Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Strain and Cultivation Conditions
2.2. Determination of Microalgae Growth and Nutrient Analysis
2.3. Central Composite Experimental Design and Evaluation
2.4. Estimations of Algal Biomass Production
3. Results and Discussion
3.1. Effects of Environmental Parameters
3.1.1. Light Saturation
3.1.2. Effect of Light Duration
3.1.3. Effect of CO2 and Dilution on Biomass Yields
3.1.4. Removal of Nutrients from Swine Wastewater
3.2. Regression Analysis and ANOVA Test
3.3. Estimation of Annual Biomass Yield of C. Debaryana
- (1)
- As a native species, C. debaryana could stand local cold weather, and remain fast-growing around 15 °C. If a covered photobioreactor system with temperature controll was applied, the year-round production of algal biomass could be realized and improved.
- (2)
- A nearby CO2 source will be a perk for the biomass production, because a 5 vol % supply increased the biomass yields of C. debaryana by three times.
3.4. Evaluation of the Potential of Biomass and Biofuel Production
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Santacesaria, E. What future for the renewable energy. Trends Renew. Energy 2015, 1, 57–58. [Google Scholar] [CrossRef]
- Xian, M. Recent development of bioenergy and biorefinery in china. Trends Renew. Energy 2015, 1, 129–130. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; Zhang, B.; Wang, L. Microalgae for biodiesel production and waste water treatment. In Biomass Processing, Conversion and Biorefinery; Zhang, B., Wang, Y., Eds.; Nova Science Publishers, Inc.: Hauppauge, New York, NY, USA, 2013; pp. 277–288. [Google Scholar]
- Sutherland, D.L.; Howard-Williams, C.; Turnbull, M.H.; Broady, P.A.; Craggs, R.J. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 2015, 184, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Picardo, M.; de Medeiros, J.; Monteiro, J.; Chaloub, R.; Giordano, M.; de Queiroz Fernandes Araújo, O. A methodology for screening of microalgae as a decision making tool for energy and green chemical process applications. Clean Technol. Environ. Policy 2013, 15, 275–291. [Google Scholar] [CrossRef]
- Department of Energy Office of Energy Efficiency and Renewable Energy. Algal Biofuels Strategy. In Proceedings of the Algal Biofuels Strategy Workshop, Charleston, SC, USA, 26–27 March 2014.
- Cheng, D.; Wang, L.; Shahbazi, A.; Xiu, S.; Zhang, B. Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure. Energy Convers. Manag. 2014, 87, 378–384. [Google Scholar] [CrossRef]
- US EPA. Agstar-Anaerobic Digestion on Swine Operations. Available online: http://www.epa.gov/outreach/agstar/anaerobic/swine.html (accessed on 15 July 2015).
- Aillery, M.; Gollehon, N.; Johansson, R.; Kaplan, J.; Key, N.; Ribaudo, M. Managing Manure to Improve air and Water Quality; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2005. [Google Scholar]
- Correll, D.L. Role of phosphorus in the eutrophication of receiving waters: A review. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Christenson, L. Algal Biofilm Production and Harvesting System for Wastewater Treatment with Biofuels By-Products. Master’s Thesis, Utah State University, Logan, UT, USA, 2011. [Google Scholar]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Min, M.; Chen, Y.; Wang, L.; Li, Y.; Chen, Q.; Wang, C.; Wan, Y.; Wang, X.; Cheng, Y.; et al. Review of the biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2009, 2, 1–30. [Google Scholar]
- Zhang, B.; Wang, L.; Hasan, R.; Shahbazi, A. Characterization of a native algae species chlamydomonas debaryana: Strain selection, bioremediation ability, and lipid characterization. BioResouces 2014, 9, 6130–6140. [Google Scholar] [CrossRef]
- Hasan, R.; Zhang, B.; Wang, L.; Shahbazi, A. Bioremediation of swine wastewater and biodiesel production by using chlorella vulgaris, chlamydomonas reinhardtii, and chlamydomonas debaryana. J. Pet. Environ. Biotechnol. 2014, 5, 175. [Google Scholar] [CrossRef]
- LaMotte. Lamotte Smart 3 Colorimeter Operator’s Manual. Available online: http://www.geotechenv.com/Manuals/LaMotte_Manuals/smart3_colorimeter_operators_manual.pdf (accessed on 12 May 2016).
- Techapun, C.; Charoenrat, T.; Watanabe, M.; Sasaki, K.; Poosaran, N. Optimization of thermostable and alkaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant streptomyces sp. Ab106, using the central composite experimental design. Biochem. Eng. J. 2002, 12, 99–105. [Google Scholar] [CrossRef]
- Xie, T.; Sun, Y.; Du, K.; Liang, B.; Cheng, R.; Zhang, Y. Optimization of heterotrophic cultivation of chlorella sp. For oil production. Bioresour. Technol. 2012, 118, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Merchuk, J.C. Simulation of algae growth in a bench scale internal loop airlift reactor. Chem. Eng. Sci. 2004, 59, 2899–2912. [Google Scholar] [CrossRef]
- WeatherSpark. Average Weather for Greensboro, North Carolina, USA. Available online: https://weatherspark.com/averages/30409/Greensboro-North-Carolina-United-States (accessed on 12 May 2016).
- Wikipedia. Climate of North Carolina. Available online: http://en.wikipedia.org/wiki/Climate_of_North_Carolina (accessed on 12 May 2016).
- USDA. U.S. Hogs and Pigs Inventory Down 2 Percent. Available online: http://www.nass.usda.gov/Newsroom/2014/09_26_2014.php (accessed on 12 May 2016).
- Deutsche Gesellschaft für Sonnenenergie; ECOFYS (Firm). Planning and Installing Bioenergy Systems: A Guide for Installers, Architects, and Engineers; Routledge: New York, NY, USA, 2004. [Google Scholar]
- Carvalho, A.; Silva, S.; Baptista, J.; Malcata, F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Lee, S.-M.; Jung, J.-Y.; Chung, Y.-C.; Noh, S.-H. Enhanced cod and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor (mbr) and anaerobic upflow bed filter (aubf) reactor. Process Biochem. 2005, 40, 3769–3776. [Google Scholar] [CrossRef]
- Rahman, Q.M.; Wang, L.; Zhang, B.; Xiu, S.; Shahbazi, A. Green biorefinery of fresh cattail for microalgal culture and ethanol production. Bioresour. Technol. 2015, 185, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Poach, M.; Hunt, P.; Sadler, E.; Matheny, T.; Johnson, M.; Stone, K.; Humenik, F.; Rice, J. Ammonia volatilization from constructed wetlands that treat swine wastewater. Trans. ASAE 2002, 45, 619. [Google Scholar] [CrossRef]
- University of Wisconsin. Chemical Oxygen Demand. Available online: http://www.chem.wisc.edu/courses/116/OtherDoc/Labs/COD_Lab.pdf (accessed on 19 April 2016).
- Li, R.; Zhang, B.; Xiu, S.; Wang, H.; Boaten, N.A.B.; Holmes, B.M.; Wang, L.; Shahbazi, A. Characteristics of pine gasification ash and its effects on chlamydomonas debaryana growth. BioResources 2016, 11, 1919–1929. [Google Scholar] [CrossRef]
- Grady, C.L., Jr.; Daigger, G.T.; Love, N.G.; Filipe, C.D. Biological Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Davis, R.; Fishman, D.; Frank, E.; Wigmosta, M.; Aden, A.; Coleman, A.; Pienkos, P.; Skaggs, R.; Venteris, E.; Wang, M. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model; Argonne National Laboratory: Argonne, IL, USA, 2012. [Google Scholar]
Nutrients | Autoclaved Swine Wastewater | Proteose |
---|---|---|
COD (mg/L) | 2300 | 1286 |
Ammonia (ppm) | 50.2 | 6.3 |
Total inorganic nitrogen (ppm) | - | 90 |
Total phosphorous (ppm) | 130 | 204 |
pH | 9.3 | 7 |
L/D Cycle (h:h) | Biomass Yield in 15 Days (g/L) | Biomass Yield in 30 Days (g/L) |
---|---|---|
24:0 | 1.24 ± 0.18 * | 1.28 ± 0.06 |
12:12 | 0.98 ± 0.09 | 1.25 ± 0.04 |
6:18 | 0.63 ± 0.07 | 0.82 ± 0.10 |
2:22 | 0.38 ± 0.12 | 0.54 ± 0.02 |
Media | Wastewater (Air Bubblingonly) | Wastewater | Wastewater | Diluted Wastewater * | Proteose Medium |
---|---|---|---|---|---|
Light intensity (μmol·m−2s−1) | 150 | 150 | 300 | 150 | 150 |
Biomass yield in 15 days (g/L) | 0.72 ± 0.11 | 2.41 ± 0.21 | 2.42 ± 0.15 | 1.44 ± 0.18 | 1.56 ± 0.23 |
Biomass yield in 30 days (g/L) | 0.77 ± 0.13 | 2.87 ± 0.17 | 2.91 ± 0.12 | 1.53 ± 0.08 | 1.66 ± 0.12 |
Design Number | Temperature (°C) | Light Intensity (μmol·m−2s−1) | Light Duration (h/day) | Biomass Yield in 15 Days (g/L) |
---|---|---|---|---|
1 | 15 | 150 | 12 | 0.71 |
2 | 25 | 150 | 12 | 0.65 |
3 | 15 | 600 | 12 | 0.73 |
4 | 25 | 600 | 12 | 0.69 |
5 | 15 | 150 | 6 | 0.50 |
6 | 25 | 150 | 6 | 0.52 |
7 | 15 | 600 | 6 | 0.62 |
8 | 25 | 600 | 6 | 0.66 |
9 | 20 | 300 | 8 | 0.83 |
10 | 20 | 300 | 8 | 0.79 |
11 | 8 | 600 | 12 | 0.15 |
12 | 20 | 300 | 8 | 0.75 |
13 | 20 | 300 | 8 | 0.78 |
14 | 10 | 600 | 12 | 0.17 |
15 | 15 | 150 | 24 | 1.11 |
16 | 15 | 900 | 24 | 1.16 |
17 | 8 | 150 | 12 | 0.09 |
18 | 10 | 150 | 12 | 0.15 |
19 | 25 | 150 | 24 | 0.72 |
20 | 25 | 900 | 24 | 0.77 |
Average Temperature (°C) | Assumed Light Intensity I0/I (μmol·m−2s−1) a | Average Day Time (h) | Calculated Biomass Yield (g/L) | Growth Rate (g/L/day) | Algal Biomass (tonne/month) | |
---|---|---|---|---|---|---|
Technical objectives (Baseline) | - | - | - | - | 0.125 | 30.7 (369 tonne/year) |
January | 3.1 | 600/320 | 10 | BR | BR | - |
Feburay | 5.3 | 600/320 | 11 | BR | BR | - |
March | 9.4 | 900/480 | 12 | 0.46 | 0.033 | 7.51 |
April | 14.4 | 900/480 | 13 | 0.83 | 0.059 | 14.23 |
May | 18.9 | 900/480 | 14 | 0.94 | 0.067 | 16.30 |
June | 23.3 | 1400/660 | 14.5 | 0.83 | 0.059 | 14.61 |
July | 25.0 | 1400/660 | 14.2 | 0.73 | 0.052 | 12.22 |
August | 24.7 | 1400/660 | 13.5 | 0.74 | 0.053 | 13.06 |
September | 20.8 | 900/480 | 12.1 | 0.88 | 0.063 | 15.23 |
October | 15.0 | 900/480 | 11 | 0.79 | 0.056 | 7.51 |
November | 9.7 | 900/480 | 10.2 | 0.40 | 0.029 | 14.23 |
December | 5.0 | 600/320 | 9.67 | BR | BR | 16.30 |
Sum | - | - | - | - | - | 113 tonne/year |
Scenario | Baseline | This Study | Lower Growth Rate with New Culture/Harvest Mode | Lower Growth Rate with Limited Area |
---|---|---|---|---|
Algal growth rate | 0.125 g/L/day | 0.07 g/L/day (i.e., 1 g/L per two weeks) | 0.07 g/L/day | 0.07 g/L/day |
Harvest mode | 0.05 m depth/day | A complete harvest every 2 weeks | 0.05 m depth/day | 0.05 m depth/day |
Required area (acre) | 137 acres | 485 acres | 485 acres | 137 acres |
Algal biomass (tonnes/year) | 5048 | 10,095 | 10,468 | 2957 |
Algal oil (tonnes/year) | 1010 (25% of biomass) | 2020 (20% of biomass) | 2094 (20% of biomass) | 565 (20% of biomass) |
Removed N (tonnes/year) | 439 | 554–908 | 574–941 | 162–266 |
Removed P (tonnes/year) | 65.6 | 484–898 | 502–930 | 141–263 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, L.; Riddicka, B.A.; Li, R.; Able, J.R.; Boakye-Boaten, N.A.; Shahbazi, A. Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US. Sustainability 2016, 8, 477. https://doi.org/10.3390/su8050477
Zhang B, Wang L, Riddicka BA, Li R, Able JR, Boakye-Boaten NA, Shahbazi A. Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US. Sustainability. 2016; 8(5):477. https://doi.org/10.3390/su8050477
Chicago/Turabian StyleZhang, Bo, Lijun Wang, Bilal A. Riddicka, Rui Li, Justin R. Able, Nana Abayie Boakye-Boaten, and Abolghasem Shahbazi. 2016. "Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US" Sustainability 8, no. 5: 477. https://doi.org/10.3390/su8050477
APA StyleZhang, B., Wang, L., Riddicka, B. A., Li, R., Able, J. R., Boakye-Boaten, N. A., & Shahbazi, A. (2016). Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US. Sustainability, 8(5), 477. https://doi.org/10.3390/su8050477