Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience
Abstract
:1. Introduction
2. Conceptual Frameworks for Linking Green Infrastructure and Sustainable Agriculture
Practice | Features | Primary Function |
Hedgerows | Linear plantings of shrubs or trees along field edges | Windbreaks and wildlife corridors |
Cover Crops | Plants grown between cropping seasons | Soil cover and nutrient cycling |
Riparian Buffers | Vegetated zones along waterways | Water filtration and erosion control |
Agroforestry | Integrating trees with crops or livestock | Biodiversity and microclimate moderation |
Terracing | Shaping sloped land into steps | Erosion control and water retention |
Grassed Waterways | Channels planted with grass to convey water | Runoff control and sediment capture |
Wetlands | Constructed or natural depressions with water-tolerant plants | Water storage and biodiversity support |
Windbreaks/Shelterbelts | Rows of trees or shrubs planted to protect fields from the wind | Reducing wind erosion and improving microclimate |
Perennial Field Borders | Undisturbed strips of permanent vegetation along crop fields | Pollinator support and soil stabilization |
Bioswales/Rain Gardens | Landscaped areas designed to capture and filter runoff | Water infiltration, pollution control |
2.1. Principles of Sustainable Agriculture—Agroecology
2.2. Ecosystem Services and Agroecosystem Functionality
2.3. Climate Resilience and Nature-Based Solutions
Strategy | Main Focus | Goals | Typical Practices |
Agroecology | Ecological balance and food systems | Long-term productivity and resilience | Crop rotation, agroforestry, and cover crops |
Ecosystem Services | Benefits of healthy ecosystems | Support agroecosystem functionality | Pollination, soil fertility, and pest control |
Nature-Based Solutions | Climate adaptation using ecosystems | Build resilience and reduce greenhouse gases | Agroforestry, wetlands, and wildlife corridors |
3. Key Components of Green Infrastructure in Agricultural Systems
Component | Application Scenario | Examples | Key Benefits | References |
---|---|---|---|---|
Agroforestry Systems | Integration of woody perennials (trees, shrubs) with crops and/or livestock. | Silvopasture, alley cropping | Enhances carbon sequestration, improves soil structure, diversifies income sources, and promotes biodiversity. | [68,69] |
Riparian Buffers | Vegetated zones along streams, rivers, or wetlands intercept pollutants and reduce erosion. | Grass buffers, forest buffers | Reduces nutrient runoff, enhances water quality, stabilizes streambanks, and supports wildlife habitat. | [70] |
Cover Cropping | Use of non-commodity crops to protect and enhance the soil between cash crop cycles. | Legumes, grasses (e.g., clover and rye) | Adds organic matter, fixes nitrogen, prevents erosion, suppresses weeds, and supports microbial diversity. | [71,72] |
Hedgerows | Planted rows of shrubs, trees, or native plants bordering fields. | Native hedgerows | Serves as a habitat corridor, supports beneficial insects and pollinators, and provides wind protection. | [73] |
Conservation Tillage | Minimal disturbance tillage to preserve soil structure and biological activity. | No-till, strip-till systems | Reduces erosion, conserves soil moisture, promotes soil microbial activity, and enhances carbon storage. | [74,75,76] |
Wetland Restoration | Re-establishing or creating wetlands within agricultural landscapes to enhance ecosystem services. | Floodplain restoration, farm ponds | Improves water filtration, enhances flood resilience, sequesters carbon, and supports wetland biodiversity. | [77,78] |
Grass Waterways | Grassed channels that convey surface runoff while preventing soil erosion. | Native grass channels | Filters sediment and nutrients, reduces gully formation and promotes infiltration and aquifer recharge. | [79] |
Perennial Vegetation Strips | Long-term vegetative buffers (native grasses, shrubs, etc.) are established within or between fields. | Prairie strips | Enhances biodiversity, supports soil stability, provides habitat for beneficial species, and reduces runoff. | [80] |
Rainwater Harvesting | Capture and storage of rainwater for irrigation or recharge of soil moisture. | Farm ponds, rooftop collection | Reduces reliance on groundwater, enhances drought resilience, and improves water access for crops/livestock. | [81,82] |
Bioswales and Buffer Strips | Landscaped depressions designed to slow, capture, and filter stormwater runoff. | Filter strips, vegetated swales | Reduces nutrient and sediment runoff, enhances water infiltration, and supports aesthetic and functional landscapes. | [83,84] |
Windbreaks | Rows of trees or shrubs are planted to protect fields from wind erosion. | Tree shelterbelts | Prevents wind erosion, reduces crop damage, creates microclimates, and provides habitat for birds and pollinators. | [85] |
Composting Systems | Incorporation of organic farm and household waste into soil fertility practices. | On-farm composting, vermicomposting | Improves soil organic matter, enhances microbial activity, reduces dependence on synthetic fertilizers, and supports the circular economy. | [86,87] |
Pollinator Habitat | Designated areas are planted with pollinator-friendly species. | Pollinator gardens, flowering borders | Enhances pollination services, supports biodiversity, and promotes ecosystem resilience. | [88,89] |
Terracing and Contour Farming | Reshaping and cultivating land along contours to prevent erosion. | Bench terraces, contour strip cropping | Reduces surface runoff, improves soil water retention, minimizes slope erosion, and supports long-term soil health. | [90] |
Green Roofs and Living Fences | Use of vegetated roofs and biologically active fences for agricultural infrastructure. | Green barns, living fences | Provides insulation, reduces stormwater runoff, enhances farm aesthetics, and supports habitat connectivity. | [91,92] |
Constructed Wetlands | Engineered wetlands are designed to treat agricultural runoff and wastewater. | Integrated wetland treatment | Filters nutrients and contaminants, provides wildlife habitat, and promotes water reuse. | [93] |
Solar-Powered Water Systems | Use of solar energy to power water collection, pumping, or irrigation systems. | Solar pumps, drip irrigation | Reduces fossil fuel dependence, increases water efficiency, and supports off-grid farming systems. | [94,95] |
Biological Pest Control Areas | Habitat zones for beneficial insects that naturally control pests. | Beetle banks, insectary strips | Reduce pesticide use, enhance biological pest suppression, and promote beneficial insect populations. | [96,97] |
Permeable Pavements in Farmyards | Porous surfaces that allow rainwater infiltration, reducing runoff. | Gravel, permeable concrete | Enhances groundwater recharge, reduces surface runoff, and mitigates flooding risks. | [98,99] |
Crop–Livestock Integration | Integrated systems combine crops and livestock to cycle nutrients and enhance soil health. | Rotational grazing, crop grazing | Reduces waste, enhances nutrient cycling, improves soil organic matter, and diversifies farm income. | [100] |
Renewable Energy Installations | On-farm renewable energy infrastructure is linked to sustainable farming operations. | Solar arrays, wind turbines | Reduces carbon footprint, provides energy resilience, and supports climate-smart farming practices. | [101,102,103] |
4. Soil Health Enhancement Through Green Infrastructure
5. Biodiversity Conservation in Agricultural Landscapes Using Green Infrastructure
5.1. Pollinator Habitats and Beneficial Insects
5.2. Agroecological Networks and Habitat Connectivity
5.3. Role of Cover Crops and Perennial Vegetation in Biodiversity
6. Climate Resilience and Mitigation Benefits of Integrating Green Infrastructure into Agriculture
7. Farmer Adoption of Green Infrastructure and Socioeconomic Considerations
Limitations of Green Infrastructure | Technological Integration for Future Development |
Land-use trade-offs (e.g., reduced arable land) | Use of geographic information system and spatial modeling to optimize GI placement without compromising yield |
High labor and maintenance demands | Deployment of automated systems like IoT sensors for irrigation and vegetation monitoring |
Delayed realization of benefits | Use of predictive modeling and machine learning to estimate long-term GI impacts |
Financial constraints for smallholders | Blockchain-enabled platforms for accessing microfinance, green subsidies, and credits |
Lack of real-time ecological data | Remote sensing and drone technology for monitoring vegetation cover and water cycles |
Difficulty in assessing performance and return on investment | AI-driven dashboards to visualize and analyze environmental and productivity indicators |
8. Policy Implications of Incorporating Green Infrastructure into Agricultural Systems and Governance Frameworks
9. Future Directions and Research Gaps
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabakchieva, D.; Vasileva, V. Green infrastructure-the smart interpreting of natural capital. Acta Sci. Nat. 2023, 10, 57–68. [Google Scholar] [CrossRef]
- Jacob, D.E.; Nelson, I.U.; Oluwafemi, O.J.; Izah, S.C.; Ogwu, M.C. Environmental Stewardship: Safeguarding Biodiversity in Protected Landscapes and Recreational Parks Using Biosecurity. In Biomonitoring of Pollutants in the Global South; Izah, S.C., Ogwu, M.C., Hamidifar, H., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Jacob, D.E.; Nelson, I.U.; Izah, S.C.; Ukpong, E.; Akpan, U.U.; Ogwu, M.C. Bioindicators in Recreational Planning and Development: Balancing Nature and Human Activities. In Biomonitoring of Pollutants in the Global South; Izah, S.C., Ogwu, M.C., Hamidifar, H., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Pywell, R.; Heard, M.; Woodcock, B.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151740. [Google Scholar] [CrossRef] [PubMed]
- Imarhiagbe, O.; Ogwu, M.C. Sacred Groves in the Global South: A Panacea for Sustainable Biodiversity Conservation. In Biodiversity in Africa: Potentials, Threats and Conservation, Sustainable Development and Biodiversity; Izah, S.C., Ed.; Springer: Singapore, 2022; Volume 29, pp. 525–546. [Google Scholar] [CrossRef]
- Imarhiagbe, O.; Onyeukwu, I.I.; Egboduku, W.; Mukah, F.E.; Ogwu, M.C. Forest Conservation Strategies in Africa: Historical Perspectives, Status and Sustainable Avenues for Progress. In Biodiversity in Africa: Potentials, Threats and Conservation, Sustainable Development and Biodiversity, Vol. 29; Izah, S.C., Ed.; Springer: Singapore, 2022; pp. 547–572. [Google Scholar] [CrossRef]
- Evivie, S.E.; Ogwu, M.C.; Ebabhamiegbebho, P.A.; Abel, E.S.; Imaren, J.O.; Igene, J.O. Packaging and the Nigerian food industry: Challenges and opportunities. In Food Technology and Culture in Africa; Ogunlade, C.A., Adeleke, K.M., Oladejo, M.T., Eds.; Reamsworth Publishing: Ibadan, Nigeria, 2020; pp. 28–99. [Google Scholar]
- Ogwu, M.C.; Izah, S.C. One Health Implications of Agrochemicals and their Sustainable Alternatives; Sustainable Development and Biodiversity; Ramawat, K.G., Ed.; Springer Nature: Singapore, 2023; Volume 34, 826p. [Google Scholar] [CrossRef]
- Pulleman, M.; Boer, W.; Giller, K.; Kuyper, T. Soil biodiversity and nature-mimicry in agriculture; the power of metaphor? Outlook Agric. 2022, 51, 75–90. [Google Scholar] [CrossRef]
- Rodríguez, B.; Zuazo, V.; Soriano, M.; Tejero, I.; Ruíz, B.; Tavira, S. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Bele, B.; Norderhaug, A.; Sickel, H. Localized agri-food systems and biodiversity. Agriculture 2018, 8, 22. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Ogochukwu, O.F.; Ogwu, M.C. Shelf life, fruit quality and safety of banana fruits ripened through traditional ripening techniques in Nigeria. Int. J. Fruit Sci. 2021, 21, 66–81. [Google Scholar] [CrossRef]
- Osawaru, M.E.; Ogwu, M.C. Collecting West African Okra (Abelmoschus caillei (A. Chev.) Stevels) germplasm from traditional agriculture in parts of Southwestern Nigeria. Bioscientist 2013, 1, 171–181. [Google Scholar]
- Ogwu, M.C.; Osawaru, M.E. Traditional Methods of Plant Conservation for Sustainable Utilization and Development. In Biodiversity in Africa: Potentials, Threats and Conservation, Sustainable Development and Biodiversity; Izah, S.C., Ed.; Springer: Singapore, 2022; Volume 29, pp. 451–472. [Google Scholar] [CrossRef]
- Bulut, M.; Filik, G. The future of innovative agriculture: Bioeconomy and sustainable agriculture. Turk. J. Agric. Food Sci. Technol. 2024, 12, 1110–1119. [Google Scholar] [CrossRef]
- Sharrock, S.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Diyaolu, C.; Folarin, I. The role of biodiversity in agricultural resilience: Protecting ecosystem services for sustainable food production. Int. J. Res. Publ. Rev. 2024, 5, 1560–1573. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Osawaru, M.E. Soil characteristics, microbial composition of plot, leaf count and sprout studies of cocoyam (Colocasia [Schott] and Xanthosoma [Schott], Araceae) collected in Edo State, Southern Nigeria. Sci. Technol. Arts Res. J. 2015, 4, 34–44. [Google Scholar] [CrossRef]
- Redlich, S.; Martin, E.; Steffan-Dewenter, I. Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems. J. Appl. Ecol. 2021, 58, 507–517. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W. Harnessing the four horsemen of climate change: A framework for deep resilience, decarbonization, and planetary health in Ontario, Canada. Sustainability 2021, 13, 379. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W. Nature-based resilience: A multi-type evaluation of productive green infrastructure in agricultural settings in Ontario, Canada. Atmosphere 2021, 12, 1183. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.; Agic, B. Nature-based equity: An assessment of the public health impacts of green infrastructure in Ontario, Canada. Int. J. Environ. Res. Public Health 2021, 18, 5763. [Google Scholar] [CrossRef]
- Lovell, S.T.; Johnston, D.M. Creating multifunctional landscapes: How can the field of ecology inform the design of the landscape? Front. Ecol. Environ. 2009, 7, 212–220. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations 571 Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture: A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Trade-offs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, A.; Santhosh, D.; Ganavi, N.; Sarma, A.; Deori, C.; D, S. A comprehensive review on greenhouse gas emissions in agriculture and evolving agricultural practices for climate resilience. Int. J. Environ. Clim. Change 2024, 14, 455–464. [Google Scholar] [CrossRef]
- Hoover, F.; Hopton, M. Developing a framework for stormwater management: Leveraging ancillary benefits from urban greenspace. Urban Ecosyst. 2019, 22, 1139–1148. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Szutu, D.; Papuga, S. Year-round transpiration dynamics linked with deep soil moisture in a warm desert shrubland. Water Resour. Res. 2019, 55, 5679–5695. [Google Scholar] [CrossRef]
- Shackleton, C. Urban green infrastructure for poverty alleviation: Evidence synthesis and conceptual considerations. Front. Sustain. Cities 2021, 3, 710549. [Google Scholar] [CrossRef]
- Houlden, V.; Weich, S.; Albuquerque, J.; Jarvis, S.; Rees, K. The relationship between greenspace and the mental wellbeing of adults: A systematic review. PLoS ONE 2018, 13, e0203000. [Google Scholar] [CrossRef]
- Huang, X.; Niu, R.; Huang, X.; An, Y.; Li, J.; Li, M.; Garg, A. Influence of sustainable biochars produced from kitchen waste, pig manure, and wood on soil erosion. Water 2021, 13, 2296. [Google Scholar] [CrossRef]
- Betz, C.; Ament, M.; Hurley, S.; Roy, E. Nitrogen removal performance in roadside stormwater bioretention cells amended with drinking water treatment residuals. J. Environ. Qual. 2023, 52, 1115–1126. [Google Scholar] [CrossRef]
- Kazak, J.; Chruściński, J.; Szewrański, S. The development of a novel decision support system for the location of green infrastructure for stormwater management. Sustainability 2018, 10, 4388. [Google Scholar] [CrossRef]
- Shanahan, D.; Astell–Burt, T.; Barber, E.; Brymer, E.; Cox, D.; Dean, J.; Gaston, K. Nature–based interventions for improving health and wellbeing: The purpose, the people and the outcomes. Sports 2019, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Frem, M.; Nigro, F.; Medawar, S.; Moujabber, M. Biological approaches promise innovative and sustainable management of powdery mildew in Lebanese squash. Sustainability 2022, 14, 2811. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Y.; Song, H.; Chen, J.; Han, S.; Mazumder, T.; Garg, A. Exploring the combination of biochar-amended soil and automated irrigation technology for water regulation and preservation in green infrastructure. Deep Undergr. Sci. Eng. 2023, 3, 39–52. [Google Scholar] [CrossRef]
- Monteiro, R.; Ferreira, J.; Antunes, P. Green infrastructure planning principles: An integrated literature review. Land 2020, 9, 525. [Google Scholar] [CrossRef]
- Fenster, T.; Oikawa, P.; Lundgren, J. Regenerative almond production systems improve soil health, biodiversity, and profit. Front. Sustain. Food Syst. 2021, 5, 664359. [Google Scholar] [CrossRef]
- Kenne, G.; Kloot, R. The carbon sequestration potential of regenerative farming practices in South Carolina, USA. Am. J. Clim. Change 2019, 8, 157–172. [Google Scholar] [CrossRef]
- Singh, I.; Hussain, M.; Manjunath, G.; Chandra, N.; Ravikanth, G. Regenerative agriculture augments bacterial community structure for a healthier soil and agriculture. Preprint 2022, 5, 1134514. [Google Scholar] [CrossRef]
- Derkzen, M.; Teeffelen, A.; Verburg, P. Green infrastructure for urban climate adaptation: How do residents’ views on climate impacts and green infrastructure shape adaptation preferences? Landsc. Urban Plan. 2017, 157, 106–130. [Google Scholar] [CrossRef]
- Kondo, M.; Sharma, R.; Plante, A.; Yang, Y.; Burstyn, I. Elemental concentrations in urban green stormwater infrastructure soils. J. Environ. Qual. 2016, 45, 107–118. [Google Scholar] [CrossRef]
- Otero-Durán, L.; Torres, A. Trees and sidewalks: Toward an infrastructure protection approach. Front. Sustain. Cities 2024, 6, 1336472. [Google Scholar] [CrossRef]
- Soto, R.; Martínez-Mena, M.; Padilla, M.; Vente, J. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agric. Ecosyst. Environ. 2021, 306, 107191. [Google Scholar] [CrossRef]
- Hoover, F.; Price, J.; Hopton, M. Examining the effects of green infrastructure on residential sales prices in Omaha, Nebraska. Urban For. Urban Green. 2020, 54, 126778. [Google Scholar] [CrossRef]
- John, D.; Babu, G. Lessons from the aftermaths of the Green Revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef] [PubMed]
- Senes, G.; Ferrario, P.; Cirone, G.; Fumagalli, N.; Frattini, P.; Sacchi, G.; Valé, G. Nature-based solutions for stormwater management—Creation of a green infrastructure suitability map as a tool for land-use planning at the municipal level in the province of Monza-Brianza (Italy). Sustainability 2021, 13, 6124. [Google Scholar] [CrossRef]
- Hermans, S.M.; Lear, G.; Case, B.S.; Buckley, H.L. The soil microbiome: An essential, but neglected, component of regenerative agroecosystems. iScience 2023, 26, 106028. [Google Scholar] [CrossRef]
- Ramkumar, D.; Marty, A.; Ramkumar, J.; Rosencranz, H.; Vedantham, R.; Goldman, M.; Meyer, E.; Steinmetz, J.; Weckle, A.; Bloedorn, K.; et al. Food for thought: Making the case for food produced via regenerative agriculture in the battle against non-communicable chronic diseases (NCDs). One Health 2024, 18, 100734. [Google Scholar] [CrossRef]
- Newton, A.C.; Creissen, H.E.; Erreguerena, I.A.; Havis, N.D. Disease management in regenerative cropping in the context of climate change and regulatory restrictions. Annu. Rev. Phytopathol. 2024, 62, 337–356. [Google Scholar] [CrossRef]
- Kumar, S.; Honnappanavar, M.; Hn, S. Impact of in-situ green manuring on soil properties and fertility under regenerative farming: A case study of Akshayakalpa Farm in Tiptur, India. Int. J. Res. Agron. 2024, 7, 112–115. [Google Scholar] [CrossRef]
- Wang, X.; Shuster, W.; Pal, C.; Buchberger, S.; Bonta, J.; Avadhanula, K. Low impact development design—Integrating suitability analysis and site planning for reduction of post-development stormwater quantity. Sustainability 2010, 2, 2467–2482. [Google Scholar] [CrossRef]
- Chen, R.Z.; Wong, M.H. Integrated wetlands for food production. Environ. Res. 2016, 148, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Shirgir, E.; Kheyroddin, R.; Behzadfar, M. Developing strategic principles of intervention in urban green infrastructure to create and enhance climate resilience in cities—Case study: Yousef Abad in Tehran. J. Clim. Change 2019, 5, 61–73. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Iyiola, A.O.; Izah, S.C.; Morya, S.; Akinsorotan, A.; Ogwu, M.C. Owalla Reservoir in South-western Nigeria: Assessment of Fish Distribution, Biological Diversity, and Water Quality Index. Indones. J. Agric. Res. 2023, 6, 106–125. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Pamela, B.O.; Dare, A.F.; Ovuru, K.F.; Iyiola, A.O. Traditional and Conventional Water Treatment Methods: A Sustainable Approach. In Water Crises and Sustainable Management in the Global South; Izah, S.C., Ogwu, M.C., Loukas, A., Hamidifar, H., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Kashif, M.; Fati, S.M.; Bahaj, S.A.; Chaudhry, H. A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy 2022, 12, 127. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green Infrastructure, Ecosystem Services, and Human Health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef]
- Neethirajan, S. Innovative Strategies for Sustainable Dairy Farming in Canada amidst Climate Change. Sustainability 2024, 16, 265. [Google Scholar] [CrossRef]
- Dhawi, F.; Aleidan, M.M. Oasis agriculture revitalization and carbon sequestration for climate-resilient communities. Front. Agron. 2024, 6, 1386671. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Corona, J.; Parmar, R.; Mahadwar, G.; Srinivasan, R.; Mendoza, K.; Johnston, J.M. Sensitivity of Riparian Buffer Designs to Climate Change-Nutrient and Sediment Loading to Streams: A Case Study in the Albemarle-Pamlico River Basins (USA) Using HAWQS. Sustainability 2021, 13, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.; Shrestha, A. The Potential of Cover Crops for Weed Management: A Sole Tool or Component of an Integrated Weed Management System? Plants 2023, 12, 752. [Google Scholar] [CrossRef]
- Morandin, L.A.; Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 2013, 23, 829–839. [Google Scholar] [CrossRef]
- Engell, I.; Linsler, D.; Sandor, M.; Joergensen, R.G.; Meinen, C.; Potthoff, M. The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants 2022, 11, 1747. [Google Scholar] [CrossRef]
- Sadiq, M.; Rahim, N.; Tahir, M.M.; Alasmari, A.; Alqahtani, M.M.; Albogami, A.; Ghanem, K.Z.; Abdein, M.A.; Ali, M.; Mehmood, N.; et al. Conservation tillage: A way to improve yield and soil properties and decrease global warming potential in spring wheat agroecosystems. Front. Microbiol. 2024, 15, 1356426. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Wang, Y.M.; Qiu, G.W.; Yu, H.J.; Liu, F.M.; Wang, G.L.; Duan, Y. Conservation tillage facilitates the accumulation of soil organic carbon fractions by affecting the microbial community in an eolian sandy soil. Front. Microbiol. 2024, 15, 1394179. [Google Scholar] [CrossRef]
- Meli, P.; Rey Benayas, J.M.; Balvanera, P.; Martínez Ramos, M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: A meta-analysis. PLoS ONE 2014, 9, e93507. [Google Scholar] [CrossRef]
- Prasanya, J.; Kanmani, S.; Senthil Kumar, P. A review of the wetland’s restoration mechanisms and its economic and social benefits. Water Pract. Technol. 2024, 19, 4355–4377. [Google Scholar] [CrossRef]
- Fiener, P.; Auerswald, K. Effectiveness of grassed waterways in reducing runoff and sediment delivery from agricultural watersheds. J. Environ. Qual. 2003, 32, 927–936. [Google Scholar] [CrossRef]
- Schulte, L.A.; Niemi, J.; Helmers, M.J.; Liebman, M.; Arbuckle, J.G.; James, D.E.; Kolka, R.K.; O’Neal, M.E.; Tomer, M.D.; Tyndall, J.C.; et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 11247–11252. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Khan, M.T.; Akib, S.; Din, N.B.; Biswas, S.K.; Shirazi, S.M. Sustainability of rainwater harvesting system in terms of water quality. Sci. World J. 2014, 2014, 721357. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Huang, Y.; Tian, J.; Wang, Y.; Ma, Y.; Zhang, W. Effects of a rainwater harvesting system on the soil water, heat and growth of apricot in rain-fed orchards on the Loess Plateau. Sci. Rep. 2024, 14, 9269. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Johnson, M.; Zhu, F.; Xu, Y.; Ruan, T.; Chan, F.K.S. Harnessing the runoff reduction potential of urban bioswales as an adaptation response to climate change. Sci. Rep. 2024, 14, 12207. [Google Scholar] [CrossRef]
- Dunn, R.M.; Hawkins, J.M.B.; Blackwell, M.S.A.; Zhang, Y.; Collins, A.L. Impacts of different vegetation in riparian buffer strips on runoff and sediment loss. Hydrol. Process. 2022, 36, e14733. [Google Scholar] [CrossRef]
- Sun, Q.; Zheng, B.; Liu, T.; Zhu, L.; Hao, X.; Han, Z. The optimal spacing interval between principal shelterbelts of the farm-shelter forest network. Environ. Sci. Pollut. Res. Int. 2022, 29, 12680–12693. [Google Scholar] [CrossRef]
- Almaramah, S.B.; Abu-Elsaoud, A.M.; Alteneiji, W.A.; Albedwawi, S.T.; El-Tarabily, K.A.; Al Raish, S.M. The Impact of Food Waste Compost, Vermicompost, and Chemical Fertilizers on the Growth Measurement of Red Radish (Raphanus sativus): A Sustainability Perspective in the United Arab Emirates. Foods 2024, 13, 1608. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P. The use of vermicompost in organic farming: Overview, effects on soil and economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef]
- Katumo, D.M.; Liang, H.; Ochola, A.C.; Lv, M.; Wang, Q.F.; Yang, C.F. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Divers. 2022, 44, 429–435. [Google Scholar] [CrossRef]
- Daniels, B.; Jedamski, J.; Ottermanns, R.; Ross-Nickoll, M. A “plan bee” for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS ONE 2020, 15, e0235492. [Google Scholar] [CrossRef]
- Rutebuka, J.; Munyeshuli Uwimanzi, A.; Nkundwakazi, O.; Mbarushimana Kagabo, D.; Mbonigaba, J.J.M.; Vermeir, P.; Verdoodt, A. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. J. Environ. Manag. 2021, 277, 111369. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, C.C.; Fett-Neto, A.G. Life at the Top: Extensive Green Roof Plant Species and Their Traits for Urban Use. Plants 2025, 14, 735. [Google Scholar] [CrossRef] [PubMed]
- Shahmohammad, M.; Hosseinzadeh, M.; Dvorak, B.; Bordbar, F.; Shahmohammadmirab, H.; Aghamohammadi, N. Sustainable green roofs: A comprehensive review of influential factors. Environ. Sci. Pollut. Res. Int. 2022, 29, 78228–78254. [Google Scholar] [CrossRef]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. Int. 2018, 25, 23595–23623. [Google Scholar] [CrossRef]
- Habib, S.; Liu, H.; Tamoor, M.; Zaka, M.A.; Jia, Y.; Hussien, A.G.; Zawbaa, H.M.; Kamel, S. Technical modelling of solar photovoltaic water pumping system and evaluation of system performance and their socio-economic impact. Heliyon 2023, 9, e16105. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.E.; Olsson, G. Solar Photovoltaic and Wind Energy Providing Water. Glob. Chall. 2017, 1, 1600022. [Google Scholar] [CrossRef]
- Bale, J.S.; van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 761–776. [Google Scholar] [CrossRef]
- Hyder, M.; Li, Y.; Raza, M.F.; Zhang, M.; Chen, J.; Mao, J.; Bukero, A.; Zhang, L. Enhancing Coccinella Beetle Biological Pest Control via a Floral Approach in Cucumber Greenhouse. Life 2023, 13, 2080. [Google Scholar] [CrossRef]
- Sousa, M.; Dinis Almeida, M.; Fael, C.; Bentes, I. Permeable Asphalt Pavements (PAP): Benefits, Clogging Factors and Methods for Evaluation and Maintenance—A Review. Materials 2024, 17, 6063. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Borst, M. Long-term effects of three types of permeable pavements on nutrient infiltrate concentrations. Sci. Total Environ. 2019, 670, 893–901. [Google Scholar] [CrossRef]
- Bansal, S.; Chakraborty, P.; Kumar, S. Crop-livestock integration enhanced soil aggregate-associated carbon and nitrogen, and phospholipid fatty acid. Sci. Rep. 2022, 12, 2781. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Zhang, X.; Khan, M.; Mastoi, M.S.; Munir, H.M.; Flah, A.; Said, Y. A comprehensive review of wind power integration and energy storage technologies for modern grid frequency regulation. Heliyon 2024, 10, e30466. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.J.; Torres-Pacheco, I.; Matsumoto, Y.; Toledano-Ayala, M.; Soto-Zarazúa, G.M.; Zelaya-Ángel, O.; Méndez-López, A. Applications of solar and wind renewable energy in agriculture: A review. Sci. Prog. 2019, 102, 127–140. [Google Scholar] [CrossRef]
- Bathaei, A.; Štreimikienė, D. Renewable Energy and Sustainable Agriculture: Review of Indicators. Sustainability 2023, 15, 14307. [Google Scholar] [CrossRef]
- Gill, A.; Purnell, K.; Palmer, M.; Stein, J.; McGuire, K. Microbial composition and functional diversity differ across urban green infrastructure types. Front. Microbiol. 2020, 11, 912. [Google Scholar] [CrossRef] [PubMed]
- Luketich, A.; Papuga, S.; Crimmins, M. Ecohydrology of urban trees under passive and active irrigation in a semiarid city. PLoS ONE 2019, 14, e0224804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Li, J.; Sun, Y.; Liu, Z. Pollutant accumulation and microbial community evolution in rain gardens with different drainage types at field scale. Sci. Rep. 2024, 14, 2. [Google Scholar] [CrossRef]
- Gene, S.M.; Hoekstra, P.F.; Hannam, C.; White, M.; Truman, C.; Hanson, M.L.; Prosser, R.S. The role of vegetated buffers in agriculture and their regulation across Canada and the United States. J. Environ. Manag. 2019, 243, 12–21. [Google Scholar] [CrossRef]
- Guevara-Ochoa, C.; Masson, I.; Cazenave, G.; Vives, L.; Amábile, G. A novel approach for the integral management of water extremes in plain areas. Hydrology 2019, 6, 70. [Google Scholar] [CrossRef]
- Montgomery, J.; Klimas, C.; Arcus, J.; DeKnock, C.; Rico, K.; Rodriguez, Y.; Williams, A. Soil quality assessment is a necessary first step for designing urban green infrastructure. J. Environ. Qual. 2016, 45, 18–25. [Google Scholar] [CrossRef]
- Eden, M.; Gerke, H.; Houot, S. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: A review. Agron. Sustain. Dev. 2017, 37, 1–21. [Google Scholar] [CrossRef]
- Scharenbroch, B.; Morgenroth, J.; Maule, B. Tree species suitability to bioswales and impact on the urban water budget. J. Environ. Qual. 2016, 45, 199–206. [Google Scholar] [CrossRef] [PubMed]
- BenDor, T.; Shandas, V.; Miles, B.; Belt, K.; Olander, L. Ecosystem services and U.S. stormwater planning: An approach for improving urban stormwater decisions. Environ. Sci. Policy 2018, 88, 92–103. [Google Scholar] [CrossRef]
- Šarapatka, B.; Bednář, M. Rainfall erosivity impact on sustainable management of agricultural land in changing climate conditions. Land 2022, 11, 467. [Google Scholar] [CrossRef]
- Wang, J.; Pauleit, S.; Banzhaf, E. An integrated indicator framework for the assessment of multifunctional green infrastructure—Exemplified in a European city. Remote Sens. 2019, 11, 1869. [Google Scholar] [CrossRef]
- Minixhofer, P.; Stangl, R. Green infrastructures and the consideration of their soil-related ecosystem services in urban areas—A systematic literature review. Sustainability 2021, 13, 3322. [Google Scholar] [CrossRef]
- Golden, H.E.; Hoghooghi, N. Green infrastructure and its catchment-scale effects: An emerging science. WIREs Water 2018, 5, 1254. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef]
- Dorr, E.; Hawes, J.K.; Goldstein, B.; Fargue-Lelièvre, A.; Fox-Kämper, R.; Specht, K.; Fedeńczak, K.; Caputo, S.; Cohen, N.; Poniży, L.; et al. Food production and resource use of urban farms and gardens: A five-country study. Agron. Sustain. Dev. 2023, 43, 18. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Astell-Burt, T.; Rahimi-Ardabili, H.; Feng, X. Green Space Quality and Health: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 11028. [Google Scholar] [CrossRef]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 477–494. [Google Scholar] [CrossRef]
- Pokharel, S.S.; Yu, H.; Fang, W.; Parajulee, M.N.; Chen, F. Intercropping Cover Crops for a Vital Ecosystem Service: A Review of the Biocontrol of Insect Pests in Tea Agroecosystems. Plants 2023, 12, 2361. [Google Scholar] [CrossRef] [PubMed]
- Ganser, D.; Mayr, B.; Albrecht, M.; Knop, E. Wildflower strips enhance pollination in adjacent strawberry crops at the small scale. Ecol. Evol. 2018, 8, 11775–11784. [Google Scholar] [CrossRef]
- Mitchell, M.E.; Newcomer-Johnson, T.; Christensen, J.; Crumpton, W.; Richmond, S.; Dyson, B.; Canfield, T.J.; Helmers, M.; Lemke, D.; Lechtenberg, M.; et al. Potential of water quality wetlands to mitigate habitat losses from agricultural drainage modernization. Sci. Total Environ. 2022, 838, 156358. [Google Scholar] [CrossRef] [PubMed]
- Mkenda, P.A.; Ndakidemi, P.A.; Mbega, E.; Stevenson, P.C.; Arnold, S.E.J.; Gurr, G.M.; Belmain, S.R. Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: Scientific evidence and knowledge gaps. PeerJ 2019, 7, e8091. [Google Scholar] [CrossRef]
- Dilts, T.E.; Black, S.H.; Hoyle, S.M.; Jepsen, S.J.; May, E.A.; Forister, M.L. Agricultural margins could enhance landscape connectivity for pollinating insects across the Central Valley of California, U.S.A. PLoS ONE 2023, 18, e0267263. [Google Scholar] [CrossRef] [PubMed]
- Schütz, L.; Wenzel, B.; Rottstock, T.; Dachbrodt-Saaydeh, S.; Golla, B.; Kehlenbeck, H. How to promote multifunctionality of vegetated strips in arable farming: A qualitative approach for Germany. Ecosphere 2022, 13, e4229. [Google Scholar] [CrossRef]
- Gill, K.A.; Cox, R.; O’Neal, M.E. Quality over quantity: Buffer strips can be improved with select native plant species. Environ. Entomol. 2014, 43, 298–311. [Google Scholar] [CrossRef]
- Udawatta, P.R.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef]
- Borges, F.; Glemnitz, M.; Schultz, A.; Stachow, U. Assessing the habitat suitability of agricultural landscapes for characteristic breeding bird guilds using landscape metrics. Environ. Monit. Assess. 2017, 189, 166. [Google Scholar] [CrossRef]
- Lucchetta, M.; Romano, A.; Alzate Zuluaga, M.Y.; Fornasier, F.; Monterisi, S.; Pii, Y.; Marcuzzo, P.; Lovat, L.; Gaiotti, F. Compost application boosts soil restoration in highly disturbed hillslope vineyard. Front. Plant Sci. 2023, 14, 1289288. [Google Scholar] [CrossRef] [PubMed]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef]
- Moor, H.; Bergamini, A.; Vorburger, C.; Holderegger, R.; Bühler, C.; Bircher, N.; Schmidt, B.R. Building pondscapes for amphibian metapopulations. Conserv. Biol. 2024, 38, e14165. [Google Scholar] [CrossRef]
- Littlefair, M.; Scheele, B.C.; Westgate, M.; Lindenmayer, D. The ecological and biodiversity conservation values of farm dams: A systematic review. PLoS ONE 2024, 19, e0303504. [Google Scholar] [CrossRef] [PubMed]
- Buckley, B.R.; Lituma, C.M.; Keyser, P.D.; Holcomb, E.D.; Smith, R.; Morgan, J.J.; Applegate, R.D. Effects of grazing strategy on facultative grassland bird nesting on native grassland pastures of the Mid-South USA. PeerJ 2022, 10, e13968. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M.E.S. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS Omega 2024, 9, 41130–41147. [Google Scholar] [CrossRef]
- Mandelik, Y.; Winfree, R.; Neeson, T.; Kremen, C. Complementary habitat use by wild bees in agro-natural landscapes. Ecol. Appl. 2012, 22, 1535–1546. [Google Scholar] [CrossRef]
- Saifuddin, M.; Jha, S. Colony-level variation in pollen collection and foraging preferences among wild-caught bumble bees (Hymenoptera: Apidae). Environ. Entomol. 2014, 43, 393–401. [Google Scholar] [CrossRef]
- Fijen, T.; Scheper, J.; Boom, T.; Janssen, N.; Raemakers, I.; Kleijn, D. Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecol. Lett. 2018, 21, 1704–1713. [Google Scholar] [CrossRef]
- Walston, L.; Hartmann, H.; Fox, M.; Macknick, J.; McCall, J.; Janski, J.; Jenkins, L. If you build it, will they come? Insect community responses to habitat establishment at solar energy facilities in Minnesota, USA. Environ. Res. Lett. 2023, 19, 014053. [Google Scholar] [CrossRef]
- Carvalheiro, L.; Seymour, C.; Veldtman, R.; Nicolson, S. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J. Appl. Ecol. 2010, 47, 810–820. [Google Scholar] [CrossRef]
- Jeanneret, P.; Aviron, S.; Alignier, A.; Lavigne, C.; Helfenstein, J.; Herzog, F.; Kay, S.; Petit, S. Agroecology landscapes. Landsc. Ecol. 2021, 36, 2235–2257. [Google Scholar] [CrossRef] [PubMed]
- Holzschuh, A.; Dainese, M.; González-Varo, J.; Mudri-Stojnić, S.; Riedinger, V.; Rundlöf, M.; Steffan-Dewenter, I. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 2016, 19, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Lonsdorf, E.; Neel, M.; Williams, N.; Ricketts, T.; Winfree, R.; Kremen, C. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Clough, Y.; Ekroos, J.; Báldi, A.; Batáry, P.; Bommarco, R.; Gross, N.; Smith, H. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 2014, 17, 1168–1177. [Google Scholar] [CrossRef]
- Koneri, R.; Nangoy, M.; Wakhid, W. Richness and diversity of insect pollinators in various habitats around Bogani Nani Wartabone National Park, North Sulawesi, Indonesia. Biodiversitas J. Biol. Divers. 2021, 22, 288–297. [Google Scholar] [CrossRef]
- Graham, M.; Ateş, S.; Melathopoulos, A.; Moldenke, A.; DeBano, S.; Best, L.; Higgins, C. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Sci. Rep. 2021, 11, 7452. [Google Scholar] [CrossRef]
- Rahimi, E.; Barghjelveh, S.; Dong, P. Using the Lonsdorf model for estimating habitat loss and fragmentation effects on pollination service. Ecol. Process. 2021, 10, 22. [Google Scholar] [CrossRef]
- Aslan, C.; Haubensak, K.; Grady, K. Effective and feasible mechanisms to support native invertebrate pollinators in agricultural landscapes: A meta-analysis. Ecosphere 2022, 13, e3982. [Google Scholar] [CrossRef]
- Pisanty, G.; Mandelik, Y. Profiling crop pollinators: Life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecol. Appl. 2015, 25, 742–752. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Kennedy, C.; Kremen, C.; Batáry, P.; Berendse, F.; Bommarco, R.; Crowder, D. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 2017, 23, 4946–4957. [Google Scholar] [CrossRef] [PubMed]
- Bieng, M.; Delgado-Rodríguez, D.; Vílchez-Mendoza, S.; López-Sampson, A.; García, E.; Sepúlveda, N.; Somarriba, E. Tree diversity in a tropical agricultural-forest mosaic landscape in Honduras. Sci. Rep. 2022, 12, 18544. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Izah, S.C. Air Pollution and the Sustainable Development Goals. In Sustainable Strategies for Air Pollution Mitigation; Ogwu, M.C., Izah, S.C., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2024; Volume 133. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Lori, T.; Aliu, O.O.; Febnteh, E.B.; Izah, S.C.; Abdelkhalek, S.T. Agricultural Air Pollution: Impacts, Sources, and Mitigation Strategies. In Air Pollutants in the Context of One Health; Izah, S.C., Ogwu, M.C., Shahsavani, A., Eds.; The Handbook of Environmental Chemistry, vol 134; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Schön, J.; Gentsch, N.; Breunig, P. Cover crops support the climate change mitigation potential of agroecosystems. PLoS ONE 2024, 19, e0302139. [Google Scholar] [CrossRef] [PubMed]
- Király, É.; Keserű, Z.; Molnár, T.; Szabó, O.; Borovics, A. Carbon sequestration in the aboveground living biomass of windbreaks—Climate change mitigation by means of agroforestry in Hungary. Forests 2023, 15, 63. [Google Scholar] [CrossRef]
- Tirkey, A.; Kumar, R.; Prasad, R.; Malakar, A. Agroforestry for carbon neutrality: An effective pathway to net zero. J. Adv. Biol. Biotechnol. 2024, 27, 591–602. [Google Scholar] [CrossRef]
- Bremer, L.L.; McGuire, G.; Hastings Silao, Z.; Kurashima, N.; Ticktin, T.; Crow, S.E.; Giardina, C.P.; Winter, K.B.; DeMaagd, N.; Trauernicht, C. Carbon benefits through agroforestry transitions on unmanaged fallow agricultural land in Hawai‘i. Sci. Rep. 2025, 15, 5097. [Google Scholar] [CrossRef]
- Sanderman, J.; Baldock, J. Accounting for soil carbon sequestration in national inventories: A soil scientist’s perspective. Environ. Res. Lett. 2010, 5, 034003. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, X.; Chen, R.; Ge, C.; Tang, J.; Du, Y.; Zhang, C. A comprehensive assessment of rice straw returning in China based on life cycle assessment method: Implications on soil, crops, and environment. Agriculture 2024, 14, 972. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Izah, S.C.; Merritt, H.; Wise, R.D.; Jintrawet, A. Sustainable Bioeconomy Development in the Global South: Volume I Status and Perspectives; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Izah, S.C.; Vazquez-Arenas, J.G.; Feleke, S.T.; Wei, X. Sustainable Bioeconomy Development in the Global South: Volume II Bioeconomy Techniques; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Campbell, B.; Thornton, P.; Zougmoré, R.; Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate-smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef]
- Mores, G.; Abbade, E.; Kawano, B.; Silva, R.; Cugnasca, C. An overview of the main topics on no-tillage research. Rev. Agronegócio Meio Ambiente 2016, 9, 357. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.; Brüggemann, N.; Ampofo, E.; Igué, A.; Jesse, N.; Huat, J.; Agbossou, E. Combining no-tillage, rice straw mulch, and nitrogen fertilizer application to increase the soil carbon balance of upland rice fields in northern Benin. Soil Tillage Res. 2016, 163, 152–159. [Google Scholar] [CrossRef]
- Winans, K.; Whalen, J.; Rivest, D.; Cogliastro, A.; Bradley, R. Carbon sequestration and carbon markets for tree-based intercropping systems in southern Quebec, Canada. Atmosphere 2016, 7, 17. [Google Scholar] [CrossRef]
- Siarudin, M.; Rahman, S.; Artati, Y.; Indrajaya, Y.; Narulita, S.; Ardha, M.; Larjavaara, M. Carbon sequestration potential of agroforestry systems in degraded landscapes in West Java, Indonesia. Forests 2021, 12, 714. [Google Scholar] [CrossRef]
- Ling, J.; Xue, Y.; Yang, C.; Zhang, Y. Effect of farmers’ awareness of climate change on their willingness to adopt low-carbon production: Based on the TAM-SOR model. Int. J. Environ. Res. Public Health 2022, 20, 619. [Google Scholar] [CrossRef] [PubMed]
- Liang, T. Organic fertilizer regulates soil carbon, nitrogen balance, and greenhouse gas emissions in the tobacco production system. Int. J. Agric. Biol. 2021, 25, 1339–1345. [Google Scholar] [CrossRef]
- Baffour-Ata, F.; Atta-Aidoo, J.; Said, R.O.; Nkrumah, V.; Atuyigi, S.; Analima, S.M. Building the resilience of smallholder farmers to climate variability: Using climate-smart agriculture in Bono East Region, Ghana. Heliyon 2023, 9, e21815. [Google Scholar] [CrossRef] [PubMed]
- Awuni, S.; Adarkwah, F.; Ofori, B.D.; Purwestri, R.C.; Huertas Bernal, D.C.; Hajek, M. Managing the challenges of climate change mitigation and adaptation strategies in Ghana. Heliyon 2023, 9, e15491. [Google Scholar] [CrossRef]
- Balasundram, S.K.; Shamshiri, R.R.; Sridhara, S.; Rizan, N. The role of digital agriculture in mitigating climate change and ensuring food security: An overview. Sustainability 2023, 15, 5325. [Google Scholar] [CrossRef]
- Saran, A.; Singh, S.; Gupta, N.; Walke, S.C.; Rao, R.; Simiyu, C.; Malhotra, S.; Mishra, A.; Puskur, R.; Masset, E.; et al. Interventions promoting resilience through climate-smart agricultural practices for women farmers: A systematic review. Campbell Syst. Rev. 2024, 20, e1426. [Google Scholar] [CrossRef]
- Muriithi, C.; Mwongera, C.; Abera, W.; Chege, C.G.K.; Ouedraogo, I. A scalable approach to improve CSA targeting practices among smallholder farmers. Heliyon 2023, 9, e20526. [Google Scholar] [CrossRef] [PubMed]
- Akella, G.; Wibowo, S.; Grandhi, S.; Mubarak, S. A systematic review of blockchain technology adoption barriers and enablers for smart and sustainable agriculture. Big Data Cogn. Comput. 2023, 7, 86. [Google Scholar] [CrossRef]
- Barbosa, M.; Pinheiro, E.; Sokulski, C.; Huarachi, D.; Francisco, A. How to identify barriers to the adoption of sustainable agriculture? A study based on a multi-criteria model. Sustainability 2022, 14, 13277. [Google Scholar] [CrossRef]
- Lina, Z. Towards sustainable financial management in green economic growth through big data technology innovation: Case study in China. Heliyon 2024, 10, e35517. [Google Scholar] [CrossRef]
- Houssam, N.; Ibrahiem, D.M.; Sucharita, S.; El-Aasar, K.M.; Esily, R.R.; Sethi, N. Assessing the role of green economy on sustainable development in developing countries. Heliyon 2023, 9, e17306. [Google Scholar] [CrossRef]
- Li, D.; Dang, H.; Yu, J. Can participation in cooperatives promote the adoption of green production techniques by Chinese apple growers: Counterfactual estimation based on propensity score matching. Front. Environ. Sci. 2022, 10, 1026273. [Google Scholar] [CrossRef]
- Johnson, D.; Parker, L.; Pathak, T.; Crothers, L.; Ostoja, S. Technical assistance providers identify climate change adaptation practices and barriers to adoption among California agricultural producers. Sustainability 2023, 15, 5973. [Google Scholar] [CrossRef]
- Ji, O.; Chukuigwe, O.; FY, U. Effect of adoption of sustainable agricultural practices among plantain farmers in Yenagoa agricultural zone of Bayelsa state, Nigeria. Int. J. Sci. Res. Arch. 2022, 5, 114–122. [Google Scholar] [CrossRef]
- Sulaiman, N.; Misnan, S. Environmental sustainability through agriculture: Perspectives of extension agents on adoption of sustainable practices. IOP Conf. Ser. Earth Environ. Sci. 2022, 1082, 012024. [Google Scholar] [CrossRef]
- Hameed, T.; Sawicka, B. Role of agricultural extension in adoption of sustainable agriculture practices. Anbar J. Agric. Sci. 2023, 21, 250–260. [Google Scholar] [CrossRef]
- Zeng, J.; Li, D.; Ma, C.; Wang, B.; Gao, L. The impact of different uses of the Internet on farmers′ adoption of soil testing and formulated fertilization technology in rural China. Int. J. Environ. Res. Public Health 2022, 20, 562. [Google Scholar] [CrossRef] [PubMed]
- Malau, A.; Malau, A.; Simanjuntak, M. Innovating sustainable agriculture: Perspectives from economy and biology professionals. J. Pendidik. Biol. Indones. 2024, 10, 320–328. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, S.; Wang, X.; Zhao, Y. Research on the impacts of information capacity on farmers’ green prevention and control technology adoption. Ecol. Chem. Eng. S 2022, 29, 305–317. [Google Scholar] [CrossRef]
- Lamm, A.; Warner, L.; Martin, E.; White, S.; Fisher, P. Enhancing extension programs by discussing water conservation technology adoption with growers. J. Agric. Educ. 2017, 58, 251–266. [Google Scholar] [CrossRef]
- Kumbhar, M.; Sheikh, S.; Mughal, S.; Channa, M. Perception of the extension agents regarding information sources of sustainable agriculture in Sindh province of Pakistan. J. Basic Appl. Sci. 2021, 8, 334–338. [Google Scholar] [CrossRef]
- Valbuena, D.; Erenstein, O.; Tui, S.; Abdoulaye, T.; Claessens, L.; Duncan, A.; Gérard, B.; Rufino, M.C.; Teufel, N.; van Rooyen, A.; et al. Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in sub-Saharan Africa and South Asia. Field Crops Res. 2012, 132, 175–184. [Google Scholar] [CrossRef]
- Adedibu, P. Ecological problems of agriculture: Impacts and sustainable solutions. Sci. Prepr. 2023. [Google Scholar] [CrossRef]
- Adesida, I.; Nkomoki, W.; Bavorová, M.; Madaki, M. Effects of agricultural programmes and land ownership on the adoption of sustainable agricultural practices in Nigeria. Sustainability 2021, 13, 7249. [Google Scholar] [CrossRef]
- Grover, S.; Gruver, J. ‘Slow to change’: Farmers’ perceptions of place-based barriers to sustainable agriculture. Renew. Agric. Food Syst. 2017, 32, 511–523. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. IPM adoption, cooperative membership and farm economic performance. China Agric. Econ. Rev. 2018, 11, 218–236. [Google Scholar] [CrossRef]
- Laksono, P.; Irham; Mulyo, J.H.; Suryantini, A. Farmers’ willingness to adopt geographical indication practice in Indonesia: A psycho-behavioral analysis. Heliyon 2022, 8, e10178. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Orrego, L.M.; Jaramillo, N.; Castillo-Grisales, J.A.; Ceballos, Y.F. A systematic review of the evaluation of agricultural policies: Using PRISMA. Heliyon 2023, 9, e20292. [Google Scholar] [CrossRef] [PubMed]
- Nash, C.; Clough, J.; Gedge, D.; Lindsay, R.; Newport, D.; Ciupala, M.; Connop, S. Initial insights on the biodiversity potential of biosolar roofs: A London Olympic Park green roof case study. Isr. J. Ecol. Evol. 2016, 62, 74–87. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladunjoye, I.O.; Adebayo, A.O.; Adebisi, Y.A. The need to adopt planetary health approach in understanding the potential influ-ence of climate change and biodiversity loss on zoonotic diseases outbreaks. Public Health Pract. 2021, 2, 100095. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.; Haaren, C. Implications of applying the green infrastructure concept in landscape planning for ecosystem services in peri-urban areas: An expert survey and case study. Plan. Pract. Res. 2014, 32, 227–242. [Google Scholar] [CrossRef]
- Vargas-Hernández, J.; Zdunek-Wielgołaska, J. Urban green infrastructure as a tool for controlling the resilience of urban sprawl. Environ. Dev. Sustain. 2020, 23, 1335–1354. [Google Scholar] [CrossRef]
- Herreros-Cantis, P.; McPhearson, T. Mapping supply of and demand for ecosystem services to assess environmental justice in New York City. Ecol. Appl. 2021, 31, e02390. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Pfaff, A.; Robalino, J.A.; Boomhower, J.P. Costa Rica’s payment for environmental services program: Intention, implementation, and impact. Conserv. Biol. 2007, 21, 1165–1173. [Google Scholar] [CrossRef]
- Arriagada, R.A.; Sills, E.O.; Ferraro, P.J.; Pattanayak, S.K. Do Payments Pay Off? Evidence from Participation in Costa Rica’s PES Program. PLoS ONE 2015, 10, e0131544. [Google Scholar] [CrossRef]
- Bartkowski, B.; Beckmann, M.; Bednář, M.; Biffi, S.; Domingo-Marimon, C.; Mesaroš, M.; Schüßler, C.; Šarapatka, B.; Tarčak, S.; Václavík, T.; et al. Adoption and potential of agri-environmental schemes in Europe: Cross-regional evidence from interviews with farmers. People Nat. 2023, 5, 1610–1621. [Google Scholar] [CrossRef]
- Cole, L.J.; Kleijn, D.; Dicks, L.V.; Stout, J.C.; Potts, S.G.; Albrecht, M.; Balzan, M.V.; Bartomeus, I.; Bebeli, P.J.; Bevk, D.; et al. A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. J. Appl. Ecol. 2020, 57, 681–694. [Google Scholar] [CrossRef]
- Clarke, M.; Davidson, M.; Egerer, M.; Anderson, E.; Fouch, N. The underutilized role of community gardens in improving cities’ adaptation to climate change: A review. People Place Policy Online 2019, 12, 241–251. [Google Scholar] [CrossRef]
- Mosler, S.; Hobson, P. Close-to-nature heuristic design principles for future urban green infrastructure. Urban Plan. 2021, 6, 67–79. [Google Scholar] [CrossRef]
- Afata, T.; Derib, S.; Nemo, R. Review of blue-green infrastructure in some selected countries. Am. J. Environ. Sci. 2022, 18, 81–88. [Google Scholar] [CrossRef]
- Tessema, T.; Mortimer, D.; Gupta, S.; Mallast, U.; Uzor, S.; Tosti, F. Urban green infrastructure monitoring using remote-sensing techniques. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XV, Edinburgh, UK, 16–19 September 2024; Volume 13197, pp. 232–239. [Google Scholar] [CrossRef]
- Ge, M.; Huang, Y.; Zhu, Y.; Kim, M.; Cui, X. Examining the microclimate pattern and related spatial perception of the urban stormwater management landscape: The case of rain gardens. Atmosphere 2023, 14, 1138. [Google Scholar] [CrossRef]
- Tudorie, C.; Gielen, E.; Vallés-Planells, M.; Galiana, F. Urban green indicators: A tool to estimate the sustainability of our cities. Int. J. Des. Nat. Ecodyn. 2019, 14, 19–29. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Mahmood, S.; Sun, H.; Iqbal, A.; Alhussan, A.; El-Kenawy, E. Green finance, sustainable infrastructure, and green technology innovation: Pathways to achieving sustainable development goals in the Belt and Road Initiative. Environ. Res. Commun. 2024, 6, 105036. [Google Scholar] [CrossRef]
- Ferreira, J.; Monteiro, R.; Silva, V. Planning a green infrastructure network from theory to practice: The case study of Setúbal, Portugal. Sustainability 2021, 13, 8432. [Google Scholar] [CrossRef]
- Tóth, A. Planning and designing green infrastructure across landscapes and scales. Acta Hortic. Regiotect. 2022, 25, 1–7. [Google Scholar] [CrossRef]
- Fernández-Pablos, E.; Vázquez, A.; Zaldívar, Ó.; Díez, R. Periurban areas in the design of supra-municipal strategies for urban green infrastructures. Forests 2021, 12, 626. [Google Scholar] [CrossRef]
- Kryshtal, H.; Tomakh, B.; Ivanova, T.; Metelytsia, V.; Yermolaieva, M.; Panin, Y. Eco-innovative transformation of the urban infrastructure of Ukraine on the way to post-war recovery. Financ. Credit Act. Probl. Theory Pract. 2024, 2, 391–408. [Google Scholar] [CrossRef]
- Liu, T.; Chen, P.; Chou, N. Comparison of assessment systems for green building and green civil infrastructure. Sustainability 2019, 11, 2117. [Google Scholar] [CrossRef]
- Lenné, J. Current agricultural diversification strategies are already agroecological. Outlook Agric. 2023, 52, 273–280. [Google Scholar] [CrossRef]
- Wang, M.; Chen, F.; Zhang, D.; Rao, Q.; Li, J.; Tan, S. Supply–demand evaluation of green stormwater infrastructure (GSI) based on the model of coupling coordination. Int. J. Environ. Res. Public Health 2022, 19, 14742. [Google Scholar] [CrossRef] [PubMed]
Green Infrastructure Component | Biodiversity Benefits | Examples of Implementation | References |
---|---|---|---|
Hedgerows and Windbreaks | Provide habitat and corridors for wildlife, support pollinators, and enhance genetic connectivity | Planting native shrubs, grasses, and trees along field edges | [73] |
Riparian Buffers | Protect aquatic biodiversity, filter runoff, and create habitats for amphibians and riparian species | Establishing vegetated strips along streams and rivers | [84] |
Agroforestry Systems | Enhance habitat diversity, promote multi-tiered vegetation, and increase habitat complexity | Integrating trees with crops or livestock systems | [68] |
Cover Cropping | Supports soil microbial diversity, attracts pollinators, and enhances beneficial insect populations | Planting clover, vetch, or other legumes between cash crops | [72,121] |
Pollinator Strips | Directly supports pollinators such as bees and butterflies and enhances crop pollination | Establishing wildflower strips within or around fields | [122] |
Wetland Restoration | Provides critical habitat for aquatic species, birds, and amphibians, and improves water quality | Restoring natural wetlands within farms or adjacent areas | [77,123] |
Multifunctional Field Margins | Enhance biodiversity while providing ecosystem services such as pest control and erosion prevention | Creating diverse margins with native plants | [124,125] |
Perennial Grassy Buffers | Supports ground-nesting birds, small mammals, and beneficial insects | Planting perennial grasses along contour strips | [126,127] |
Tree Corridors and Shelterbelts | Facilitates species movement, provides nesting sites, and supports biodiversity across fragmented landscapes | Connecting habitat patches with tree-lined corridors | [128,129] |
Compost and Organic Amendments | Enhances soil microbial biodiversity and promotes soil food web complexity | Applying compost or farmyard manure to fields | [130,131] |
Habitat Ponds | Provides habitat for amphibians, insects, and birds while enhancing local biodiversity | Creating small water bodies on farmland | [132,133] |
Rotational Grazing Areas | Promotes diverse vegetation and supports insect and bird populations | Rotating livestock through diverse pasture areas | [134] |
Integrated Pest Management | Enhances beneficial predator populations, reduces pesticide use, and promotes balanced ecosystems | Using natural predators, trap crops, and biological controls | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogwu, M.C.; Kosoe, E.A. Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience. Sustainability 2025, 17, 3838. https://doi.org/10.3390/su17093838
Ogwu MC, Kosoe EA. Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience. Sustainability. 2025; 17(9):3838. https://doi.org/10.3390/su17093838
Chicago/Turabian StyleOgwu, Matthew Chidozie, and Enoch Akwasi Kosoe. 2025. "Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience" Sustainability 17, no. 9: 3838. https://doi.org/10.3390/su17093838
APA StyleOgwu, M. C., & Kosoe, E. A. (2025). Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience. Sustainability, 17(9), 3838. https://doi.org/10.3390/su17093838