A Brief Review of Climate-Smart Technologies in the Beef Sector: Potentials and Development Status
Abstract
:1. Introduction
2. Climate-Smart Technologies and Practices for Cattle Production
- a.
- Climate-smart farm management
- b.
- Methane-reducing feed additives
- c.
- Selective breeding
- d.
- Genetic engineering
3. Status of Climate-Smart Technologies
4. Consumer Demand for Climate-Smart Beef
5. Challenges to On-Farm Adoption of Climate-Smart Technologies
6. Implications of Adoption of Climate-Smart Technologies
7. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Pathways Towards Lower Emissions—A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019. USEPA. 2021. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019 (accessed on 5 February 2025).
- Lamanna, M.; Buonaiuto, G.; Dalla Favera, F.; Romanzin, A.; Formigoni, A.; Cavallini, D. Precision livestock farming: Bridging the gap between media narratives and scientific realities in climate change impact. In Proceedings of the 11th European Conference on Precision Livestock Farming, Bologna, Italy, 9–12 September 2024. [Google Scholar]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Felini, R.; Cavallini, D.; Buonaiuto, G.; Bordin, T. Assessing the impact of thermoregulatory mineral supplementation on thermal comfort in lactating Holstein cows. Vet. Anim. Sci. 2024, 24, 100363. [Google Scholar] [CrossRef]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/climate-smart-agriculture/en/ (accessed on 5 February 2025).
- Amadu, F.O.; McNamara, P.E.; Miller, D.C. Yield effects of climate-smart agriculture aid investment in southern Malawi. Food Policy 2020, 92, 101869. [Google Scholar] [CrossRef]
- Vatsa, P.; Ma, W.; Zheng, H.; Li, J. Climate-smart agricultural practices for promoting sustainable agrifood production: Yield impacts and implications for food security. Food Policy 2023, 121, 102551. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Rijsberman, F. The key role of the meat industry in transformation to a low-carbon, climate-resilient, sustainable economy. Meat Sci. 2017, 132, 2–5. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19667–19672. [Google Scholar] [CrossRef]
- Buckley Biggs, N.; Shivaram, R.; Acuña Lacarieri, E.; Varkey, K.; Hagan, D.; Young, H.; Lambin, E.F. Landowner decisions regarding utility-scale solar energy on working lands: A qualitative case study in California. Environ. Res. Commun. 2022, 4, 055010. [Google Scholar] [CrossRef]
- Sutherland, L.A.; Holstead, K.L. Future-proofing the farm: On-farm wind turbine development in farm business decision-making. Land Use Policy 2014, 36, 102–112. [Google Scholar] [CrossRef]
- Erickson, E.D.; Tominac, P.A.; Zavala, V.M. Biogas production in United States dairy farms incentivized by electricity policy changes. Nat. Sustain. 2023, 6, 438–446. [Google Scholar] [CrossRef]
- USEPA. Practices to Reduce Methane Emissions from Livestock Manure Management. 2024. Available online: https://www.epa.gov/agstar/practices-reduce-methane-emissions-livestock-manure-management (accessed on 5 February 2025).
- de França, A.A.; von Tucher, S.; Schmidhalter, U. Effects of combined application of acidified biogas slurry and chemical fertilizer on crop production and N soil fertility. Eur. J. Agron. 2021, 123, 126224. [Google Scholar] [CrossRef]
- Bogaerts, M.; Cirhigiri, L.; Robinson, I.; Rodkin, M.; Hajjar, R.; Junior, C.C.; Newton, P. Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon. J. Clean. Prod. 2017, 162, 1539–1550. [Google Scholar] [CrossRef]
- Chen, W.; Huang, D.; Liu, N.; Zhang, Y.; Badgery, W.B.; Wang, X.; Shen, Y. Improved grazing management may increase soil carbon sequestration in temperate steppe. Sci. Rep. 2015, 5, 10892. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.W. Strategies to mitigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol. 2022, 32, 269. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Akbay, A.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2022, 62, 1303–1317. [Google Scholar] [CrossRef]
- Glasson, C.R.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Humphries, D.J.; Kirton, P.; Kindermann, M.; Duval, S.; Steinberg, W. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. J. Dairy Sci. 2014, 97, 3777–3789. [Google Scholar] [CrossRef]
- Hume, D.A.; Whitelaw, C.B.A.; Archibald, A.L. The future of animal production: Improving productivity and sustainability. J. Agric. Sci. 2011, 149, 9–16. [Google Scholar] [CrossRef]
- de Haas, Y.; Veerkamp, R.F.; De Jong, G.; Aldridge, M.N. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef] [PubMed]
- Stear, M.J.; Bishop, S.C.; Mallard, B.A.; Raadsma, H. The sustainability, feasibility and desirability of breeding livestock for disease resistance. Res. Vet. Sci. 2001, 71, 1–7. [Google Scholar] [CrossRef]
- Knap, P.W.; Doeschl-Wilson, A. Why breed disease-resilient livestock, and how? Genet. Sel. Evol. 2020, 52, 60. [Google Scholar] [CrossRef]
- Hyland, J.J.; Styles, D.; Jones, D.L.; Williams, A.P. Improving livestock production efficiencies presents a major opportunity to reduce sectoral greenhouse gas emissions. Agric. Syst. 2016, 147, 123–131. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Z.; Dong, H.; Zhang, X.; Wang, S.; Gu, B. Mitigation potential of methane emissions in China’s livestock sector can reach one-third by 2030 at low cost. Nat. Food 2024, 5, 603–614. [Google Scholar] [CrossRef]
- Sicard, C. Can CRISPR Cut Methane Emissions from Cow Guts? 2023. Available online: https://caes.ucdavis.edu/news/can-crispr-cut-methane-emissions-cow-guts (accessed on 5 February 2025).
- Khan, F.A.; Ali, A.; Wu, D.; Huang, C.; Zulfiqar, H.; Ali, M.; Ahmed, B.; Yousaf, M.R.; Putri, E.M.; Negara, W.; et al. Editing microbes to mitigate enteric methane emissions in livestock. World J. Microbiol. Biotechnol. 2024, 40, 300. [Google Scholar] [CrossRef] [PubMed]
- The White House. Fact Sheet: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs Securing, U.S. Leadership on Clean Energy Technologies. 2021. Available online: https://bidenwhitehouse.archives.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/ (accessed on 5 February 2025).
- UNFCCC. China’s Achievements, New Goals, and New Measures for Nationally Determined Contributions. 2022. Available online: https://unfccc.int/sites/default/files/NDC/2022-06/China%E2%80%99s%20Achievements%2C%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf (accessed on 5 February 2025).
- European Commission. Commission Staff Working Document: Executive Summary of the Impact Assessment Report. 2024. Available online: https://climate.ec.europa.eu/document/download/06182e00-03ac-4b6b-a58c-54cb45b080c2_en (accessed on 5 February 2025).
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Why alternative proteins will not disrupt the meat industry. Meat Sci. 2023, 203, 109223. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.Q. A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents. Renew. Sustain. Energy Rev. 2024, 197, 114371. [Google Scholar] [CrossRef]
- Katuwal, H.; Bohara, A.K. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [Google Scholar] [CrossRef]
- Chowdhury, T.; Chowdhury, H.; Hossain, N.; Ahmed, A.; Hossen, M.S.; Chowdhury, P.; Thirugnanasambandam, M.; Saidur, R. Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective. J. Clean. Prod. 2020, 272, 122818. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Bumharter, C.; Bolonio, D.; Amez, I.; Martínez, M.J.G.; Ortega, M.F. New opportunities for the European biogas industry: A review on current installation development, production potentials, and yield improvements for manure and agricultural waste mixtures. J. Clean. Prod. 2023, 388, 135867. [Google Scholar] [CrossRef]
- Ayal, D.Y.; Mamo, B. Farmer’s climate-smart livestock production adoption and determinant factors in Hidebu Abote District, Central Ethiopia. Sci. Rep. 2024, 14, 10027. [Google Scholar] [CrossRef]
- García de Jalón, S.; Silvestri, S.; Barnes, A.P. The potential for adoption of climate-smart agricultural practices in Sub-Saharan livestock systems. Reg. Environ. Change 2017, 17, 399–410. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Mozzato, D.; Bortolini, L.; Pezzuolo, A.; Pirotti, F.; Pisani, E.; Gatto, P. Drivers of farmers’ adoption and continuation of climate-smart agricultural practices. A study from northeastern Italy. Sci. Total Environ. 2020, 710, 136345. [Google Scholar] [CrossRef] [PubMed]
- Farquharson, R.J.; Griffith, G.R.; Barwick, S.; Banks, R.; Holmes, B. Estimating the Returns from Past Investment into Beef Cattle Genetic Technologies in Australia; Economic Research Report No. 15; NSW Agriculture: Armidale, Australia, 2003. [Google Scholar]
- Mutenje, M.; Chipfupa, U.; Mupangwa, W.; Nyagumbo, I.; Manyawu, G.; Chakoma, I.; Gwiriri, L. Understanding breeding preferences among small-scale cattle producers: Implications for livestock improvement programmes. Animals 2020, 14, 1757–1767. [Google Scholar] [CrossRef]
- Roessler, R. Selection decisions and trait preferences for local and imported cattle and sheep breeds in Peri-/Urban livestock production systems in Ouagadougou, Burkina Faso. Animals 2019, 9, 207. [Google Scholar] [CrossRef]
- Luke, J.R.; Tonsor, G.T. A Review of Producer Adoption in the US Beef Industry with Application to Enteric Methane Emission Mitigation Strategies. Animals 2025, 15, 144. [Google Scholar] [CrossRef]
- Li, X.; Jensen, K.L.; Clark, C.D.; Lambert, D.M. Consumer willingness to pay for beef grown using climate-friendly production practices. Food Policy 2016, 64, 93–106. [Google Scholar] [CrossRef]
- White, R.R.; Brady, M. Can consumers’ willingness to pay incentivize adoption of environmental impact-reducing technologies in meat animal production? Food Policy 2014, 49, 41–49. [Google Scholar] [CrossRef]
- Ishaq, M.; Kolady, D.; Grebitus, C. The effect of information and beliefs on preferences for sustainably produced beef. Eur. Rev. Agric. Econ. 2024, 51, 895–925. [Google Scholar] [CrossRef]
- Davidson, K.A.; McFadden, B.R.; Meyer, S.; Bernard, J.C. Consumer Preferences for Low-Methane Beef: The Impact of Pre-Purchase Information, Point-of-Purchase Labels, and Increasing Prices. Food Policy 2025, 130, 102768. [Google Scholar] [CrossRef]
- Lusk, J.L.; Roosen, J.; Fox, J.A. Demand for beef from cattle administered growth hormones or fed genetically modified corn: A comparison of consumers in France, Germany, the United Kingdom, and the United States. Am. J. Agric. Econ. 2003, 85, 16–29. [Google Scholar] [CrossRef]
- Altmann, B.A.; Anders, S.; Risius, A.; Mörlein, D. Information effects on consumer preferences for alternative animal feedstuffs. Food Policy 2022, 106, 102192. [Google Scholar] [CrossRef]
- Scarpa, R.; Ruto, E.S.; Kristjanson, P.; Radeny, M.; Drucker, A.G.; Rege, J.E. Valuing indigenous cattle breeds in Kenya: An empirical comparison of stated and revealed preference value estimates. Ecol. Econ. 2003, 45, 409–426. [Google Scholar] [CrossRef]
- Lai, J.; Wang, H.H.; Ortega, D.L.; Widmar, N.J.O. Factoring Chinese consumers’ risk perceptions into their willingness to pay for pork safety, environmental stewardship, and animal welfare. Food Control 2018, 85, 423–431. [Google Scholar] [CrossRef]
- Chen, X.; Zhen, S.; Li, S.; Yang, J.; Ren, Y. Consumers’ willingness to pay for carbon-labeled agricultural products and its effect on greenhouse gas emissions: Evidence from beef products in urban China. Environ. Impact Assess. Rev. 2024, 106, 107528. [Google Scholar] [CrossRef]
- Denver, S.; Christensen, T.; Lund, T.B.; Olsen, J.V.; Sandøe, P. Willingness-to-pay for reduced carbon footprint and other sustainability concerns relating to pork production—A comparison of consumers in China, Denmark, Germany, and the UK. Livest. Sci. 2023, 276, 105337. [Google Scholar] [CrossRef]
- Cubero Dudinskaya, E.; Naspetti, S.; Arsenos, G.; Caramelle-Holtz, E.; Latvala, T.; Martin-Collado, D.; Orsini, S.; Ozturk, E.; Zanoli, R. European consumers’ willingness to pay for red meat labelling attributes. Animals 2021, 11, 556. [Google Scholar] [CrossRef] [PubMed]
- Kilders, V.; Caputo, V. A reference-price-informed experiment to assess consumer demand for beef with a reduced carbon footprint. Am. J. Agric. Econ. 2024, 106, 3–20. [Google Scholar] [CrossRef]
- Katare, B.; Yim, H.; Byrne, A.; Wang, H.H.; Wetzstein, M. Consumer willingness to pay for environmentally sustainable meat and a plant-based meat substitute. Appl. Econ. Perspect. Policy 2023, 45, 145–163. [Google Scholar] [CrossRef]
- van Loo, E.J.; Caputo, V.; Nayga, R.M., Jr.; Verbeke, W. Consumers’ valuation of sustainability labels on meat. Food Policy 2014, 49, 137–150. [Google Scholar] [CrossRef]
- Gallo, A.; Accorsi, R.; Goh, A.; Hsiao, H.; Manzini, R. A traceability-support system to control safety and sustainability indicators in food distribution. Food Control 2021, 124, 107866. [Google Scholar] [CrossRef]
- Cao, S.; Johnson, H.; Tulloch, A. Exploring blockchain-based traceability for food supply chain sustainability: Towards a better way of sustainability communication with consumers. Procedia Comput. Sci. 2023, 217, 1437–1445. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdulai, A. Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana. Aust. J. Agric. Resour. Econ. 2020, 64, 396–420. [Google Scholar] [CrossRef]
- Zulauf, C.; Brown, B. Cover crops, 2017 US census of agriculture. Farmdoc Daily 2019, 9, 135. [Google Scholar]
- Ranjan, P.; Church, S.P.; Floress, K.; Prokopy, L.S. Synthesizing conservation motivations and barriers: What have we learned from qualitative studies of farmers’ behaviors in the United States? Soc. Nat. Resour. 2019, 32, 1171–1199. [Google Scholar] [CrossRef]
- USEPA. A Handbook for Developing Anaerobic Digestion/Biogas Systems on Farms in the United States, 3rd Edition. 2014. Available online: https://www.epa.gov/sites/default/files/2014-12/documents/agstar-handbook.pdf (accessed on 5 February 2025).
- Beddoes, J.C.; Bracmort, K.S.; Burns, R.T.; Lazarus, W.F. An Analysis of Energy Production Costs from Anaerobic Digestion Systems on US Livestock Production Facilities; USDA Nat Resour Conserv Serv (NRCS): Greensboro, NC, USA, 2007. [Google Scholar]
- Zhao, J.; Lai, L.; Ji, W.; Zhou, Q. Genome editing in large animals: Current status and future prospects. Natl. Sci. Rev. 2019, 6, 402–420. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland, and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Engel, S.; Muller, A. Payments for environmental services to promote “climate-smart agriculture”? Potential and challenges. Agric. Econ. 2016, 47, 173–184. [Google Scholar] [CrossRef]
- Molnár, M. Transforming intensive animal production: Challenges and opportunities for farm animal welfare in the European Union. Animals 2022, 12, 2086. [Google Scholar] [CrossRef]
- Singh, R.; Maiti, S.; Garai, S. Sustainable intensification—Reaching towards climate-resilient livestock production system—A review. Ann. Anim. Sci. 2023, 23, 1037–1047. [Google Scholar] [CrossRef]
- Oloo, R.D.; Ojango, J.M.K.; Ekine-Dzivenu, C.C.; Gebreyohanes, G.; Mrode, R.; Mwai, O.A.; Chagunda, M.G.G. Enhancing individual animal resilience to environmental disturbances to address low productivity in dairy cattle performing in sub-Saharan Africa. Front. Anim. Sci. 2023, 4, 1254877. [Google Scholar] [CrossRef]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Alternative and novel livestock feed: Reducing environmental impact. Front. Vet. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef] [PubMed]
- Vijn, S.; Compart, D.P.; Dutta, N.; Foukis, A.; Hess, M.; Hristov, A.N.; Kalscheur, K.F.; Kebreab, E.; Nuzhdin, S.V.; Price, N.N.; et al. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Front. Vet. Sci. 2020, 7, 597430. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Lin, W.; Ortega, D.L.; Caputo, V.; Lusk, J.L. Personality traits and consumer acceptance of controversial food technology: A cross-country investigation of genetically modified animal products. Food Qual. Prefer. 2019, 76, 10–19. [Google Scholar] [CrossRef]
- Ortega, D.L.; Lin, W.; Ward, P.S. Consumer acceptance of gene-edited food products in China. Food Qual. Prefer. 2022, 95, 104374. [Google Scholar] [CrossRef]
- Cowley, C.A.; Brorsen, B.W.; Hamilton, D.W. Economic feasibility of anaerobic digestion with swine operations. J. Agric. Appl. Econ. 2019, 51, 49–68. [Google Scholar] [CrossRef]
- Kateman, B. ‘Climate-friendly’ meat is a myth. Time Magazine. 2023. Available online: https://time.com/6311793/climate-friendly-meat-myth/ (accessed on 31 January 2025).
- Boscardin, L. Greenwashing the animal-industrial complex: Sustainable intensification and the Livestock Revolution. In Contested Sustainability Discourses in the Agrifood System; Routledge: London, UK, 2018; pp. 111–126. [Google Scholar]
- Cavallini, D.; Mammi, L.M.E.; Biagi, G.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH, and fibre digestibility. Ital. J. Anim. Sci. 2021, 20, 295–303. [Google Scholar] [CrossRef]
- Heinrichs, A.J.; Heinrichs, B.S.; Cavallini, D.; Fustini, M.; Formigoni, A. Limiting total mixed ration availability alters eating and rumination patterns of lactating dairy cows. JDS Commun. 2021, 2, 186–190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanal, B.; Dhoubhadel, S.P. A Brief Review of Climate-Smart Technologies in the Beef Sector: Potentials and Development Status. Sustainability 2025, 17, 3852. https://doi.org/10.3390/su17093852
Khanal B, Dhoubhadel SP. A Brief Review of Climate-Smart Technologies in the Beef Sector: Potentials and Development Status. Sustainability. 2025; 17(9):3852. https://doi.org/10.3390/su17093852
Chicago/Turabian StyleKhanal, Binod, and Sunil P. Dhoubhadel. 2025. "A Brief Review of Climate-Smart Technologies in the Beef Sector: Potentials and Development Status" Sustainability 17, no. 9: 3852. https://doi.org/10.3390/su17093852
APA StyleKhanal, B., & Dhoubhadel, S. P. (2025). A Brief Review of Climate-Smart Technologies in the Beef Sector: Potentials and Development Status. Sustainability, 17(9), 3852. https://doi.org/10.3390/su17093852