Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Type
2.3. Data Collection
- n = sample size;
- N = population size;
- Z = Z-score corresponding to the desired confidence level (1.96 for 95% confidence);
- p = estimated proportion of the population (0.5 used to ensure maximum variability);
- E = margin of error (set at 0.05 for 5% precision).
2.4. Calculation of Net Present Value (NPV)
- r = Discounting rate;
- n = Number of years
2.5. Calculation of Benefit–Cost Ratio (BCR)
- Bt = Gross benefit in the n th year;
- Ct = Total cost in the nth year;
- t = Number of years (1, 2, 3………n);
- r = Interest (discount) rate.
2.6. Calculation of Carbon Sequestration
- Determination of the total (green) weight of the tree.
- Determination of the dry weight of the tree.
- Determination of the weight of carbon in the tree.
- Determination of the weight of carbon dioxide sequestered in the tree.
- Determination of the weight of CO2 sequestered in the tree per year [33].
2.7. Determination of the Total (Green) Weight of the Tree
- W = Above-ground weight of the tree in pounds;
- D = Diameter of the trunk in inches;
- H = Height of the tree in feet.
2.8. Determination of the Dry Weight of the Tree
2.9. Determination of the Weight of Carbon in the Tree
2.10. Determination of the Weight of CO2 Sequestered in the Tree
- The atomic weight of carbon is 12.001115.
- The atomic weight of oxygen is 15.9994.
- The weight of CO2 is C + 2×O = 43.999915.
- The ratio of CO2 to C is 43.999915/12.001115 = 3.6663.
2.11. Determination of the Weight of CO2 Sequestered in the Tree per Year
2.12. Data Analysis
3. Results
3.1. Demographic Features of the Respondents
3.2. Economic Perspective of Agroforestry Practices
3.3. Productivity Analysis of Selected Agroforestry Practices
3.3.1. Acacia–Pineapple–Turmeric–Papaya-Based Agroforestry
3.3.2. Sal–Pineapple–Aroid-Based Agroforestry
3.3.3. Acacia–Pineapple–Zinger–Banana-Based Agroforestry
3.4. Ecological Perspective of Selected Agroforestry Practices
Species Composition of Agroforestry
3.5. Weight of the Trees
3.6. Carbon Sequestration of Various Tree Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mankhin, B.; Khan, A.; Begum, E.R.; Hossain, M.I. Market attractiveness of pineapple and banana agroforestry systems of Madhupur Sal (Shorea robusta) forest: A sustainable way of generating income and conserving forests. J. Agric. Food Res. 2023, 11, 100475. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Definition and Concepts of Agroforestry. In An Introduction to Agroforestry; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strat. Glob. Change 2007, 12, 901–918. [Google Scholar] [CrossRef]
- Islam, K.K.; Fujiwara, T.; Hyakumura, K. Agroforestry, livelihood and biodiversity nexus: The case of Madhupur Tract, Bangladesh. Conservation 2022, 2, 305–321. [Google Scholar] [CrossRef]
- Hangarge, L.M.; Kulkarni, D.K.; Gaikwad, V.B.; Mahajan, D.M.; Chaudhari, N. Carbon sequestration potential of tree species in Somjaichi Rai (Sacred grove) at Nandghur village, in Bhor region of Pune District, Maharashtra State, India. Ann. Biol. Res. 2012, 3, 3426–3429. [Google Scholar]
- Dhanwantri, K.; Sharma, P.; Mehta, S.; Prakash, P. Carbon sequestration, its methods and significance. Environ. Sustain. Concepts Princ. Evid. Innov. 2014, 151, 151–157. [Google Scholar]
- Alvarez, S.; Ortiz, C.; Díaz-Pinés, E.; Rubio, A. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2Fix model. Mitig. Adapt. Strateg. Glob. Change 2016, 21, 1045–1058. [Google Scholar] [CrossRef]
- Shankar, R.; Ranga, A.N.G.; Joseph, B. Carbon sequestration rate, carbon storage rate and biomass estimation in major multipurpose agroforestry tree species in destructive method. Int. J. Sci. Res. 2014, 3, 21–23. [Google Scholar] [CrossRef]
- Yirdaw, M. Carbon stock sequestered by selected tree species plantations in Wondo Genet College, Ethiopia. J. Earth Sci. Clim. Change 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Farukh, M.; Rani, K.; Nashif, S.M.; Khatun, R.; Toma, L.T.; Hyakumura, K.; Islam, K.K. Carbon stock mapping utilizing accumulated volume of sequestrated carbon at Bangladesh Agricultural University, Bangladesh. Sustainability 2023, 15, 4300. [Google Scholar] [CrossRef]
- Khujadze, N.; Matchavarian, L. A comparative study of carbon sequestration in different types of forest. Int. Multidiscip. Sci. GeoConference SGEM 2024, 24, 339–346. [Google Scholar] [CrossRef]
- Singh, D. Carbon Sequestration Dynamics of Tree Species in Dry Forest; Springer: Berlin/Heidelberg, Germany, 2022; pp. 315–322. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 13. [Google Scholar] [CrossRef]
- Ministry of Environment, Forest and Climate Change, Nationally Determined Contributions (NDCs). Bangladesh, 2021. Available online: https://www.undp.org/bangladesh/publications/nationally-determined-contributions-2021-bangladesh (accessed on 17 September 2024).
- Forest Department (FD). Land and Forest Area. Official Website of Bangladesh Forest Department. Available online: http://www.bforest.gov.bd/ (accessed on 17 September 2024).
- Islam, K.K.; Sato, N. Participatory forestry in Bangladesh: Has it helped to increase the livelihoods of Sal forests dependent people. South. For. 2012, 74, 89–101. [Google Scholar] [CrossRef]
- Islam, K.K.; Noriko, S. Deforestation, land conversion and illegal logging in Bangladesh: The case of the Sal forests. Iforest Biogeosci. For. 2012, 5, 171–178. [Google Scholar] [CrossRef]
- Chowdhury, M.S.H.; Koike, M.; Muhammed, N. Embracing collaborative protected area management for conservation: An analysis of the development of the forest policy of Bangladesh. Int. For. Rev. 2009, 11, 359–374. [Google Scholar] [CrossRef]
- Al Faruq, M.A.; Zaman, S.; Katoh, M. Analysis of forest cover changes using Landsat satellite imagery: A case study of the Madhupur Sal forest in Bangladesh. J. For. Plan. 2016, 21, 29–38. [Google Scholar]
- Khurana, P. A study on carbon sequestration in natural forests of India. J. Appl. Nat. Sci. 2012, 4, 132–136. [Google Scholar] [CrossRef]
- Peters, G.P.; Marland, G.; Le Quéré, C.; Boden, T.; Canadell, J.G.; Raupach, M.R. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change 2012, 2, 2. [Google Scholar] [CrossRef]
- Islam, K.K.; Jose, S.; Tani, M.; Hyakumura, K.; Krott, M.; Noriko, S. Does actor power impede outcomes in participatory agroforestry approach? Evidence from Sal forests area, Bangladesh. Agroforest Syst. 2015, 89, 885–899. [Google Scholar] [CrossRef]
- Muhammed, N.; Koike, M.; Haque, F.; Miah, M.D. Quantitative assessment of people oriented forestry in Bangladesh: A case study from Tangail Forest Division. J. Environ. Manage. 2008, 88, 83–92. [Google Scholar] [CrossRef]
- Islam, K.K.; Hyakumura, K. Forestland concession, land rights and livelihood of ethnic minorities: The case of the Madhupur Sal forest, Bangladesh. Forests 2019, 10, 288. [Google Scholar] [CrossRef]
- Nishorgo Supported Project (NSP). Framework Management Plan for Madhupur National Park. Nishorgo Bangladesh. Available online: http://nishorgo.org/ (accessed on 16 October 2022).
- Roy, M.K. Designing a co-management model for protected areas of Bangladesh. In Proceedings of the International Seminar on Protected Area Management, Missoula, MT, USA, 5–21 August 2004. [Google Scholar]
- Bouyoucos, G.J. Thy hydrometer as a method for the mechanical analysis of soils. Soil. Sci. 1927, 23, 343–353. [Google Scholar] [CrossRef]
- Piper, C. Soil and Plant Analysis; International Public Inc.: New York, NY, USA, 1950. [Google Scholar]
- Marshall, T.J. Mechanical composition of soil in relation to field descriptions of texture. CSIR Aust. 1947, 224, 20. [Google Scholar]
- Kumar, R. Research Methodology: A Step-by-Step Guide for Beginners; Sage Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Determining sample size for research activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Lada, H.; Yen, J.D.; Cunningham, S.C.; Selwood, K.E.; Falcke, P.; Hodgson, J.C.; Mac Nally, R. Influence of climate on individual tree growth and carbon sequestration in native-tree plantings. Austral Ecol. 2019, 44, 859–867. [Google Scholar] [CrossRef]
- Safa, M.S. Socio-economic factors affecting the income of small-scale agroforestry farms in hill country areas in Yemen: A comparison of OLS and WLS determinants. Small-Scale For. Econ. Manag. Policy 2005, 4, 117–134. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Measurement errors and their impact on biomass and carbon stock assessments. J. Environ. Sci. 2020, 45, 215–225. [Google Scholar] [CrossRef]
- Fowler, A.F.; Basso, B.; Millar, N.; Brinton, W.F. Soil carbon storage and its variability in different land management practices. Environ. Res. Lett. 2023, 18, 52–61. [Google Scholar]
- Tulsian, P.C. Financial Management, 2nd ed.; S. Chand and Company Ltd.: New Delhi, India, 2010; pp. 3.1–3.164. [Google Scholar]
- Blank, L.T.; Tarquin, J.A. Engineering Economy, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1989. [Google Scholar]
- Parida, T.; Riyazuddin, S.; Agnihotri, S.R.; Kolli, S.K.; Srinivas, N. A study on carbon sequestration index as a tool to determine the potential of greenbelt. J. People Plants Environ. 2022, 25, 371–383. [Google Scholar] [CrossRef]
- Yousefi, M.; Khoramivafa, M.; Mahdavi Damghani, A.; Mohammadi, G.; Beheshti Alagha, A. Assessment of carbon sequestration and its economic value in Iranian oak forests: Case study Bisetoon protected area. Environ. Sci. 2017, 15, 123–134. [Google Scholar]
- County, B. How to Calculate the Amount of CO2 Sequestered in a Tree per Year; 2012. Available online: https://www.unm.edu/~jbrink/365/Documents/Calculating_tree_carbon.pdf (accessed on 17 September 2024).
- USDA Climate Hubs. Carbon sequestration and its role in climate change mitigation. USDA Clim. Hub. 2024. Available online: https://www.climatehubs.usda.gov/ (accessed on 17 September 2024).
- Richards, K.R.; Stokes, C. A review of forest carbon sequestration cost studies: A dozen years of research. Clim. Change 2004, 63, 1–48. [Google Scholar] [CrossRef]
- Toochi, E.C. Carbon sequestration: How much can forestry sequester CO2. For. Res. Eng. Int. J. 2018, 2, 148–150. [Google Scholar] [CrossRef]
- Ouyang, C.; He, X.; Lin, R.; Qin, K. Exploring the correlation between tree structure characteristics and carbon storage in historic gardens using TLS technology: A case study of Jian Xin Pavilions at Jingyi Park, Fragrant Hills Park. Herit. Sci. 2024, 12, 1–24. [Google Scholar] [CrossRef]
- Joshi, R.K.; Garkoti, S.C. Ecosystem carbon storage, allocation and carbon credit values of major forest types in the central Himalaya. Carbon. Res. 2025, 4, 7. [Google Scholar] [CrossRef]
- Majumder, S.C.; Islam, K.; Hossain, M.M. State of research on carbon sequestration in Bangladesh: A comprehensive review. Geol. Ecol. Landsc. 2019, 3, 29–36. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Ahmed, S.; Paul, S.; Rahman, M.M.; Osawa, A. Stand structure and carbon storage in the oligohaline zone of the Sundarbans mangrove forest, Bangladesh. For. Sci. Technol. 2018, 14, 23–28. [Google Scholar] [CrossRef]
- Sohel, M.S.I.; Alamgir, M.; Akhter, S.; Rahman, M. Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land. Use Policy 2015, 49, 142–151. [Google Scholar] [CrossRef]
- Dey, A.; Islam, M.; Masum, K.M. Above ground carbon stock through palm tree in the homegarden of Sylhet City in Bangladesh. J. For. Environ. Sci. 2014, 30, 293–300. [Google Scholar] [CrossRef]
- Islam, M.; Deb, G.P.; Rahman, M. Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land. Use Policy 2017, 65, 15–25. [Google Scholar] [CrossRef]
- Jaman, M.S.; Hossain, M.F.; Islam, M.S.; Helal, M.G.J.; Jamil, M. Quantification of carbon stock and tree diversity of homegardens in Rangpur District, Bangladesh. Int. J. Agric. For. 2016, 6, 169–180. [Google Scholar]
- BFD. Official website of Bangladesh Forest Department 2018. Available online: http://www.bforest.gov.bd/ (accessed on 17 September 2024).
- Sheikh, R.; Islam, M.A.; Sharmin, A.; Biswas, R.; Kumar, J. Sustainable agroforestry practice in Jessore district of Bangladesh. Eur. J. Agric. Food Sci. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Lehmann, L.M.; Smith, J.; Westaway, S.; Pisanelli, A.; Russo, G.; Borek, R.; Ghaley, B.B. Productivity and economic evaluation of agroforestry systems for sustainable production of food and non-food products. Sustainability 2020, 12, 5429. [Google Scholar] [CrossRef]
- Rigueiro-Rodríguez, A.; Fernández-Núñez, E.; González-Hernández, P.; McAdam, J.H.; Mosquera-Losada, M.R. Agroforestry systems in Europe: Productive, ecological and social perspectives. In Agroforestry in Europe: Current Status and Future Prospects; Springer: Dordrecht, The Netherlands, 2009; pp. 43–65. [Google Scholar]
- Purwoko, A.; Ahmad, A.G.; Saragih, J.M. Management model and feasibility of agroforestry practices in Sipolha Horison village, Simalungun regency, North Sumatra province, Indonesia. E3S Web Conf. 2021, 332, 09001. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Ordonez, P.J.; Baylis, K.; Hughes, K. The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human well-being in low-and middle-income countries: A systematic review. Campbell Syst. Rev. 2021, 17, e1167. [Google Scholar] [CrossRef] [PubMed]
- Kalovoto, D.M.; Kimiti, J.M.; Manono, B.O. Influence of women empowerment on adoption of agroforestry technologies to counter climate change and variability in semi-arid Makueni County, Kenya. Int. J. Environ. Sci. Nat. Resour. 2020, 24, 47–55. [Google Scholar]
- Murthy, I.K.; Dutta, S.; Varghese, V.; Joshi, P.P.; Kumar, P. Impact of agroforestry systems on ecological and socio-economic systems: A review. Glob. J. Sci. Front. Res. H. Environ. Earth Sci. 2016, 16, 15–27. [Google Scholar]
- Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil. Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
Location | Sand (%) | Silt (%) | Clay (%) | Textural Class |
---|---|---|---|---|
Dhokola (1) | 23.05 | 42.54 | 34.65 | Clay loam |
Auronkhola (2) | 22.66 | 41.76 | 33.73 | Clay loam |
Madhupur National Park (3) | 18.48 | 53.28 | 29.42 | Silty clay loam |
Makontinagar (4) | 21.32 | 44.06 | 34.65 | Clay loam |
Gaira (5) | 45.76 | 45.65 | 34.84 | Silty clay loam |
Beribaith (6) | 22.78 | 43.21 | 32.47 | Clay loam |
Characteristics | Categories | Frequency | p-Value |
---|---|---|---|
Gender | Male | 74.36 | <0.01 ** |
Female | 25.64 | ||
Age (years) | Below 35 | 17.95 | <0.01 ** |
36–50 | 58.97 | ||
Above 50 | 23.08 | ||
Level of education | No formal | 11.52 | <0.01 ** |
Primary | 21.79 | ||
Secondary | 41.03 | ||
Higher secondary | 15.38 | ||
Tertiary | 10.26 | ||
Family size | Below 5 | 12.82 | <0.01 ** |
5–8 | 71.79 | ||
Above 8 | 15.38 | ||
Farm size | Below 1 ha | 64.1 | <0.01 ** |
1–3 ha | 30.77 | ||
Above 3 ha | 5.13 | ||
Knowledge of sustainable agriculture | Poor | 8.97 | <0.01 ** |
Moderate | 43.59 | ||
High | 47.44 |
Components of Agroforestry Practices | Total Cost (USD/ha) | Total Income (USD/ha) | NPV | BCR |
---|---|---|---|---|
Acacia–pineapple–turmeric–papaya | 2141.45 | 6212.95 | 1833.55 | 1.90 |
Sal–pineapple–aroid | 2150.30 | 5745.10 | 1372.28 | 1.67 |
Acacia–pineapple–zinger–banana | 2150.02 | 6584.95 | 2170.66 | 2.06 |
p-value | 0.08 (NS) | <0.01 ** | <0.01 ** | <0.01 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afroz, M.S.; Ashraf, S.M.K.; Rana, M.T.; Ripta, S.K.; Asha, S.B.R.; Urmi, S.M.S.T.; Hyakumura, K.; Islam, K.K. Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh. Sustainability 2025, 17, 3697. https://doi.org/10.3390/su17083697
Afroz MS, Ashraf SMK, Rana MT, Ripta SK, Asha SBR, Urmi SMST, Hyakumura K, Islam KK. Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh. Sustainability. 2025; 17(8):3697. https://doi.org/10.3390/su17083697
Chicago/Turabian StyleAfroz, Mst. Sohela, S. M. Kamran Ashraf, Md. Tanbheer Rana, Saleha Khatun Ripta, Sumaiya Binte Rahman Asha, S. M. Sanjida Tasnim Urmi, Kimihiko Hyakumura, and Kazi Kamrul Islam. 2025. "Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh" Sustainability 17, no. 8: 3697. https://doi.org/10.3390/su17083697
APA StyleAfroz, M. S., Ashraf, S. M. K., Rana, M. T., Ripta, S. K., Asha, S. B. R., Urmi, S. M. S. T., Hyakumura, K., & Islam, K. K. (2025). Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh. Sustainability, 17(8), 3697. https://doi.org/10.3390/su17083697