Selected Meteorological Factors Influencing Gas Emissions from an Abandoned Coal Mine Shaft—Results of In Situ Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Site
2.2. Methodology
- Determine the range and rate of emissions, gas velocity, and concentration. This allowed for the selection of appropriate measuring instruments.
- It was observed that the gas concentration remained constant across the profiles. Consequently, the continuous traverse method was chosen to determine the average velocity.
2.3. Instruments
- MultiRae IR Plus (JJS Technical Services, Schaumburg, IL, USA)—Gas analyzer with a resolution of 10 ppm for carbon dioxide and 0.1% for oxygen.
- Nova MRU Plus (MRU GmbH, Neckarsulm-Obereisesheim, Germany)—Gas analyzer with an accuracy of ±0.2% for oxygen, ±2 ppm for CO, ±0.3% for CO2, ±0.03% for CH4, and ±1% for temperature measurements.
- µAS-4 (IMG PAN, Cracow, Poland)—Digital vane anemometer with a velocity measurement error of ±(0.5% + 0.01 m/s).
- Kestrel 4500 (Kestrel Instruments, Boothwyn, PA, USA)—Portable meteorological station with a wind speed measurement uncertainty of ±3% of the reading or ±0.1 m/s (within the 0.4–40 m/s range) and a temperature measurement accuracy of ±1 °C. Pressure measurement resolution: 0.1 hPa.
- Davis Vantage Pro2 (Davis Instruments Corporation, Hayward, CA, USA)—Portable meteorological station with a pressure accuracy of ±1 hPa, a pressure measurement resolution of 0.1 hPa, and a temperature measurement accuracy of ±0.3 °C. It was used as a backup device.
- Nova MRU Plus: Data were recorded with manual readings taken and recorded on an hourly or more frequent basis. The instrument employed a gas collection tube for safety purposes and was used to measure CO2, O2, CO, and CH4, as well as the temperature of the emitted gases.
- MultiRae IR Plus: Data were recorded with manual readings taken and recorded at hourly or more frequent intervals. This device served as a backup for CO2 measurement.
- µAS-4: Manual measurements were conducted using a device mounted on a boom for safety purposes. Readings were taken and recorded on an hourly or more frequent basis to measure the gas velocity.
3. Results
- Atmospheric temperature and pressure (ambience);
- Wind speed;
- Wind direction;
- Background gas concentrations.
- Additional data were used for other topics related to the project.
- The first example demonstrates that gas emissions from an abandoned shaft can occur despite an increase in atmospheric pressure.
- The second example highlights that even in the absence of a significant pressure drop, the temperature difference between the surrounding environment and gases within the rock mass can trigger their emission into the atmosphere.
3.1. Inertia of Gas Emissions (Example 1)
3.2. Temperature Gradient as a Trigger for Gas Emission (Example 2)
4. Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Cook, J.; Nuccitelli, D.; Green, S.A.; Richardson, M.; Winkler, B.; Painting, R.; Way, R.; Jacobs, P.; Skuce, A. Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett. 2013, 8, 024024. [Google Scholar] [CrossRef]
- Trisos, C.H.; Merow, C.; Pigot, A.L. The projected timing of abrupt ecological disruption from climate change. Nature 2020, 580, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Falarz, M. Climate Change in Poland: Past, Present, Future; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Domínguez-Castro, F.; Reig, F.; Vicente-Serrano, S.M.; Aguilar, E.; Peña-Angulo, D.; Noguera, I.; Revuelto, J.; van der Schrier, G.; El Kenawy, A.M. A multidecadal assessment of climate indices over Europe. Sci. Data 2020, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Kolendowicz, L.; Półrolniczak, M. The influence of synoptic conditions on interdiurnal atmospheric pressure changes in Poland. Int. J. Biometeorol. 2025, 69, 1015–1031. [Google Scholar] [CrossRef]
- Kron, W.; Löw, P.; Kundzewicz, Z.W. Changes in risk of extreme weather events in Europe. Environ. Sci. Policy 2019, 100, 74–83. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef]
- Lotterhos, K.E.; Láruson, Á.J.; Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 2021, 11, 15535. [Google Scholar] [CrossRef]
- Fernández, P.R.; Granda, G.R.; Krzemień, A.; Cortés, S.G.; Valverde, G.F. Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines. Int. J. Rock Mech. Min. Sci. 2020, 126, 104175. [Google Scholar] [CrossRef]
- Wrona, P. The influence of climate change on CO2 and CH4 concentration near closed shaft–numerical simulations. Arch. Min. Sci. 2017, 62, 639–652. [Google Scholar] [CrossRef]
- Al Heib, M.; Franck, C. A methodology for multi-hazard interaction assessment of abandoned mines. J. Ind. Saf. Eng. 2024, 1, 100018. [Google Scholar] [CrossRef]
- Duda, A.; Krzemień, A. Forecast of methane emission from closed underground coal mines exploited by longwall mining—A case study of Anna coal mine. J. Sustain. Min. 2018, 17, 184–194. [Google Scholar] [CrossRef]
- Duda, A.; Valverde, G.F. Environmental and Safety Risks Related to Methane Emissions in Underground Coal Mine Closure Processes. Energies 2020, 13, 6312. [Google Scholar] [CrossRef]
- Chen, D.; Ma, M.; Hu, L.; Du, Q.; Li, B.; Yang, Y.; Guo, L.; Cai, Z.; Ji, M.; Zhu, R.; et al. Characteristics of China’s coal mine methane emission sources at national and provincial levels. Environ. Res. 2024, 259, 119549. [Google Scholar] [CrossRef]
- Krause, E.; Pokryszka, Z. Investigations on Methane Emission from Flooded Workings of Closed Coal Mines. J. Sustain. Min. 2013, 12, 40–45. [Google Scholar] [CrossRef]
- Lunarzewski, L. Coal Mine Goaf Gas Predictor. In Proceedings of the 10th Coal Operators Conference, Wollongong, Australia, 18–20 February 2019; pp. 1–12. [Google Scholar]
- Chmiela, A. The Choice of the Optimal Variant of the Mine Liquidation due to the Possibility of Obtaining Methane from Goafs. Eur. J. Bus. Manag. Res. 2023, 8, 89–95. [Google Scholar] [CrossRef]
- Krings, T.; Gerilowski, K.; Buchwitz, M.; Hartmann, J.; Sachs, T.; Erzinger, J.; Burrows, J.P.; Bovensmann, H. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data. Atmos. Meas. Tech. 2013, 6, 151–166. [Google Scholar] [CrossRef]
- Necki, J. Methane Emission Estimates for Silesia Coal Basin Using Mobile Analysers; Wydawnictwa AGH: Kraków, Poland, 2024. (In Polish) [Google Scholar] [CrossRef]
- Swolkień, J.; Fix, A.; Galkowski, M. Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: A case study from the CoMet mission. Atmos. Chem. Phys. 2022, 22, 16031–16052. [Google Scholar] [CrossRef]
- Ma, C.; Dai, E.; Liu, Y.; Wang, Y.; Wang, F. Methane fugitive emissions from coal mining and post-mining activities in China. Resour. Sci. 2020, 42, 311. [Google Scholar] [CrossRef]
- O’Malley, D.; Delorey, A.A.; Guiltinan, E.J.; Ma, Z.; Kadeethum, T.; Lackey, G.; Lee, J.; Santos, J.E.; Follansbee, E.; Nair, M.C.; et al. Unlocking Solutions: Innovative Approaches to Identifying and Mitigating the Environmental Impacts of Undocumented Orphan Wells in the United States. Environ. Sci. Technol. 2024, 58, 19584–19594. [Google Scholar] [CrossRef]
- Sechman, H.; Kotarba, M.J.; Kędzior, S.; Kochman, A.; Twaróg, A. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2020, 227, 103529. [Google Scholar] [CrossRef]
- Wrona, P.; Król, A.; Król, M. Gas outflow from an underground site—Numerical simulations into baric tendency and airflow rate relationship. Arch. Min. Sci. 2018, 63, 251–268. [Google Scholar] [CrossRef]
- Dziurzyński, W.; Krawczyk, J.; Pałka, T.; Krach, A.; Skotniczny, P. Methane hazard during the closure of mine excavations in liquidated mine—Numerical simulation. Arch. Min. Sci. 2023, 68, 525–538. [Google Scholar] [CrossRef]
- Wrona, P.; Różański, Z.; Pach, G.; Suponik, T.; Popczyk, M. Closed coal mine shaft as a source of carbon dioxide emissions. Environ. Earth Sci. 2016, 75, 1139. [Google Scholar] [CrossRef]
- Eggelston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; ISBN 4-88788-032-4. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 14 February 2025).
- ISO 10396:2007; Stationary Source Emissions—Sampling for the Automated Determination of Gas Emission Concentrations for Permanently-Installed Monitoring Systems. Edition 2; International Organization for Standardization: Geneve, Switzerland, 2007. Available online: https://www.iso.org/standard/39508.html (accessed on 12 December 2024).
- Namieśniak, J.; Łukasiak, J.; Jamrógiewicz, Z. Pobieranie Próbek Środowiskowych do Analizy; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1995; ISBN 8301117656. [Google Scholar]
- Wrona, P.; Różański, Z.; Pach, G.; Niewiadomski, A.; Suponik, T. The influence of pressure drop on gas emissions from a mining shaft—An overview. J. Sustain. Min. 2021, 20, 20–27. [Google Scholar] [CrossRef]
Hour hh:mm | Pressure hPa | tamb. °C | tgas °C | Wind Speed m/s | Wind Direction | Velocity of Emission m/s | CO2 * %vol. | O2 %vol. | CH4 %vol. | CO ppm |
---|---|---|---|---|---|---|---|---|---|---|
09:00 | 991.7 | 15.6 | 18.1 | 0.4–0.7 | S. SE | 0.28 | 0.06 | 20.8 | 0 | 0 |
10:00 | 991.5 | 15.9 | 17.4 | 1.4–1.8 | S. SE | 0.43 | 0.09 | 20.4 | 0 | 0 |
11:00 | 991.4 | 16.7 | 17.3 | 0.5–2.1 | S. SE | 0.39 | 0.1 | 20.4 | 0 | 0 |
12:00 | 991.4 | 15.2 | 17.3 | 1.0–1.7 | S. SE | 0.3 | 0.25 | 20.4 | 0 | 0 |
13:00 | 991.3 | 16.3 | 17.2 | 0.2–1.2 | S. SE | 0.29 | 0.29 | 20.4 | 0 | 0 |
14:00 | 990.5 | 15.5 | 16.7 | 1.1–1.3 | S. SE | 0.34 | 0.32 | 20.3 | 0 | 0 |
15:00 | 990.1 | 15.6 | 16.8 | 1.1–1.5 | S. SE | 0.39 | 0.38 | 20.2 | 0 | 0 |
16:00 | 989.6 | 15.4 | 16.8 | 0.4–1.8 | S. SE | 0.43 | 0.4 | 20.1 | 0 | 0 |
17:00 | 989.1 | 15.6 | 16.6 | 0.8–2.2 | S. SE | 0.47 | 0.42 | 20.1 | 0 | 0 |
18:00 | 988.6 | 15.6 | 16.7 | 0.5–1.8 | S. SE | 0.51 | 0.48 | 20.1 | 0 | 0 |
Hour hh:mm | Pressure hPa | tamb. °C | tgas °C | Δt °C | Wind Speed m/s | Wind Direction | Velocity of Emission m/s | CO2 1 %vol. | O2 %vol. | CH4 %vol. | CO ppm |
---|---|---|---|---|---|---|---|---|---|---|---|
14:00 | 982.5 | 32.4 | 23.9 | 8.5 | 1.4–2.2 | S | N/A 2 | 1.23 | 19.0 | 0 | 0 |
14:30 | 982.4 | 34.4 | 26.4 | 8.0 | 1.0–2.2 | N | 1.03 | 1.52 | 17.5 | 0 | 0 |
15:00 | 982.0 | 33.3 | 22.2 | 11.1 | 0.8–3.5 | N | 1.29 | 1.64 | 17.3 | 0 | 0 |
16:00 | 981.5 | 33.8 | 23.1 | 10.7 | 0–0.4 | N | 1.65 | 1.72 | 17.0 | 0 | 0 |
17:00 | 981.0 | 33.7 | 21.7 | 12.0 | 0.8 | N | 1.99 | 2.37 | 18.4 | 0 | 0 |
17:30 | 981.3 | 30.7 | 23.4 | 7.3 | 0.7 | S | 1.10 | 1.63 | 20.5 | 0 | 0 |
17:45 | 981.6 | 28.6 | 23.2 | 5.4 | 1.6–2.5 | SE | 0.99 | 0.29 | 20.7 | 0 | 0 |
18:00 | 982.0 | 27.4 | 24.1 | 3.3 | 1.0–2.4 | N | 0 | 0 | 20.9 | 0 | 0 |
Hour hh:mm | Pressure hPa | tamb. °C | tgas °C | Δt °C | Wind Speed m/s | Wind Direction | Velocity of Emission m/s | CO2 * %vol. | O2 %vol. | CH4 %vol. | CO ppm |
---|---|---|---|---|---|---|---|---|---|---|---|
16:00 | 985.9 | 28.5 | 20.6 | 5.4 | 1.1–2.9 | S | 0.43 | 4.46 | 12.7 | 0 | 0 |
16:30 | 985.5 | 28.3 | 20.5 | 7.8 | 0.7–2.2 | S | 0.34 | 5.63 | 10.7 | 0.02 | 0 |
17:00 | 985.4 | 27.1 | 19.6 | 7.5 | 0.8–1.9 | S | 0.35 | 6.37 | 10.8 | 0 | 0 |
17:30 | 985.3 | 26.2 | 19.4 | 6.8 | 0–0.9 | S | 0.33 | 6.91 | 10.3 | 0 | 0 |
18:00 | 985.2 | 24.4 | 18.9 | 5.5 | 0.3–1.0 | S | 0.29 | 7.40 | 10.3 | 0 | 0 |
18:30 | 985.1 | 21.8 | 18.3 | 3.5 | 0–0.1 | --- | 0.32 | 8.34 | 9.8 | 0 | 0 |
19:00 | 985.0 | 20.5 | 18.2 | 2.3 | 0–0.6 | S | 0.31 | 8.59 | 9.9 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrona, P.; Różański, Z.; Pach, G.; Niewiadomski, A.P.; Markowska, M.; Król, A.; Król, M.; Chmiela, A. Selected Meteorological Factors Influencing Gas Emissions from an Abandoned Coal Mine Shaft—Results of In Situ Measurements. Sustainability 2025, 17, 3875. https://doi.org/10.3390/su17093875
Wrona P, Różański Z, Pach G, Niewiadomski AP, Markowska M, Król A, Król M, Chmiela A. Selected Meteorological Factors Influencing Gas Emissions from an Abandoned Coal Mine Shaft—Results of In Situ Measurements. Sustainability. 2025; 17(9):3875. https://doi.org/10.3390/su17093875
Chicago/Turabian StyleWrona, Paweł, Zenon Różański, Grzegorz Pach, Adam P. Niewiadomski, Małgorzata Markowska, Aleksander Król, Małgorzata Król, and Andrzej Chmiela. 2025. "Selected Meteorological Factors Influencing Gas Emissions from an Abandoned Coal Mine Shaft—Results of In Situ Measurements" Sustainability 17, no. 9: 3875. https://doi.org/10.3390/su17093875
APA StyleWrona, P., Różański, Z., Pach, G., Niewiadomski, A. P., Markowska, M., Król, A., Król, M., & Chmiela, A. (2025). Selected Meteorological Factors Influencing Gas Emissions from an Abandoned Coal Mine Shaft—Results of In Situ Measurements. Sustainability, 17(9), 3875. https://doi.org/10.3390/su17093875