | Yes | 62 | 113 | 35 | 210 | 2 | 19.582 | 0.000 |
No | 26 | 98 | 58 | 182 | ||||
Poor market access | Yes | 60 | 110 | 51 | 221 | 2 | 6.621 | 0.036 |
No | 28 | 101 | 42 | 171 | ||||
Limited extension service | Yes | 50 | 58 | 22 | 130 | 2 | 29.074 | 0.000 |
No | 38 | 153 | 71 | 262 | ||||
High cost of production inputs | Yes | 59 | 126 | 48 | 233 | 2 | 4.481 | 0.106 |
No | 29 | 85 | 45 | 159 | ||||
Limited land size | Yes | 23 | 34 | 23 | 80 | 2 | 5.243 | 0.073 |
No | 65 | 177 | 70 | 312 | ||||
Inadequate irrigation water | Yes | 18 | 25 | 21 | 64 | 2 | 3.826 | 0.148 |
No | 70 | 177 | 82 | 329 |
Access to Services and Technologies | Category | District | Overall (n = 392) | Chi-Square Statistics | ||||
---|---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square | p-Value | |||
Extension services | Yes | 28 | 80 | 29 | 137 | 2 | 1.776 | 0.411 |
No | 60 | 131 | 64 | 255 | ||||
Fertilizers | Yes | 6 | 24 | 5 | 35 | 2 | 3.477 | 0.176 |
No | 82 | 187 | 88 | 357 | ||||
Planting materials (seedlings) | Yes | 18 | 72 | 27 | 117 | 2 | 5.580 | 0.061 |
No | 70 | 139 | 66 | 275 |
Variable | Category | District | Overall (n = 392) | Chi-Square Statistics | ||||
---|---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square | p-Value | |||
Weed management | Yes | 96.59 | 96.21 | 95.7 | 96.17 | 2 | 0.990 | 0.952 |
No | 3.4 | 3.8 | 4.3 | 3.8 | ||||
Frequency of weeding/year | 1.33 | 1.45 | 1.52 | 1.44 | 8 | 9.531 | 0.324 | |
Weeding method | ||||||||
Hand hoeing | Yes | 94.1 | 94.1 | 89.9 | 93.1 | 2 | 1.729 | 0.421 |
No | 5.9 | 5.9 | 10.1 | 6.9 | ||||
Slashing | Yes | 44.7 | 49.8 | 67.4 | 52.8 | 2 | 10.619 | 0.005 |
No | 55.3 | 50.2 | 32.6 | 47.2 | ||||
Chemicals | Yes | 0.3 | 0.0 | 0.0 | 0.3 | 2 | 3.444 | 0.179 |
No | 98.8 | 100 | 100 | 99.7 | ||||
Burning | Yes | 1.2 | 0.1 | 0.0 | 0.8 | 2 | 1.644 | 0.441 |
No | 98.8 | 99 | 100 | 99.2 | ||||
Cover crops | Yes | 0.0 | 0.5 | 0.0 | 0.3 | 2 | 1.240 | 0.538 |
No | 100 | 99.5 | 100 | 99.7 | ||||
Biological control | Yes | 0.0 | 0.5 | 0.0 | 0.3 | 2 | 1.358 | 0.507 |
No | 100 | 99.5 | 98.9 | 99.7 |
Types | District | Overall (n = 392) | Chi-Square Test | ||||
---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square | p-Value | ||
Dura | 41 | 92 | 45 | 178 | |||
Tenera | 34 | 84 | 36 | 154 | 4 | 7.325 | 0.835 |
Pisifera | 15 | 27 | 18 | 60 |
Traits | Districts | Overall (n = 392) | Chi-Square Test | ||||
---|---|---|---|---|---|---|---|
Uvinza (n = 88) | Kigoma Rural (n = 211) | Kigoma Urban (n = 93) | df | Chi-Square | p = Value | ||
High oil content | 58.3 | 63 | 55 | 58.7 | |||
Short stem height | 33.8 | 42 | 36 | 37.2 | |||
Drought tolerance | 19.8 | 27.1 | 22 | 23 | 8 | 6.721 | 0.861 |
High number of bunches per plant | 35 | 47.4 | 39 | 40.5 | |||
Diseases and insect pest resistance | 16 | 23.3 | 17.2 | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, M.S.; Shimelis, H.; Kagimbo, F.M.; Mrema, E.J. An Appraisal of the Constraints, Opportunities, and Farmers’ Needs and Preferences of Oil Palm for Sustainable Production and Improvement in Tanzania. Sustainability 2025, 17, 3546. https://doi.org/10.3390/su17083546
Sultan MS, Shimelis H, Kagimbo FM, Mrema EJ. An Appraisal of the Constraints, Opportunities, and Farmers’ Needs and Preferences of Oil Palm for Sustainable Production and Improvement in Tanzania. Sustainability. 2025; 17(8):3546. https://doi.org/10.3390/su17083546
Chicago/Turabian StyleSultan, Masoud Salehe, Hussein Shimelis, Filson Mbezi Kagimbo, and Emmanuel Justin Mrema. 2025. "An Appraisal of the Constraints, Opportunities, and Farmers’ Needs and Preferences of Oil Palm for Sustainable Production and Improvement in Tanzania" Sustainability 17, no. 8: 3546. https://doi.org/10.3390/su17083546
APA StyleSultan, M. S., Shimelis, H., Kagimbo, F. M., & Mrema, E. J. (2025). An Appraisal of the Constraints, Opportunities, and Farmers’ Needs and Preferences of Oil Palm for Sustainable Production and Improvement in Tanzania. Sustainability, 17(8), 3546. https://doi.org/10.3390/su17083546