How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study
Abstract
:1. Introduction
2. Methodology
- (a)
- Fossil Fuel-Based Generation
- (b)
- Solar PV
- (c)
- Wind Power
- (d)
- Hydropower
- (e)
- Biomass and Geothermal
2.1. The 1st Scenario
2.2. The 2nd Scenario
2.3. The 3rd Scenario
2.4. The 4th Scenario
3. Result
4. Discussion
5. Conclusions
6. Suggestions
- Invest in smart grids and energy storage (batteries, pumped hydro);
- Expand offshore wind projects in the Adriatic and Tyrrhenian seas to diversify renewable energy sources;
- Promote the use of rooftop solar panels with simplified permits and financial incentives for households and businesses;
- Develop hydrogen infrastructure for long-term energy storage and industrial decarbonization;
- Initiate independent assessments of small modular reactors (SMRs) and next-generation nuclear to assess safety and cost-effectiveness;
- International cooperation: partner with France (EDF), the United States, or Canada on nuclear technology transfer and knowledge sharing;
- Create a transparent legal and financial structure to attract private investment while ensuring safety and public trust.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlacke, S.; Wentzien, H.; Thierjung, E.-M.; Köster, M. Implementing the EU Climate Law via the ‘Fit for 55’ package. Oxf. Open Energy 2022, 1, oiab002. [Google Scholar] [CrossRef]
- Dolge, K.; Barisa, A.; Kirsanovs, V.; Blumberga, D. The status quo of the EU transport sector: Cross-country indicator-based comparison and policy evaluation. Appl. Energy 2023, 334, 120700. [Google Scholar] [CrossRef]
- Rigogiannis, N.; Bogatsis, I.; Pechlivanis, C.; Kyritsis, A.; Papanikolaou, N. Moving towards Greener Road Transportation: A Review. Clean Technol. 2023, 5, 766–790. [Google Scholar] [CrossRef]
- Sporkmann, J.; Liu, Y.; Spinler, S. Carbon emissions from European land transportation: A comprehensive analysis. Transp. Res. Part D Transp. Environ. 2023, 121, 103851. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, J.; Xu, L.; Zhang, Q. The CO2 emission reduction path towards carbon neutrality in the Chinese steel industry: A review. Environ. Impact Assess. Rev. 2022, 99, 107017. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Chen, Y.; Fan, R.; Xu, L.; Wu, E.; Xue, Y.; Yang, J.; Chen, Y.; Yang, B.; et al. Current status, future prediction and offset potential of fossil fuel CO2 emissions in China. J. Clean. Prod. 2023, 426, 139207. [Google Scholar] [CrossRef]
- Wang, W.; Tang, Q.; Gao, B. Exploration of CO2 emission reduction pathways: Identification of influencing factors of CO2 emission and CO2 emission reduction potential of power industry. Clean Technol. Environ. Policy 2022, 25, 1589–1603. [Google Scholar] [CrossRef]
- Watson, H.C. Benefit from In-service Life Optimized for Minimum CO2–Comparison of ICEVs, PHEVs, BEVs and FCEVs. No. 2024-01-2443; SAE Technical Papers. 2024. Available online: https://www.sae.org/publications/technical-papers/content/2024-01-2443/ (accessed on 23 February 2025).
- Maselli, M.; Pelegrina, J.; de Mello, A.M.; Souza, J.V.R.; Marx, R.; Priarone, P.C. Electric or internal combustion vehicles? A Life Cycle Assessment in São Paulo. Sustain. Energy Rev. 2025, 212, 115431. [Google Scholar] [CrossRef]
- Kataoka, R.; Ogimoto, K.; Iwafune, Y.; Nishi, T. Does BEV always help to reduce CO2 emission? Impact of charging strategy. Transp. Res. Part D Transp. Environ. 2024, 129, 104124. [Google Scholar] [CrossRef]
- Yi, S.; Abbasi, K.R.; Hussain, K.; Albaker, A.; Alvarado, R. Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help? Gondwana Res. 2023, 117, 41–55. [Google Scholar] [CrossRef]
- Miyazaki, K.; Bowman, K. Predictability of fossil fuel CO2 from air quality emissions. Nat. Commun. 2023, 14, 1604. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.A. “Fit for 55”: The EU Plan for a Green Transition. In Sustainable Finances and the Law: Between Public and Private Solutions; Springer Nature: Cham, Switzerland, 2024; pp. 333–344. [Google Scholar]
- Brożyna, J.; Strielkowski, W.; Zpěvák, A. Evaluating the chances of implementing the “Fit for 55” Green Transition Package in the V4 countries. Energies 2023, 16, 2764. [Google Scholar] [CrossRef]
- Plötz, P.; Wachsmuth, J.; Sprei, F.; Gnann, T.; Speth, D.; Neuner, F.; Link, S. Greenhouse gas emission budgets and policies for zero-Carbon road transport in Europe. Clim. Policy 2023, 23, 343–354. [Google Scholar] [CrossRef]
- Pisoni, E.; Thunis, P.; De Meij, A.; Wilson, J.; Bessagnet, B.; Crippa, M.; Guizzardi, D.; Belis, C.A.; Van Dingenen, R. Modelling the air quality benefits of EU climate mitigation policies using two different PM2. 5-related health impact methodologies. Environ. Int. 2023, 172, 107760. [Google Scholar] [CrossRef]
- Fit for 55—Consilium.europa.eu. 2024. Available online: https://www.consilium.europa.eu/en/policies/fit-for-55/ (accessed on 14 February 2025).
- Chovancová, J.; Popovičová, M.; Huttmanová, E. Decoupling transport-related greenhouse gas emissions and economic growth in the European Union countries. J. Sustain. Dev. Energy Water Environ. Syst. 2023, 11, 1–18. [Google Scholar] [CrossRef]
- Terna: Electricity Consumption Totalled 306.1 TWh in 2023. Available online: https://www.terna.it/en/media/press-releases/detail/electricity-consumption-2023 (accessed on 14 February 2025).
- Ollier, L.; Metz, F.; Nuñez-Jimenez, A.; Späth, L.; Lilliestam, J. The European 2030 climate and energy package: Do domestic strategy adaptations precede EU policy change? Policy Sci. 2022, 55, 161–184. [Google Scholar] [CrossRef] [PubMed]
- Ghisellini, P.; Passaro, R.; Ulgiati, S. Environmental assessment of multiple “cleaner electricity mix” scenarios within just energy and circular economy transitions, in Italy and Europe. J. Clean. Prod. 2023, 388, 135891. [Google Scholar] [CrossRef]
- Europian Parliament—Directorate General for Internal Policies. 2009. Available online: https://www.europarl.europa.eu/document/activities/cont/201111/20111130ATT32841/20111130ATT32841EN.pdf (accessed on 14 February 2025).
- Schittekatte, T.; Pototschnig, A.; Meeus, L.; Jamasb, T.; Llorca, M. Making the TEN-E regulation compatible with the Green Deal: Eligibility, selection, and cost allocation for PCIs. Energy Policy 2021, 156, 112426. [Google Scholar] [CrossRef]
- Yafimava, K. The TEN-E Regulation: Allowing a Role for Decarbonised Gas; Oxford Institute of Energy Studies: Oxford, UK, 2022. [Google Scholar]
- Ceglia, F.; Marrasso, E.; Samanta, S.; Sasso, M. Addressing energy poverty in the energy community: Assessment of energy, environmental, economic, and social benefits for an Italian residential case study. Sustainability 2022, 14, 15077. [Google Scholar] [CrossRef]
- Samargandi, N.; Islam, M.; Sohag, K. Towards realizing vision 2030: Input demand for renewable energy production in Saudi Arabia. Gondwana Res. 2024, 127, 47–64. [Google Scholar] [CrossRef]
- Abdoos, M.; Rashidi, H.; Esmaeili, P.; Yousefi, H.; Jahangir, M.H. Forecasting solar energy generation in the Mediterranean region up to 2030–2050 using convolutional neural networks (CNN). Clean. Energy Syst. 2025, 10, 100167. [Google Scholar] [CrossRef]
- Li, S.; Yue, Q. Analysis on the energy demand, CO2 and pollutant emissions, and health benefits from urban road transport sector: A case study of Shenyang. Green Low-Carbon Econ. 2024, 2, 143–150. [Google Scholar] [CrossRef]
- Li, B.; Zhou, W.; Xian, Y.; Guan, X. Forecasting the energy demand and CO2 emissions of industrial sectors in China’s Beijing-Tianjin-Hebei region under energy transition. Environ. Sci. Pollut. Res. 2024, 31, 7283–7297. [Google Scholar] [CrossRef]
- Kamani, D.; Ardehali, M.M. Long-term forecast of electrical energy consumption with considerations for solar and wind energy sources. Energy 2023, 268, 126617. [Google Scholar] [CrossRef]
- Malka, L.; Bidaj, F.; Kuriqi, A.; Jaku, A.; Roçi, R.; Gebremedhin, A. Energy system analysis with a focus on future energy demand projections: The case of Norway. Energy 2023, 272, 127107. [Google Scholar] [CrossRef]
- Henke, I.; Cartenì, A.; Beatrice, C.; Di Domenico, D.; Marzano, V.; Patella, S.M.; Picone, M.; Tocchi, D.; Cascetta, E. Fit for 2030? Possible scenarios of road transport demand, energy consumption and greenhouse gas emissions for Italy. Transp. Policy 2024, 159, 67–82. [Google Scholar] [CrossRef]
- Italy’s Enel (2024)—Consilium.europa.eu. Available online: https://www.world-nuclear-news.org/Articles/Italy-s-Enel-signs-for-up-to-1200-MWe-of-nuclear (accessed on 14 February 2025).
- Barelli, L.; Bidini, G.; Ciupageanu, D.; Pelosi, D. Integrating Hybrid Energy Storage System on a Wind Generator to enhance grid safety and stability: A Levelized Cost of Electricity analysis. J. Energy Storage 2021, 34, 102050. [Google Scholar] [CrossRef]
- Ali, A.O.; Elmarghany, M.R.; Abdelsalam, M.M.; Sabry, M.N.; Hamed, A.M. Closed-loop home energy management system with renewable energy sources in a smart grid: A comprehensive review. J. Energy Storage 2022, 50, 104609. [Google Scholar] [CrossRef]
- Dambhare, M.V.; Butey, B.; Moharil, S.V. Solar photovoltaic technology: A review of different types of solar cells and its future trends. J. Phys. Conf. Ser. 2021, 1913, 012053. [Google Scholar] [CrossRef]
- Alcañiz, A.; Grzebyk, D.; Ziar, H.; Isabella, O. Trends and gaps in photovoltaic power forecasting with machine learning. Energy Rep. 2023, 9, 447–471. [Google Scholar] [CrossRef]
- Zhang, R.; Lee, M.; Huang, L.; Ni, M. Optimization of battery energy storage system (BESS) sizing in different electricity market types considering BESS utilization mechanisms and ownerships. J. Clean. Prod. 2024, 470, 143317. [Google Scholar] [CrossRef]
- Kaewnukultorn, T.; Sepúlveda-Mora, S.B.; Hegedus, S. The impacts of DC/AC ratio, battery dispatch, and degradation on financial evaluation of bifacial PV+ BESS systems. Renew. Energy 2024, 236, 121402. [Google Scholar] [CrossRef]
- Nair, U.R.; Sandelic, M.; Sangwongwanich, A.; Dragicevic, T.; Costa-Castello, R.; Blaabjerg, F. An analysis of multi objective energy scheduling in PV-BESS system under prediction uncertainty. IEEE Trans. Energy Convers. 2021, 36, 2276–2286. [Google Scholar] [CrossRef]
- Cirio, D.; Conte, F.; Gabriele, B.; Gandolfi, C.; Massucco, S.; Rapizza, M.R.; Silvestro, F. Fast Frequency regulation from a wind farm-BESS unit by model predictive control: Method and hardware-in-the-loop validation. IEEE Trans. Sustain. Energy 2023, 14, 2049–2061. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The long-term average performance of flat-plate solar-energy collectors: With design data for the US, its outlying possessions and Canada. Sol. Energy 1963, 7, 53–74. [Google Scholar] [CrossRef]
- Layton, B.E. A comparison of energy densities of prevalent energy sources in units of joules per cubic meter. Int. J. Green Energy 2008, 5, 438–455. [Google Scholar] [CrossRef]
- Olczak, P.; Matuszewska, D.; Zabagło, J. The comparison of solar energy gaining effectiveness between flat plate collectors and evacuated tube collectors with heat pipe: case study. Energies 2020, 13, 1829. [Google Scholar] [CrossRef]
- Terna: 39.5 GW Installed Wind and Photovoltaic Capacity Reached in June (2024). Available online: https://www.terna.it/en/media/press-releases/detail/electrical-consumption-june-2023 (accessed on 14 February 2025).
- PV-Magazine. 2024. Available online: https://www.pv-magazine.com/2024/02/20/italy-added-5-23-gw-of-new-solar-in-2023/ (accessed on 14 February 2025).
- IEA. 2024. Available online: https://www.iea.org/reports/italy-2023/executive-summary (accessed on 14 February 2025).
- Terna: Electricity Demand Fell by 3.3% in July. 2024. Available online: https://www.terna.it/en/media/press-releases/detail/electrical-consumption-july-2023 (accessed on 14 February 2025).
- Terna: Electricity Consumption Increases by 2.2%. 2024. Available online: https://www.terna.it/en/media/press-releases/detail/electricity-consumption-2024#:~:text=According%20to%20Terna%2C%20the%20total,13%20GW%20of%20wind%20power (accessed on 14 February 2025).
- Krūmiņš, J.; Kļaviņš, M. Investigating the potential of nuclear energy in achieving a carbon-free energy future. Energies 2023, 16, 3612. [Google Scholar] [CrossRef]
- Durdovic, M.; Turcanu, C.; Sala, R.; Geysmans, R.; López-Asensio, S.; Gonçalves, L. The outlooks of nuclear energy in society: Unraveling public attitudes in the context of climate and energy security challenges. Prog. Nucl. Energy 2024, 174, 105286. [Google Scholar] [CrossRef]
- Liu, L.; Guo, H.; Dai, L.; Liu, M.; Xiao, Y.; Cong, T.; Gu, H. The role of nuclear energy in the carbon neutrality goal. Prog. Nucl. Energy 2023, 162, 104772. [Google Scholar] [CrossRef]
- Gatto, A. Quantifying management efficiency of energy recovery from waste for the circular economy transition in Europe. J. Clean. Prod. 2023, 414, 136948. [Google Scholar] [CrossRef]
- Thimet, P.J.; Mavromatidis, G. Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy. Renew. Sustain. Energy Rev. 2022, 159, 112102. [Google Scholar] [CrossRef]
- Testoni, R.; Bersano, A.; Segantin, S. Review of nuclear microreactors: Status, potentialities and challenges. Prog. Nucl. Energy 2021, 138, 103822. [Google Scholar] [CrossRef]
- Black, G.; Shropshire, D.; Araújo, K.; van Heek, A. Prospects for nuclear microreactors: A review of the technology, economics, and regulatory considerations. Nucl. Technol. 2023, 209, S1–S20. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic solar cells: A review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Zuo, J.; Dong, L.; Yang, F.; Guo, Z.; Wang, T.; Zuo, L. Energy harvesting solutions for railway transportation: A comprehensive review. Renew. Energy 2023, 202, 56–87. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Firozjaei, H.K.; Firozjaei, M.K.; Jelokhani-Niaraki, M.; Homaee, M.; Nematollahi, O. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. Renew. Sustain. Energy Rev. 2022, 168, 112778. [Google Scholar] [CrossRef]
- He, C.; Singh, P.; P’yavka, S.; Wolfe, L.; Caldwell, K.; Islam, T.M.; Tang, C.; Mustafa, A. Balancing Trade-Offs: The Energy Efficiency of Unmanned Aircraft Systems Integration in Last-Mile Delivery and Operational Policy Restrictions. In Proceedings of the AIAA Aviation Forum and Ascend, Las Vegas, NV, USA, 29 July–2 August 2024; p. 3646. [Google Scholar]
- Alphan, H. Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation. Renew. Sustain. Energy Rev. 2021, 152, 111675. [Google Scholar] [CrossRef]
- Alanbay, O. ERP selection using expert choice software. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Honolulu, HI, USA, 8–10 July 2005. [Google Scholar]
- Bagheri, M.; Ibrahim, Z.Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Pour, A.B. Application of multi-criteria decision-making model and expert choice software for coastal city vulnerability evaluation. Urban Sci. 2021, 5, 84. [Google Scholar] [CrossRef]
- Aszódi, A.; Biró, B.; Adorján, L.; Dobos, Á.C.; Illés, G.; Tóth, N.K.; Zagyi, D.; Zsiborás, Z.T. The effect of the future of nuclear energy on the decarbonization pathways and continuous supply of electricity in the European Union. Nucl. Eng. Des. 2023, 415, 112688. [Google Scholar] [CrossRef]
- Hjelmeland, M.; Nøland, J.K.; Backe, S.; Korpås, M. The role of nuclear energy and baseload demand in capacity expansion planning for low-carbon power systems. Appl. Energy 2025, 377, 124366. [Google Scholar] [CrossRef]
Topic | Target | Expectation |
---|---|---|
CO2 | Decreasing | The target for 2030 is −43% and for 2050 is −63% (−4.4% per year) |
Fossil fuels | Decrease of 34% | Currently, renewable and low-carbon gases make up 85%, driving the transition to phase out fossil fuels by 2030. |
H2 | 40 GW electrolyzer capacity | This target is 2030 and involves making 10 tons of renewable hydrogen |
Forest area | Increasing | Adsorb 310 MT CO2 (this target is related to 2030) |
Transportation | Replacing ICEVs with H2, CH4 and electric | 5% (now), 16% (2030), and 50% (2050) of vehicles |
CBAM (Carbon Border Adjustment Mechanism) | Transport of harmful industrial to non-EU | Import of iron, steel, cement, fertilizers, aluminum, hydrogen production, and electricity instead of products into the EU |
Fund to support | 65 billion euros | Fund sources: new energy trading; carbon price; buy allowance; revenues of social climate fund; taxes |
Aviation and maritime | Increasing the uptake of greener fuels | Aviation: decrease from 2% in 2025 to 6% in 2030 and 70% in 2050 Maritime: decrease from 2% in 2025 to 6% in 2030 and 80% in 2050 |
CH4 | Cutting methane emissions | 60% of production is related to animal grazing, energy, waste, and biomass burning |
Energy taxation | Revise the rules | In the industrial areas: decreasing the tax on renewable energy users and on the other hand, increasing the taxes on fossil fuel users |
Boost renewable energy | Prevent the import of fuels from Russia | Under the new rule, renewable energy sources have to increase to 42.5% by 2030 |
Buildings | Reducing energy consumption | New buildings will have to be zero-emission; by 2030, this will apply to all buildings |
Reactor Name | Model | Reactor Type | Reference Unit Power (MWe) | Permanent Shutdown |
---|---|---|---|---|
Garigliano | BWR-1 | BWR | 150 | March 1982 |
Latina | MAGNOX | GCR | 153 | December 1987 |
Caorso | BWR-4 (Mark 2) | BWR | 860 | July 1990 |
Enrico Fermi | W (4-loop) | PWR | 260 | July 1990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safarzadeh, H.; Di Maria, F. How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study. Sustainability 2025, 17, 3743. https://doi.org/10.3390/su17083743
Safarzadeh H, Di Maria F. How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study. Sustainability. 2025; 17(8):3743. https://doi.org/10.3390/su17083743
Chicago/Turabian StyleSafarzadeh, Hamid, and Francesco Di Maria. 2025. "How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study" Sustainability 17, no. 8: 3743. https://doi.org/10.3390/su17083743
APA StyleSafarzadeh, H., & Di Maria, F. (2025). How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study. Sustainability, 17(8), 3743. https://doi.org/10.3390/su17083743