Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems
Abstract
:1. Introduction
1.1. Legislative Aspects of Air Quality and Emission Reduction Issues
1.2. Literary of the Technologies for Reducing Solid Emissions
2. Materials
2.1. Pellets
2.2. Layout and Operations of the PCAS
2.2.1. Pellet Stove
2.2.2. PCAS Characteristics and Innovative Aspects
3. Methods
3.1. PM and Combustion Residues: Granulometry, Heavy Metal and Efficiency Analysis
3.2. Life Cycle Assessment
4. Results and Discussion
4.1. Pellet Characterisation
4.2. Operational Parameters
4.3. Characterisation of PM, Combustion Residues and Efficiency
4.4. Life Cycle Inventory Analysis and Impact Assessment
4.5. Economics of PCAS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paraschiv, L.S.; Serban, A.; Paraschiv, S. Calculation of combustion air required for burning solid fuels (coal/biomass/solid waste) and analysis of flue gas composition. Energy Rep. 2020, 6, 36–45. [Google Scholar] [CrossRef]
- Haq, I.; Qaisar, K.; Nawaz, A.; Akram, F.; Mukhtar, H.; Zohu, X.; Xu, Y.; Mumtaz, M.W.; Rashid, U.; Ghani, W.A.W.A.K.; et al. Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts 2021, 11, 309. [Google Scholar] [CrossRef]
- Ghafghazi, S.; Sowlati, T.; Sokhansanj, S.; Bi, X.; Melin, S. Particulate matter emissions from combustion of wood in district heating applications. Renew. Sustain. Energy Rev. 2011, 15, 3019–3028. [Google Scholar] [CrossRef]
- Shen, G.; Tao, S.; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.; Huang, Y.; Chen, Y.; et al. Reductions in Emissions of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Combustion of Biomass Pellets in Comparison with Raw Fuel Burning. Environ. Sci. Technol. 2012, 46, 6409–6416. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- ISO 17225-4; Solid Biofuels—Fuel Specifications and Classes. International Organization for Standardization: Geneva, Switzerland, 2021.
- Miranda, T.; Montero, I.; Sepúlveda, F.J.; Arranza, J.I.; Rojas, C.V.; Nogales, S. A Review of Pellets from Different Sources. Materials 2015, 8, 1413–1427. [Google Scholar] [CrossRef]
- Thrän, D.; Peetz, D.; Schaubach, K. Global Wood Pellet Industry and Trade Study; IEA Bioenergy: Paris, France, 2017; ISBN 9781910154328. [Google Scholar]
- Saosee, P.; Sajjakulnukit, B.; Gheewala, S.H. Life cycle assessment of wood pellet production in Thailand. Sustainability 2020, 12, 6996. [Google Scholar] [CrossRef]
- Flach, B.; Bolla, S. Wood Pellets Annual; U.S. Department of Agriculture: Washington, DC, USA, 2024.
- Fiedler, F. The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany. Renew. Sustain. Energy Rev. 2004, 8, 201–221. [Google Scholar] [CrossRef]
- Johansson, L.S.; Leckner, B.; Gustavsson, L.; Cooper, D.; Tullin, C.; Potter, A. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 2004, 38, 4183–4195. [Google Scholar] [CrossRef]
- Aste, N.; Adhikari, R.S.; Compostella, J.; Del Pero, C. Energy and environmental impact of domestic heating in Italy: Evaluation of national NOx emissions. Energy Policy 2013, 53, 353–360. [Google Scholar] [CrossRef]
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (accessed on 20 March 2023).
- Lim, M.T.; Phan, A.; Roddy, D.; Harvey, A. Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review. Renew. Sustain. Energy Rev. 2015, 49, 574–584. [Google Scholar] [CrossRef]
- Vicente, E.D.; Alves, C.A. An overview of particulate emissions from residential biomass combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Wang, K.; Nakao, S.; Thimmaiah, D.; Hopke, P.K. Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage. Sci. Total Environ. 2019, 676, 564–576. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Marchewicz, A.; Krupa, A.; Czech, T. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renew. Sustain. Energy Rev. 2021, 137, 110446. [Google Scholar] [CrossRef]
- Samet, J.M.; Dominici, F.; Curriero, F.C.; Coursac, I.; Zeger, S.L. Fine Particulate Air Pollution and Mortality in 20 U.S. Cities, 1987–1994. N. Engl. J. Med. 2000, 343, 1742–1749. [Google Scholar] [CrossRef]
- Rohr, A.C.; Habre, R.; Godbold, J.; Moshier, E.; Schachter, N.; Kattan, M.; Grunin, A.; Nath, A.; Coull, B.; Koutrakis, P. Asthma exacerbation is associated with particulate matter source factors in children in New York City. Air Qual. Atmos. Health 2014, 7, 239–250. [Google Scholar] [CrossRef]
- Ahn, K. The role of air pollutants in atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 993–999. [Google Scholar] [CrossRef]
- Roy, A.; Chapman, R.S.; Hu, W.; Wei, F.; Liu, X.; Zhang, J. Indoor air pollution and lung function growth among children in four Chinese cities. Indoor Air 2012, 22, 3–11. [Google Scholar] [CrossRef]
- McCracken, J.P.; Smith, K.R.; Díaz, A.; Mittleman, M.A.; Schwartz, J. Chimney Stove Intervention to Reduce Long-term Wood Smoke Exposure Lowers Blood Pressure among Guatemalan Women. Environ. Health Perspect. 2007, 115, 996–1001. [Google Scholar] [CrossRef]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe; EU: Strasbourg, France, 2008.
- Lopez-Aparicio, S.; Grythe, H.; Markelj, M.; Evangeliou, N.; Walker, S.E. Exploring the connection between COVID 19, the energy crisis and PM2.5 emissions from residential heating. Clean. Environ. Syst. 2024, 15, 100244. [Google Scholar] [CrossRef]
- Trojanowski, R.; Fthenakis, V.M. Nanoparticle emissions from residential wood combustion: A critical literature review, characterization, and recommendations. Renew. Sustain. Energy Rev. 2019, 103, 515–528. [Google Scholar] [CrossRef]
- Szidat, S.; Prévôt, A.S.H.; Sandradewi, J.; Alfarra, M.R.; Synal, H.; Wacker, L.; Baltensperger, U. Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophys. Res. Lett. 2007, 34, L05820. [Google Scholar] [CrossRef]
- Krecl, P.; Hedberg Larsson, E.; Ström, J.; Johansson, C. Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization. Atmos. Chem. Phys. 2008, 8, 3639–3653. [Google Scholar] [CrossRef]
- Caseiro, A.; Bauer, H.; Schmidl, C.; Pio, C.A.; Puxbaum, H. Wood burning impact on PM10 in three Austrian regions. Atmos. Environ. 2009, 43, 2186–2195. [Google Scholar] [CrossRef]
- Favez, O.; Cachier, H.; Sciare, J.; Sarda-Esteve, R.; Martinon, L. Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmos. Environ. 2009, 43, 3640–3644. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Temporal variation and impact of wood smoke pollution on a residential area in southern Germany. Atmos. Environ. 2010, 44, 3823–3832. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef]
- Maenhaut, W.; Vermeylen, R.; Claeys, M.; Vercauteren, J.; Roekens, E. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning. Sci. Total Environ. 2016, 562, 550–560. [Google Scholar] [CrossRef]
- Mangia, C.; Cervino, M.; Gianicolo, E.A.L. Secondary particulate matter originating from an industrial source and its impact on population health. Int. J. Environ. Res. Public Health 2015, 12, 7667–7681. [Google Scholar] [CrossRef]
- Verma, V.K.; Bram, S.; Delattin, F.; Laha, P.; Vandendael, I.; Hubin, A.; De Ruyck, J. Agro-pellets for domestic heating boilers: Standard laboratory and real life performance. Appl. Energy 2012, 90, 17–23. [Google Scholar] [CrossRef]
- Fernandes, U.; Costa, M. Particle emissions from a domestic pellets-fired boiler. Fuel Process. Technol. 2012, 103, 51–56. [Google Scholar] [CrossRef]
- Öhman, M.; Nordin, A.; Hedman, H.; Jirjis, R. Reasons for slagging during stemwood pellet combustion and some measures for prevention. Biomass Bioenergy 2004, 27, 597–605. [Google Scholar] [CrossRef]
- García-Maraver, A.; Popov, V.; Zamorano, M. A review of European standards for pellet quality. Renew. Energy 2011, 36, 3537–3540. [Google Scholar] [CrossRef]
- Sippula, O.; Hokkinen, J.; Puustinen, H.; Yli-Pirila, P.; Jokiniemi, J. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 2009, 43, 4855–4864. [Google Scholar] [CrossRef]
- Carroll, J.; Finnan, J. Emissions and efficiencies from the combustion of agricultural feedstock pellets using a small scale tilting grate boiler. Biosyst. Eng. 2013, 115, 50–55. [Google Scholar] [CrossRef]
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air; EU: Strasbourg, France, 2004.
- Valencia-Lopez, A.M.; Romero-Menco, F.; Bustamante, F.; Perez, J.F. Assessment of reductions in CO, PAHs and PM emissions in a forced-draft biomass gasification cookstove. Renew. Energy 2025, 245, 122815. [Google Scholar] [CrossRef]
- Monedero, E.; Collado, R.; Villanueva, F.; Borjabad, E.; Ramos, R.; Hernandez, J.J. Particulate-bound PAHs, nitro and oxy-PAHs from small scale boilers fueled with non-woody biomass. Atmos. Res. 2025, 316, 107954. [Google Scholar] [CrossRef]
- Da Lioa, L.; Bortolus, M.; Canua, P. Emissions reduction from wood pellet stoves by uniform feeding. Renew. Energy 2025, 242, 122273. [Google Scholar] [CrossRef]
- Lee, H.H.; Hsu, C.M. Total Quality Management Enhances Wood Pellet Utilization for Sustainable Energy. Sustainability 2025, 17, 1562. [Google Scholar] [CrossRef]
- Dirgo, J.; Leith, D. Cyclone Collection Efficiency: Comparison of Experimental Results with Theoretical Predictions. Aerosol Sci. Technol. 1985, 4, 401–415. [Google Scholar] [CrossRef]
- LECO Instruments Thermogravimetric Analyzer TGA701. Available online: https://lecoperu.com/wp-content/uploads/2018/05/TGA701-ESPECIFICACIONES-ENG-28052018.pdf (accessed on 20 March 2025).
- LECO Instruments Calorimeter AC-350. Available online: http://www.zycon.com/Literature/128173/62890/ac-350%20flyer%20203-968.pdf (accessed on 20 March 2025).
- EPA. Methodology for Thermal Efficiency and Energy Input Calculations and Analysis of Biomass Cogeneration Unit Characteristics. 2007. Available online: https://www3.epa.gov/airtoxics/utility/fnl_biomass_cogen_TSD_04_19_07.pdf (accessed on 20 March 2025).
- Last Calor SOFIA. Available online: https://www.termovana.it/wp-content/uploads/2021/02/Manuale_SOFIA_UP_IT_WEB.pdf (accessed on 20 March 2025).
- Basu, P. Circulating Fluidized Bed Boilers—Design, Operation and Maintenance; Springer: Berlin/Heidelberg, Germany, 2015; pp. 229–253. [Google Scholar]
- Watlow. Thermocouple. Available online: https://www.watlow.com/products/sensors/thermocouples (accessed on 20 March 2025).
- Avery Weight-Tronix E1005. Available online: http://www.scaleservice.net/manuals/weightronix/e1005_u.pdf (accessed on 20 March 2025).
- Sartorius: Scout Pro. Available online: https://www.sartorius.com/en/products (accessed on 20 March 2025).
- Optima 8000 ICO-OES: Monochromator Optical System. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/bro_optima-8x00-family.pdf (accessed on 20 March 2025).
- EN 15359; Solid Recovered Fuels—Specifications and Classes. CEN: Bruxelles, Belgium, 2011.
- Malvern Panalytical. Spraytec Laser Diffraction System. Available online: https://www.malvernpanalytical.com/en/products/product-range/spraytec?utm_source=google&utm_medium=cpc&utm_campaign=EN%20-%20Malvern%20-%20Product%20-%20Spraytec&utm_term=malvern%20spraytec&utm_content=1942201140&gad=1&gclid=CjwKCAjwscGjBhAXEiwAswQqNDSqc7jpwcGH-71vWz5ccDu3YT-kvStndM1zPfKf5I7DoWDR5YWdExoCrmEQAvD_BwE (accessed on 20 March 2025).
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- PRé Sustainability. SimaPro. Available online: https://simapro.com/ (accessed on 20 March 2023).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Ryu, C.; Bin, Y.Y.; Khor, A.; Yates, N.E.; Sharifi, V.N.; Swithenbank, J. Effect of fuel properties on biomass combustion: Part I. Experiments—Fuel type, equivalence ratio and particle size. Fuel 2006, 85, 1039–1046. [Google Scholar] [CrossRef]
- Toscano, G.; Duca, D.; Amato, A.; Pizzi, A. Emission from realistic utilization of wood pellet stove. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture; EU: Luxembourg, 1986.
- Uski, O.; Jalava, P.I.; Happo, M.S.; Torvela, T.; Leskinen, J.; Mäki-Paakkanen, J.; Tissari, J.; Sippula, O.; Lamberg, H.; Jokiniemi, J.; et al. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro. Sci. Total Environ. 2015, 511, 331–340. [Google Scholar] [CrossRef]
- Ostro, B.; Feng, W.Y.; Broadwin, R.; Green, S.; Lipsett, M. The Effects of Components of Fine Particulate Air Pollution on Mortality in California: Results from CALFINE. Environ. Health Perspect. 2007, 115, 13–19. [Google Scholar] [CrossRef]
- Boman, C.; Nordin, A.; Boström, D.; Öhman, M. Characterization of Inorganic Particulate Matter from Residential Combustion of Pelletized Biomass Fuels. Energy Fuels 2004, 18, 338–348. [Google Scholar] [CrossRef]
- Wiinikka, H.; Grönberg, C.; Boman, C. Emissions of Heavy Metals during Fixed-Bed Combustion of Six Biomass Fuels. Energy Fuels 2013, 27, 1073–1080. [Google Scholar] [CrossRef]
- Fernandes, U.; Costa, M. Formation of Fine Particulate Matter in a Domestic Pellet-Fired Boiler. Energy Fuels 2013, 27, 1081–1092. [Google Scholar] [CrossRef]
- EPA, Air Quality Criteria for Particulate Matter Volume I of II. 2004. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100LFIQ.TXT (accessed on 20 March 2025).
- EPA, Air Quality Criteria for Particulate Matter Volume II of II. 2004. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100LG7Q.TXT (accessed on 20 March 2025).
- Jeguirim, M.; Kraiem, N.; Lajili, M.; Guizani, C.; Zorpas, A.; Leva, Y.; Michelin, L.; Josien, L.; Limousy, L. The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: Molar balance and chemometric analysis. Environ. Sci. Pollut. Res. 2017, 24, 9927–9939. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I. Fuel Indexes: A Novel Method for the Evaluation of Relevant Combustion Properties of New Biomass Fuels. Energy Fuels 2012, 26, 380–390. [Google Scholar] [CrossRef]
Structural Part | Dimension (mm) |
---|---|
Cyclone diameter | 220 |
Gas outlet diameter | 100 |
Gas inlet diameter | 100 |
Gas outlet diameter | 100 |
Cyclone height | 365 |
Cylinder height | 100 |
Dust outlet diameter | 100 |
Outlet duct length | 85 |
Element | Metals Content in Ash (ppm) | Metals Content in PM (ppm) | Limit Value (kg/ha/yr) | Ash Mass (t/ha/yr) | PM Mass (t/ha/yr) |
---|---|---|---|---|---|
Cadmium | 0.91 | 0.52 | 0.15 | 164.84 | 288.46 |
Copper | 118.39 | 1.61 | 12 | 101.36 | 7453.42 |
Nickel | 26.6 | <0.004 | 3 | 112.78 | - |
Lead | 6.1 | 1.37 | 15 | 2459.02 | 10,948.91 |
Zinc | 162.41 | 13.15 | 30 | 184.72 | 2281.37 |
Mercury | <0.02 | <0.02 | 0.10 | - | - |
Chromium 1 Swe | 83.1 | <0.004 | 0.04 | 0.48 | - |
Chromium 1 Fra | 12 | 144.40 | - |
Particle Diameter (μm) | Volumetric Distribution (%) | Volumetric Accumulate Distribution (%) | Numeric Distribution (%) | Number Accumulate Distribution (%) |
---|---|---|---|---|
PM 1 | 0.34 | 0.34 | 98.58 | 98.58 |
PM 2.5 | 0.68 | 1.03 | 1.16 | 99.74 |
PM 10 | 4.21 | 5.24 | 0.24 | 99.98 |
>PM 10 | 94.76 | 100.00 | 0.0002 | 99.98 |
TOTAL | 100.00 | 99.98 |
Impact Category | Unit | Material | Metal Working | Linear Welding | Circular Welding | Transportation Input | Transportation Output | End-of-Life | Total |
---|---|---|---|---|---|---|---|---|---|
Fine particulate matter formation | mg PM2.5 eq | 52,631 | 6248 | 365 | 1594 | 96 | 96 | −6402 | 54,628 |
% | 86.24 | 10.24 | 0.60 | 2.61 | 0.16 | 0.16 | - | 100 | |
Particulate matter formation | mg PM10 eq | 491,232 | 17,025 | 760 | 3315 | 375 | 375 | −24,561 | 488,520 |
% | 95.74 | 3.32 | 0.15 | 0.65 | 0.07 | 0.07 | - | 100 | |
Fraction PM2.5/ PM10 1 | % | 11 | 37 | 48 | 48 | 26 | 26 | 26 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coccia, V.; Temporim, R.B.L.; Paglianti, A.; Di Giuseppe, A.; Cotana, F.; Nicolini, A. Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems. Sustainability 2025, 17, 3814. https://doi.org/10.3390/su17093814
Coccia V, Temporim RBL, Paglianti A, Di Giuseppe A, Cotana F, Nicolini A. Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems. Sustainability. 2025; 17(9):3814. https://doi.org/10.3390/su17093814
Chicago/Turabian StyleCoccia, Valentina, Ramoon Barros Lovate Temporim, Alessandro Paglianti, Alessia Di Giuseppe, Franco Cotana, and Andrea Nicolini. 2025. "Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems" Sustainability 17, no. 9: 3814. https://doi.org/10.3390/su17093814
APA StyleCoccia, V., Temporim, R. B. L., Paglianti, A., Di Giuseppe, A., Cotana, F., & Nicolini, A. (2025). Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems. Sustainability, 17(9), 3814. https://doi.org/10.3390/su17093814