Partial Substitution of Inorganic Fertilizer with Organic Manure and Reduced Phosphorus Inputs Enhance Rice Yields and Phosphorus Fertilizer Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sampling and Laboratory Analysis
2.3. Calculation
2.4. Statistical Analysis
3. Results
3.1. Soil Properties Under Different Fertilization Treatments
3.2. Rice Yield, P Uptake, and P Recovery Efficiency Under Different Fertilization Treatments
3.3. Soil Olsen-P and Water-Soluble Pi Under Different Fertilization Treatments
3.4. Correlations Between Soil Olsen-P, Water-Soluble Pi, and Rice Yield
4. Discussion
4.1. Substituting Chemical P with Organic Manure Maintained Crop Yield by Enhancing Soil P Availability
4.2. Manure Application Enhanced the Utilization Efficiency of Chemical P Fertilizer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APR | apparent P recovery |
TP | total phosphorus |
SOC | soil organic carbon |
ACP | acid phosphomonoesterase |
ALP | alkaline phosphomonoesterase |
PDE | phosphodiesterase |
Appendix A
Item | Season | CK | NK | NPK | M(20% P) | CM(P) | CM(-P) | Mean | |
---|---|---|---|---|---|---|---|---|---|
Grain yield (Mg ha−1) | 2013 | Early | 3.93 CDd | 6.33 ABb | 6.86 BCa | 4.36 CDc | 6.79 DEa | 6.72 DEa | 5.83 D |
Late | 4.44 BCc | 5.69 Cb | 6.66 CDa | 4.51 BCc | 6.27 Eab | 6.54 EFa | 5.68 D | ||
2014 | Early | 2.72 Fc | 4.44 Eb | 5.19 Ea | 2.83 EFc | 5.58 Fa | 5.63 Ga | 4.40 G | |
Late | 3.80 Dd | 5.53 CDc | 7.28 ABb | 3.86 Dd | 8.03 Aa | 7.73 Aab | 6.04 C | ||
2015 | Early | 2.98 EFe | 5.07 Dc | 6.23 Db | 3.31 Ed | 6.60 DEa | 6.15 Fb | 5.06 F | |
Late | 5.24 Ac | 6.82 Ab | 7.70 Aa | 5.35 Ac | 7.85 ABa | 7.55 ABa | 6.75 A | ||
2016 | Early | 2.55 Fc | 5.99 BCb | 6.82 Ca | 2.71 Fc | 7.14 CDa | 7.02 CDa | 5.37 E | |
Late | 4.98 Ac | 6.37 ABb | 7.06 BCa | 4.59 BCc | 7.45 BCa | 6.98 CDEa | 6.24 BC | ||
2017 | Early | 3.42 DEd | 5.79 BCc | 6.79 Cb | 3.25 Ed | 7.51 ABCa | 7.14 BCDab | 5.65 D | |
Late | 4.75 ABd | 6.13 BCc | 7.00 BCb | 4.96 ABd | 7.77 ABa | 7.3 ABCb | 6.32 B | ||
Mean | 3.88 d | 5.82 c | 6.76 b | 3.97 d | 7.10 a | 6.88 b | |||
Factor | F | p | |||||||
Season (S) | 230.96 | <0.001 | |||||||
Treatment (T) | 1811.93 | <0.001 | |||||||
S × T | 16.28 | <0.001 | |||||||
Grain P uptake (kg ha−1) | 2013 | Early | 11.99 Ac | 20.32 ABb | 23.53 Aa | 13.99 Ac | 24.46 ABa | 23.46 ABa | 19.62 A |
Late | 13.24 Ac | 18.99 BCb | 23.31 Aa | 14.17 Ac | 23.50 Ba | 23.15 ABa | 19.39 A | ||
2014 | Early | 7.93 BCc | 13.49 EFb | 16.24 Ca | 10.38 BCc | 17.04 Ea | 16.89 Da | 13.66 D | |
Late | 10.63 ABd | 21.24 Ab | 23.42 Aab | 15.22 Ac | 24.79 ABa | 23.98 ABab | 19.88 A | ||
2015 | Early | 6.78 Ce | 15.21 DEc | 19.72 Bb | 11.14 BCd | 22.24 BCa | 22.32 Ba | 16.24 C | |
Late | 8.02 BCc | 16.75 Db | 22.41 Aa | 14.72 Ab | 22.65 Ba | 23.33 ABa | 17.98 B | ||
2016 | Early | 6.17 Cc | 11.6 Fb | 18.56 Ba | 5.94 Ec | 18.57 DEa | 18.43 CDa | 13.21 D | |
Late | 13.01 Ac | 17.20 CDb | 19.33 Ba | 13.04 ABc | 19.95 CDa | 19.74 Ca | 17.05 BC | ||
2017 | Early | 6.63 Cc | 12.22 Fb | 16.40 Ca | 7.44 DEc | 18.01 DEa | 17.44 CDa | 13.02 D | |
Late | 8.13 BCc | 20.26 ABb | 24.31 Aa | 9.67 CDc | 26.19 Aa | 25.09 Aa | 18.94 A | ||
Mean | 9.25 e | 16.73 c | 20.72 b | 11.57 d | 21.74 a | 21.38 ab | |||
Factor | F | p | |||||||
Season (S) | 169.56 | <0.001 | |||||||
Treatment (T) | 1093.84 | <0.001 | |||||||
S × T | 9.88 | <0.001 |
Item | Season | CK | NK | NPK | M(20% P) | CM(P) | CM(-P) | Mean | |
---|---|---|---|---|---|---|---|---|---|
Straw yield (Mg ha−1) | 2013 | Early | 1.94 BCDd | 3.36 EFb | 3.89 DEa | 2.49 CDc | 3.74 CDab | 3.56 DEab | 3.16 EF |
Late | 2.45 Bb | 3.63 DEa | 3.90 DEa | 2.27 CDb | 3.71 CDa | 3.98 Da | 3.32 E | ||
2014 | Early | 1.51 Dc | 2.97 Fa | 3.10 Fa | 1.88 DEb | 3.24 Da | 3.12 Ea | 2.64 G | |
Late | 2.11 BCd | 4.08 CDb | 4.56 Cab | 2.75 BCc | 5.00 ABa | 4.91 BCa | 3.90 C | ||
2015 | Early | 2.44 Bc | 2.84 Fbc | 3.70 Ea | 2.30 CDc | 3.50 CDab | 3.53 DEab | 3.05 F | |
Late | 3.26 Ac | 4.39 BCb | 5.27 Aa | 3.15 ABc | 4.78 ABab | 4.81 BCab | 4.28 B | ||
2016 | Early | 1.83 CDd | 3.70 DEc | 3.73 Ec | 1.62 Ed | 4.28 BCb | 5.08 ABCa | 3.37 E | |
Late | 3.41 Ac | 5.12 Aab | 4.69 BCb | 3.57 Ac | 5.52 Aa | 5.58 Aa | 4.65 A | ||
2017 | Early | 1.94 BCDd | 3.87 CDEc | 4.34 CDbc | 1.92 DEd | 5.25 Aa | 4.64 Cab | 3.66 D | |
Late | 3.49 Ac | 4.71 ABb | 5.13 ABa | 2.88 BCd | 5.36 Aa | 5.18 ABa | 4.46 AB | ||
Mean | 2.44 d | 3.87 c | 4.23 b | 2.48 d | 4.44 a | 4.44 a | |||
Factor | F | p | |||||||
Season (S) | 174.445 | <0.001 | |||||||
Treatment (T) | 596.185 | <0.001 | |||||||
S × T | 9.18 | <0.001 | |||||||
Straw P uptake (kg ha−1) | 2013 | Early | 2.99 CDc | 5.47 CDb | 6.85 CDEa | 4.04 BCc | 6.64 Da | 6.71 CDa | 5.45 D |
Late | 3.83 BCc | 6.34 ABCb | 8.42 Ba | 4.18 BCc | 9.11 BCa | 9.32 Ba | 6.87 BC | ||
2014 | Early | 1.95 Ed | 4.02 EFb | 4.70 Ga | 2.68 Dc | 5.09 Ea | 4.80 Fa | 3.87 F | |
Late | 4.58 ABc | 6.78 ABb | 10.79 Aa | 4.62 Bc | 10.43 Ba | 9.91 ABa | 7.85 A | ||
2015 | Early | 3.60 Cb | 2.52 Gc | 5.28 FGa | 3.05 CDbc | 5.27 Ea | 5.15 EFa | 4.14 EF | |
Late | 2.51 DEd | 3.85 EFc | 6.12 EFa | 2.72 Dd | 5.71 DEab | 5.07 EFb | 4.33 EF | ||
2016 | Early | 3.04 CDb | 3.19 FGb | 6.43 DEFa | 2.28 Dbc | 5.67 DEa | 6.19 DEa | 4.47 E | |
Late | 4.74 ABd | 6.91 Abc | 7.7 BCb | 6.45 Ac | 11.99 Aa | 10.93 Aa | 8.12 A | ||
2017 | Early | 3.54 Cd | 5.71 BCc | 7.98 BCb | 5.25 ABc | 10.29 Ba | 9.95 ABa | 7.12 B | |
Late | 5.42 Ac | 4.46 DEc | 7.52 BCDb | 5.27 ABc | 8.84 Ca | 7.62 Cb | 6.52 C | ||
Mean | 3.62 f | 4.93 d | 7.18 c | 4.05 e | 7.90 a | 7.57 b | |||
Factor | F | p | |||||||
Season (S) | 246.64 | <0.001 | |||||||
Treatment (T) | 567.04 | <0.001 | |||||||
S × T | 14.03 | <0.001 |
Item | Season | CK | NK | NPK | M(20% P) | CM(P) | CM(-P) | Mean | |
---|---|---|---|---|---|---|---|---|---|
Total P uptake (kg ha−1) | 2013 | Early | 14.98 ABd | 25.79 ABb | 30.38 BCa | 18.03 ABc | 31.10 Ca | 30.17 CDa | 25.08 C |
Late | 17.07 Ac | 25.33 Bb | 31.74 Ba | 18.35 ABc | 32.61 BCa | 32.47 ABCa | 26.26 B | ||
2014 | Early | 9.88 Dd | 17.51 Db | 20.94 Ga | 13.06 Dc | 22.13 Ea | 21.69 Ga | 17.53 F | |
Late | 15.21 ABd | 28.02 Ab | 34.21 Aa | 19.85 Ac | 35.22 Aa | 33.89 Aa | 27.73 A | ||
2015 | Early | 10.38 CDd | 17.73 Db | 25.01 EFa | 14.18 CDc | 27.51 Da | 27.47 Ea | 20.38 E | |
Late | 10.53 CDd | 20.60 Cb | 28.53 CDa | 17.45 ABCc | 28.36 Da | 28.40 DEa | 22.31 D | ||
2016 | Early | 9.22 Dc | 14.79 Eb | 24.99 EFa | 8.21 Ec | 24.24 Ea | 24.62 Fa | 17.68 F | |
Late | 17.75 Ad | 24.12 Bc | 27.03 DEb | 19.49 Ad | 31.93 Ca | 30.67 BCDa | 25.17 C | ||
2017 | Early | 10.17 De | 17.93 Dc | 24.37 Fb | 12.68 Dd | 28.29 Da | 27.39 Ea | 20.14 E | |
Late | 13.55 BCd | 24.72 Bc | 31.83 Bb | 14.94 BCDd | 35.03 ABa | 32.70 ABab | 25.46 BC | ||
Mean | 12.87 e | 21.66 c | 27.90 b | 15.63 d | 29.64 a | 28.95 a | |||
Factor | F | p | |||||||
Season (S) | 249.42 | <0.001 | |||||||
Treatment (T) | 1616.07 | <0.001 | |||||||
S × T | 8.59 | <0.001 | |||||||
P surplus (kg ha−1 s−1) | 2013 | Early | −14.98 CDd | −25.79 DEe | 8.89 EFa | −10.17 DEc | 8.17 Ca | 2.82 DEb | −5.18 D |
Late | −17.07 Dd | −25.33 De | 7.54 Fa | −10.49 DEc | 6.66 CDa | 0.52 EFGb | −6.36 E | ||
2014 | Early | −9.88 Ad | −17.51 Be | 18.33 Aa | −5.20 Bc | 17.14 Aa | 11.3 Ab | 2.37 A | |
Late | −15.21 CDc | −28.02 Ed | 5.06 Ga | −11.99 Ec | 4.05 Ea | −0.90 Gb | −7.83 F | ||
2015 | Early | −10.38 ABd | −17.73 Be | 14.26 BCa | −6.32 BCc | 11.76 Ba | 5.52 Cb | −0.48 B | |
Late | −10.53 ABc | −20.60 Cd | 10.74 DEa | −9.59 CDEc | 10.91 Ba | 4.59 CDb | −2.41 C | ||
2016 | Early | −9.22 Ad | −14.79 Ae | 14.28 BCa | −0.35 Ac | 15.03 Aa | 8.37 Bb | 2.22 A | |
Late | −17.75 De | −24.12 Df | 12.24 CDa | −11.63 Ed | 7.34 Cb | 2.32 DEFc | −5.27 D | ||
2017 | Early | −10.17 Ae | −17.93 Bf | 14.9 Ba | −4.82 Bd | 10.98 Bb | 5.60 Cc | −0.24 B | |
Late | −13.55 BCe | −24.72 Df | 7.44 Fa | −7.08 BCDd | 4.24 DEb | 0.29 FGc | −5.56 DE | ||
Mean | −12.87 e | −21.66 f | 11.37 a | −7.77 d | 9.63 b | 4.04 c | |||
Factor | F | p | |||||||
Season (S) | 249.42 | <0.001 | |||||||
Treatment (T) | 5449.75 | <0.001 | |||||||
S × T | 8.59 | <0.001 | |||||||
APR (%) | 2013 | Early | 11.66 CDb | 16.89 CDa | 17.40 Da | 15.31 EF | |||
Late | 16.29 BCb | 23.15 BCDa | 28.37 BCa | 22.6 CD | |||||
2014 | Early | 8.72 Db | 14.68 Dab | 16.62 Da | 13.34 F | ||||
Late | 15.74 BCb | 22.88 BCDa | 23.33 CDa | 20.65 D | |||||
2015 | Early | 18.50 Bc | 31.11 ABb | 38.71 Aa | 29.44 AB | ||||
Late | 20.17 Bb | 24.68 ABCab | 30.99 ABCa | 25.28 BC | |||||
2016 | Early | 25.95 Ab | 30.06 ABb | 39.12 Aa | 31.71 A | ||||
Late | 7.42 Db | 24.87 ABCa | 26.07 CDa | 19.45 DE | |||||
2017 | Early | 16.40 BCb | 32.97 Aa | 37.63 ABa | 29.00 AB | ||||
Late | 18.09 Bb | 32.79 Aa | 31.74 ABCa | 27.54 AB | |||||
Mean | 15.89 c | 25.41 b | 29.00 a | ||||||
Factor | F | p | |||||||
Season (S) | 38.93 | <0.001 | |||||||
Treatment (T) | 153.90 | <0.001 | |||||||
S × T | 3.85 | <0.001 |
Item | Season | CK | NK | NPK | M(20% P) | CM(P) | CM(-P) | Mean | |
---|---|---|---|---|---|---|---|---|---|
Olsen-P (mg kg−1) | 2013 | Early | 11.70 BCDc | 10.69 BCc | 15.00 Cb | 11.76 DEFc | 16.23 Da | 15.55 Cab | 13.49 F |
Late | 13.58 ABCDb | 14.32 ABb | 17.74 BCa | 15.64 BCab | 17.74 Da | 17.77 Ca | 16.13 E | ||
2014 | Early | 15.78 ABCc | 15.59 ABc | 19.93 Bb | 12.55 CDEc | 27.76 Ca | 24.78 Ba | 19.40 CD | |
Late | 16.84 Ab | 13.60 ABc | 25.29 Aa | 18.89 Ab | 26.99 Ca | 24.87 Ba | 21.08 AB | ||
2015 | Early | 16.37 ABb | 16.81 Ab | 26.04 Aa | 18.51 ABb | 29.58 Ca | 26.64 ABa | 22.32 A | |
Late | 9.36 Dcd | 6.74 CDd | 24.72 Ab | 12.73 CDEc | 30.62 BCa | 26.13 ABb | 18.38 D | ||
2016 | Early | 9.72 Dcd | 7.50 CDb | 25.08 Ab | 13.19 CDc | 34.06 ABa | 28.51 ABb | 19.68 BCD | |
Late | 11.92 BCDc | 6.45 CDd | 26.18 Ab | 8.75 Fcd | 34.69 ABa | 27.82 Ab | 19.30 CD | ||
2017 | Early | 11.14 CDd | 7.59 CDd | 25.89 Ab | 15.51 BCc | 36.66 Aa | 26.01 ABb | 20.47 BC | |
Late | 9.15 Dc | 5.40 Dd | 26.40 Ab | 9.88 EFc | 37.15 Aa | 27.96 ABb | 19.32 CD | ||
Mean | 12.56 e | 10.47 f | 23.23 c | 13.74 d | 29.15 a | 24.61 b | |||
Factor | F | p | |||||||
Season (S) | 55.02 | <0.001 | |||||||
Treatment (T) | 847.51 | <0.001 | |||||||
S × T | 25.85 | <0.001 | |||||||
Water-soluble Pi (mg kg−1) | 2013 | Early | 0.51 BCc | 0.48 BCDc | 1.04 ABa | 0.71 ABCb | 1.04 BCDa | 1.06 BCa | 0.81 CD |
Late | 0.54 Bc | 0.54 ABCc | 0.84 BCab | 0.74 ABb | 0.88 DEa | 0.84 CDEab | 0.73 DE | ||
2014 | Early | 0.84 Ab | 0.70 Ab | 1.20 Aa | 0.84 Ab | 1.40 Aa | 1.35 Aa | 1.05 A | |
Late | 0.42 BCDb | 0.48 BCb | 0.70 CDa | 0.44 DEb | 0.72 EFa | 0.71 EFa | 0.58 FG | ||
2015 | Early | 0.60 Bc | 0.62 ABc | 1.20 Aa | 0.88 Ab | 1.22 ABa | 1.13 ABa | 0.94 B | |
Late | 0.31 CDb | 0.34 CDEb | 0.56 Da | 0.34 Eb | 0.54 Fa | 0.55 Fa | 0.44 H | ||
2016 | Early | 0.50 BCc | 0.45 BCDc | 1.07 ABb | 0.63 BCDc | 1.33 Aa | 1.15 ABab | 0.85 BC | |
Late | 0.20 Dc | 0.27 DEFc | 0.64 CDb | 0.51 DEa | 0.98 CDa | 0.99 BCDa | 0.6 FG | ||
2017 | Early | 0.21 Db | 0.16 EFb | 0.99 ABa | 0.35 Eb | 1.10 BCa | 1.09 ABCa | 0.65 EF | |
Late | 0.24 Dc | 0.08 Fc | 0.70 CDab | 0.53 CDEb | 0.84 DEa | 0.76 DEFa | 0.52 GH | ||
Mean | 0.44 d | 0.41 d | 0.89 b | 0.60 c | 1.00 a | 0.96 ab | |||
Factor | F | p | |||||||
Season (S) | 102.42 | <0.001 | |||||||
Treatment (T) | 324.64 | <0.001 | |||||||
S × T | 6.90 | <0.001 |
References
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global Nitrogen and Phosphorus Fertilizer Use for Agriculture Production in the Past Half Century: Shifted Hot Spots and Nutrient Imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Nonrenewable Resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus Activators Contribute to Legacy Phosphorus Availability in Agricultural Soils: A Review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and Analysis of Agricultural Non-Point Source Pollution Loads in China: 1978–2017. J. Environ. Manage. 2020, 263, 110400. [Google Scholar] [CrossRef]
- Van Heyst, A.; Sinclair, A.; Jamieson, R. Application of Phosphorus Loading Models to Understand Drivers of Eutrophication in a Complex Rural Lake-Watershed System. J. Environ. Manage. 2022, 302, 114010. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Bouwman, A.F.; Beusen, A.H.W. Phosphorus Demand for the 1970–2100 Period: A Scenario Analysis of Resource Depletion. Glob. Environ. Chang. 2010, 20, 428–439. [Google Scholar] [CrossRef]
- Jiang, S.; Hua, H.; Sheng, H.; Jarvie, H.P.; Liu, X.; Zhang, Y.; Yuan, Z.; Zhang, L.; Liu, X. Phosphorus Footprint in China over the 1961–2050 Period: Historical Perspective and Future Prospect. Sci. Total Environ. 2019, 650, 687–695. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic Phosphorus Imbalances across the World’s Croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef]
- George, T.S.; Hinsinger, P.; Turner, B.L. Phosphorus in Soils and Plants—Facing Phosphorus Scarcity. Plant Soil 2016, 401, 1–6. [Google Scholar] [CrossRef]
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of Crop Residues and Manure Production and Their Geographical Distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Chen, Z.; Tian, J.; Sun, N.; Xu, M.; Chen, L. Response of Soil phoD Phosphatase Gene to Long-Term Combined Applications of Chemical Fertilizers and Organic Materials. Appl. Soil Ecol. 2017, 119, 197–204. [Google Scholar] [CrossRef]
- Andriamananjara, A.; Rakotoson, T.; Razafimbelo, T.; Rabeharisoa, L.; Razafimanantsoa, M.-P.; Masse, D. Farmyard Manure Improves Phosphorus Use Efficiency in Weathered P Deficient Soil. Nutr. Cycl. Agroecosyst. 2019, 115, 407–425. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of Crop Yield Responses to Application of Organic Amendments: A Critical Review. Soil Tillage Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Han, X.; Hu, C.; Chen, Y.; Qiao, Y.; Liu, D.; Fan, J.; Li, S.; Zhang, Z. Crop Yield Stability and Sustainability in a Rice-Wheat Cropping System Based on 34-Year Field Experiment. Eur. J. Agron. 2020, 113, 125965. [Google Scholar] [CrossRef]
- Li, K.; Bi, Q.; Liu, X.; Wang, H.; Sun, C.; Zhu, Y.; Lin, X. Unveiling the Role of Dissolved Organic Matter on Phosphorus Sorption and Availability in a 5-Year Manure Amended Paddy Soil. Sci. Total Environ. 2022, 838, 155892. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Transfer of Antibiotics from Wastewater or Animal Manure to Soil and Edible Crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef]
- Liu, X.-P.; Bi, Q.-F.; Qiu, L.-L.; Li, K.-J.; Yang, X.-R.; Lin, X.-Y. Increased Risk of Phosphorus and Metal Leaching from Paddy Soils after Excessive Manure Application: Insights from a Mesocosm Study. Sci. Total Environ. 2019, 666, 778–785. [Google Scholar] [CrossRef]
- Muhammad, J.; Khan, S.; Su, J.Q.; Hesham, A.E.-L.; Ditta, A.; Nawab, J.; Ali, A. Antibiotics in Poultry Manure and Their Associated Health Issues: A Systematic Review. J. Soils Sediments 2020, 20, 486–497. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Y.; Nie, J.; Liao, Y.; Zhu, Q. Substituting Chemical P Fertilizer with Organic Manure: Effects on Double-Rice Yield, Phosphorus Use Efficiency and Balance in Subtropical China. Sci. Rep. 2021, 11, 8629. [Google Scholar] [CrossRef] [PubMed]
- Weihrauch, C.; Opp, C. Ecologically Relevant Phosphorus Pools in Soils and Their Dynamics: The Story so Far. Geoderma 2018, 325, 183–194. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure Acts as a Better Fertilizer for Increasing Crop Yields than Synthetic Fertilizer Does by Improving Soil Fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Schröder, J. Revisiting the Agronomic Benefits of Manure: A Correct Assessment and Exploitation of Its Fertilizer Value Spares the Environment. Bioresour. Technol. 2005, 96, 253–261. [Google Scholar] [CrossRef]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, Phosphorus Use Efficiency and Balance Response to Substituting Long-Term Chemical Fertilizer Use with Organic Manure in a Wheat-Maize System. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Hua, K.; Zhang, W.; Guo, Z.; Wang, D.; Oenema, O. Evaluating Crop Response and Environmental Impact of the Accumulation of Phosphorus Due to Long-Term Manuring of Vertisol Soil in Northern China. Agric. Ecosyst. Environ. 2016, 219, 101–110. [Google Scholar] [CrossRef]
- Chen, D.; Hu, M.; Guo, Y.; Dahlgren, R.A. Influence of legacy phosphorus, land use, and climate change on anthropogenic phosphorus inputs and riverine export dynamics. Biogeochemistry 2015, 123, 99–116. [Google Scholar] [CrossRef]
- Chen, D.; Hu, M.; Guo, Y.; Wang, J.; Huang, H.; Dahlgren, R.A. Long-Term (1980–2010) Changes in Cropland Phosphorus Budgets, Use Efficiency and Legacy Pools across Townships in the Yongan Watershed, Eastern China. Agric. Ecosyst. Environ. 2017, 236, 166–176. [Google Scholar] [CrossRef]
- Olsen, S.R. (Ed.) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Circular/United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 961–1010. ISBN 978-0-89118-866-7. [Google Scholar]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 775–833. ISBN 978-0-89118-865-0. [Google Scholar]
- Zhu, J.; Wang, Q.; He, N.; Smith, M.D.; Elser, J.J.; Du, J.; Yuan, G.; Yu, G.; Yu, Q. Imbalanced Atmospheric Nitrogen and Phosphorus Depositions in China: Implications for Nutrient Limitation. J. Geophys. Res. Biogeosci. 2016, 121, 1605–1616. [Google Scholar] [CrossRef]
- Fang, H.; Liu, K.; Li, D.; Peng, X.; Zhang, W.; Zhou, H. Long-Term Effects of Inorganic Fertilizers and Organic Manures on the Structure of a Paddy Soil. Soil Tillage Res. 2021, 213, 105137. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, T.; Lei, X.; Cui, X.; Lu, Y.; Fan, P.; Long, S.; Huang, J.; Gao, J.; Zhang, Z.; et al. Improvement of Soil Fertility and Rice Yield after Long-Term Application of Cow Manure Combined with Inorganic Fertilizers. J. Integr. Agric. 2023, 22, 2221–2232. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Xiangmin, R.; Fei, J.; Peng, J.; Luo, G. Coupling Amendment of Biochar and Organic Fertilizers Increases Maize Yield and Phosphorus Uptake by Regulating Soil Phosphatase Activity and Phosphorus-Acquiring Microbiota. Agric. Ecosyst. Environ. 2023, 355, 108582. [Google Scholar] [CrossRef]
- Ma, Q.; Wen, Y.; Ma, J.; Macdonald, A.; Hill, P.W.; Chadwick, D.R.; Wu, L.; Jones, D.L. Long-Term Farmyard Manure Application Affects Soil Organic Phosphorus Cycling: A Combined Metagenomic and 33P/14C Labelling Study. Soil Biol. Biochem. 2020, 149, 107959. [Google Scholar] [CrossRef]
- Cui, N.; Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Sun, H.; Chen, G.; Zou, G.; Zhou, S. Runoff Loss of Nitrogen and Phosphorus from a Rice Paddy Field in the East of China: Effects of Long-Term Chemical N Fertilizer and Organic Manure Applications. Glob. Ecol. Conserv. 2020, 22, e01011. [Google Scholar] [CrossRef]
- Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, F.; Yang, X.; Sun, B.; Zhang, S. Phosphorus Efficiency, Soil Phosphorus Dynamics and Critical Phosphorus Level under Long-Term Fertilization for Single and Double Cropping Systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Yang, B.; Wu, S.; Ren, T.; Lei, Q.; Wang, H. Long-Term Benefits of Combining Chemical Fertilizer and Manure Applications on Crop Yields and Soil Carbon and Nitrogen Stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring Phosphorus Fertilizers and Fertilization Strategies for Improved Human and Environmental Health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.-F.; Wu, W.-H. Potassium and Phosphorus Transport and Signaling in Plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef]
- Li, G.; van Ittersum, M.K.; Leffelaar, P.A.; Sattari, S.Z.; Li, H.; Huang, G.; Zhang, F. A Multi-Level Analysis of China’s Phosphorus Flows to Identify Options for Improved Management in Agriculture. Agric. Syst. 2016, 144, 87–100. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Zhao, S.; Qiu, S.; Johnston, A.M.; Zhou, W. Quantification of Yield Gap and Nutrient Use Efficiency of Irrigated Rice in China. Field Crops Res. 2016, 186, 58–65. [Google Scholar] [CrossRef]
- Nayak, D.R.; Babu, Y.J.; Adhya, T.K. Long-Term Application of Compost Influences Microbial Biomass and Enzyme Activities in a Tropical Aeric Endoaquept Planted to Rice under Flooded Condition. Soil Biol. Biochem. 2007, 39, 1897–1906. [Google Scholar] [CrossRef]
- Bi, Q.-F.; Li, K.-J.; Zheng, B.-X.; Liu, X.-P.; Li, H.-Z.; Jin, B.-J.; Ding, K.; Yang, X.-R.; Lin, X.-Y.; Zhu, Y.-G. Partial Replacement of Inorganic Phosphorus (P) by Organic Manure Reshapes Phosphate Mobilizing Bacterial Community and Promotes P Bioavailability in a Paddy Soil. Sci. Total Environ. 2020, 703, 134977. [Google Scholar] [CrossRef]
- Qaswar, M.; Chai, R.; Ahmed, W.; Jing, H.; Han, T.; Liu, K.; Ye, X.; Xu, Y.; Anthonio, C.K.; Zhang, H. Partial Substitution of Chemical Fertilizers with Organic Amendments Increased Rice Yield by Changing Phosphorus Fractions and Improving Phosphatase Activities in Fluvo-Aquic Soil. J. Soils Sediments 2020, 20, 1285–1296. [Google Scholar] [CrossRef]
- Han, Y.; Lv, F.; Lin, X.; Zhang, C.; Sun, B.; Yang, X.; Zhang, S. Crop yield and nutrient efficiency under organic manure substitution fertilizer in a double cropping system: A 6-year field experiment on an anthrosol. Agronomy 2022, 12, 2047. [Google Scholar] [CrossRef]
- Chen, G.; Xiao, L.; Yue, K.; Wang, Y.; Wang, S.; Zhu, Y.; Kai, L. Optimizing phosphate application to improve soil quality and reduce phosphorus loss in rice-wheat rotation. Agric. Ecosyst. Environ. 2025, 378, 109310. [Google Scholar] [CrossRef]
Season | Treatment | Chemical Fertilizer (kg ha−1) | Organic Fertilizer (kg ha−1) | ||||
---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | ||
Early | CK | 0 | 0 | 0 | 0 | 0 | 0 |
NK | 165 | 0 | 150 | 0 | 0 | 0 | |
NPK | 165 | 90 | 150 | 0 | 0 | 0 | |
M(20%P) | 0 | 0 | 0 | 11 | 18 | 5 | |
CM(P) | 154 | 72 | 145 | 11 | 18 | 5 | |
CM(-P) | 154 | 58 | 145 | 11 | 18 | 5 | |
Late | CK | 0 | 0 | 0 | 0 | 0 | 0 |
NK | 195 | 0 | 150 | 0 | 0 | 0 | |
NPK | 195 | 90 | 150 | 0 | 0 | 0 | |
M(20%P) | 0 | 0 | 0 | 11 | 18 | 5 | |
CM(P) | 184 | 72 | 145 | 11 | 18 | 5 | |
CM(-P) | 184 | 58 | 145 | 11 | 18 | 5 |
Treatment | CK | NK | NPK | M(20%P) | CM(P) | CM(-P) |
---|---|---|---|---|---|---|
pH | 5.30 b | 5.17 c | 5.18 c | 5.28 b | 5.49 a | 5.44 a |
NH4+-N (mg kg−1) | 66.80 b | 102.81 a | 101.78 a | 73.47 b | 104.15 a | 97.48 a |
NO3--N (mg kg−1) | 67.64 b | 117.74 a | 120.84 a | 61.33 b | 107.92 a | 111.32 a |
Olsen-P (mg kg−1) | 9.15 c | 5.40 d | 26.40 b | 9.88 c | 33.15 a | 27.96 b |
TP (mg kg−1) | 436.41 cd | 401.07 d | 582.12 a | 446.14 c | 533.18 b | 535.47 b |
SOC (g kg−1) | 16.36 b | 16.21 b | 16.81 b | 15.98 b | 18.35 a | 17.96 a |
ACP activity (mg kg−1 h−1) | 376.98 d | 402.09 c | 467.55 b | 414.74 c | 495.95 a | 498.16 a |
ALP activity (mg kg−1 h−1) | 60.66 c | 61.85 c | 86.72 b | 65.65 c | 96.66 a | 94.58 a |
PDE activity (mg kg−1 h−1) | 85.49 d | 90.61 d | 116.28 b | 100.30 c | 129.36 a | 125.49 a |
Item | CK | NK | NPK | M(20%P) | CM(P) | CM(-P) |
---|---|---|---|---|---|---|
Grain yield (Mg ha−1) | 3.88 d | 5.82 c | 6.76 b | 3.97 d | 7.10 a | 6.88 b |
Grain P uptake (kg ha−1) | 9.25 e | 16.73 c | 20.72 b | 11.57 d | 21.74 a | 21.38 ab |
Straw yield (Mg ha−1) | 2.44 d | 3.87 c | 4.23 b | 2.48 d | 4.44 a | 4.44 a |
Straw P uptake (kg ha−1) | 3.62 f | 4.93 d | 7.18 c | 4.05 e | 7.90 a | 7.57 b |
Aboveground P uptake (kg ha−1) | 12.87 e | 21.66 c | 27.90 b | 15.63 d | 29.64 a | 28.95 a |
APR (%) | 15.89 c | 25.41 b | 29.00 a | |||
Soil P surplus (kg ha−1 season−1) | −12.87 e | −21.66 f | 11.37 a | −7.77 d | 9.63 b | 4.04 c |
Soil Olsen-P (mg kg−1) | 12.56 e | 10.47 f | 23.23 c | 13.74 d | 29.15 a | 24.61 b |
Soil water-soluble Pi (mg kg−1) | 0.44 d | 0.41 d | 0.89 b | 0.60 c | 1.00 a | 0.96 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.; Teng, Z.; Shu, Y.; Li, K.; Lin, X.; Liu, X. Partial Substitution of Inorganic Fertilizer with Organic Manure and Reduced Phosphorus Inputs Enhance Rice Yields and Phosphorus Fertilizer Efficiency. Sustainability 2025, 17, 3878. https://doi.org/10.3390/su17093878
Jin B, Teng Z, Shu Y, Li K, Lin X, Liu X. Partial Substitution of Inorganic Fertilizer with Organic Manure and Reduced Phosphorus Inputs Enhance Rice Yields and Phosphorus Fertilizer Efficiency. Sustainability. 2025; 17(9):3878. https://doi.org/10.3390/su17093878
Chicago/Turabian StyleJin, Bingjie, Zhuoran Teng, Yuchen Shu, Kejie Li, Xianyong Lin, and Xiaoxia Liu. 2025. "Partial Substitution of Inorganic Fertilizer with Organic Manure and Reduced Phosphorus Inputs Enhance Rice Yields and Phosphorus Fertilizer Efficiency" Sustainability 17, no. 9: 3878. https://doi.org/10.3390/su17093878
APA StyleJin, B., Teng, Z., Shu, Y., Li, K., Lin, X., & Liu, X. (2025). Partial Substitution of Inorganic Fertilizer with Organic Manure and Reduced Phosphorus Inputs Enhance Rice Yields and Phosphorus Fertilizer Efficiency. Sustainability, 17(9), 3878. https://doi.org/10.3390/su17093878