Trade-Offs in Multi-Purpose Land Use under Land Degradation
Abstract
:1. Introduction
2. Objective and Methodology
3. Land for Food and Climate Change Mitigation
4. Land for Food and the Provision of Water
5. Land for Food and Biodiversity
6. Land for Food Production and for Infrastructure
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Millennium Ecosystem Assessment: Washington, DC, USA, 2005. [Google Scholar]
- The Economics of Ecosystems and Biodiversity (TEEB). The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: Washington, DC, USA, 2010. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Vlek, P.L.G. Nothing Begets Nothing: The Creeping Disaster of Land Degradation; UNU-EHS InterSecTions: Bonn, Germany, 2005; Volume 1, p. 28. [Google Scholar]
- Hughes, T.; Linares, C.; Dakos, V.; van de Leemput, I.A.; Nes, E.H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 2013, 28, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Post, W.; Kwon, K. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–328. [Google Scholar] [CrossRef]
- Hillel, D.J. Out of the Earth: Civilization and the Life of the Soil; The Free Press: New York, NY, USA, 1991. [Google Scholar]
- Mumby, P.J.; Wolff, N.H.; Bozec, Y.-M.; Chollett, I.; Halloran, P. Operationalizing the resilience of coral reefs in an era of climate change. Conserv. Lett. 2014, 7, 176–187. [Google Scholar] [CrossRef]
- Standish, R.J.; Hobbs, R.J.; Mayfield, M.M.; Bestelmeyer, B.T.; Suding, K.N.; Battaglia, L.L.; Eviner, V.; Hawkes, C.V.; Temperton, V.M.; Cramer, V.A.; et al. Resilience in ecology: Abstraction, distraction, or where the action is? Biol. Conserv. 2014, 177, 43–51. [Google Scholar] [CrossRef]
- Sanchez, P. Properties and Management of Soils in the Tropics; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in earth’s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Kinzig, A.P.; Ryan, P.; Etienne, M.; Allison, H.; Elmqvist, T.; Walker, B.H. Resilience and regime shifts: Assessing cascading effects. Ecol. Soc. 2006, 11, 20. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Katyal, J.C.; Vlek, P.L.G. Desertification: Concept, Causes and Amelioration; ZEF Discussion Paper 33; Zentrum für Entwicklungsforschung (ZEF): Bonn, Germany, 2000; p. 65. [Google Scholar]
- Walker, B.; Meyers, J.A. Thresholds in ecological and social–ecological systems: A developing database. Ecol. Soc. 2004, 9, 3. [Google Scholar] [CrossRef]
- Vlek, P.L.G.; Khamzina, A.; Tamene, L. Land Degradation and the Sustainable Development Goals: Threats and Potential Remedies. Available online: http://hdl.handle.net/10568/81313 (accessed on 20 November 2017).
- Schindler, D.E.; Hilborn, R. Prediction, precaution, and policy under global change. Science 2015, 347, 953–954. [Google Scholar] [CrossRef] [PubMed]
- Halim, R.; Clemente, R.S.; Routray, J.K.; Shrestha, R.P. Integration of biophysical and socio-economic factors to assess soil erosion hazard in the Upper Kaligarang Watershed, Indonesia. Land Degrad. Dev. 2007, 18, 453–469. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A.; et al. Global carbon budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef]
- West, P.C.; Gibbs, H.K.; Monfred, C.; Wagner, J.; Barford, C.C.; Carpenter, S.R.; Foley, J.A. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. USA 2010, 107, 19645–19648. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Watson, R.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change, and Forestry; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kolka, R.; Murdiyarso, D.; Kauffman, J.B.; Birdsey, R.A. Tropical wetlands, climate, and land-use change: Adaptation and mitigation opportunities. Wetl. Ecol. Manag. 2016, 24, 107–112. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Rudel, T.K.; Schneider, L.; Uriarte, M.; Turner, I.B.L.; DeFries, R.; Lawrence, D.; Geoghegan, J.; Hecht, S.; Ickowitz, A.; Lambin, E.F.; et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl. Acad. Sci. USA 2009, 106, 20675–20680. [Google Scholar] [CrossRef] [PubMed]
- Vlek, P.L.G.; Rodríguez-Kuhl, G.; Sommer, R. Energy use and CO2 production in tropical agriculture and means and strategies for reduction or mitigation. Environ. Dev. Sustain. 2004, 6, 213–233. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Guidelines for National Greenhouse Gas Inventories (Report); Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Vlek, P.; Le, Q.B.; Tamene, L. Assessment of land degradation, its possible causes and threat to food security in Sub-Saharan Africa. In Food Security and Soil Quality; Lal, R., Stewart, B.A., Eds.; CRC/Taylor and Francis: Boca Raton, FL, USA, 2010; pp. 57–86. [Google Scholar]
- International Fertilizer Development Center Report (IFDC). International Fertilizer Development Center Report; IFDC: Muscle Shoals, AL, USA, 2003; Volume 38.
- Braimoh, A.K.; Hou, X.; Heumesser, C.; Zhao, Y. Greenhouse Mitigation in Agricultural Landscapes: A Practitioner’s Guide to Agricultural and Land Resources Management; World Bank Report No. 106605; World Bank Group: Washington, DC, USA, 2016. [Google Scholar]
- Vlek, P.L.G.; Tamene, L. Conservation agriculture: Why? In Proceedings of the 4th World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009. [Google Scholar]
- Powlson, D.; Stirling, C.; Thierfelder, C.; White, R.; Jat, M.L. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–24. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation agriculture and soil carbon sequestration: Between myth and farmer reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef]
- Montpellier Panel. Sustainable Intensification: A New Paradigm for African Agriculture; Farming First: London, UK, 2013. [Google Scholar]
- Thomas, R.J.; Reed, M.; Clifton, K.; Appadurai, A.N.; Mills, A.J.; Zucca, C.; Kodsi, E.; Sircely, J.; Haddad, F.; von Hagen, C.; et al. Modalities for scaling up sustainable land management and restoration of degraded land. In CGIAR Research Program on Dryland Systems; Working Paper; International Center for Agricultural Research in Dry Areas (ICARDA): Amman, Jordan, 2017. [Google Scholar]
- Djalilov, B.; Khamzina, A.; Hornidge, A.-K.; Lamers, J.P.A. Exploring constraints and incentives for the adoption of agroforestry practices on degraded cropland in Uzbekistan. J. Environ. Plan. Manag. 2016, 63, 95–117. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). ‘Climate-Smart’ Agriculture Policies, Practices and Financing for Food Security, Adaptation and Mitigation; FAO: Rome, Italy, 2010. [Google Scholar]
- Myers, R.; Sanders, A.J.P.; Larson, A.M.; Prasti, R.D.H.; Ravikumar, A. Analyzing Multilevel Governance in Indonesia: Lessons for REDD+ from the Study of Landuse Change in Central and West KALIMANTAN; Working Paper; Center for Intrenational Forestry Research (CIFOR): Bogor, Indonesia, 2016; Volume 202. [Google Scholar]
- Food and Agriculture Organization (FAO); United Nations Convention to Combat Desertification UNCCD, Global Mechanism. Sustainable Financing for Forest and Landscape Restoration: Opportunities, Challenges and the Way Forward; Discussion Paper; FAO: Rome, Italy, 2015. [Google Scholar]
- World Economic Forum (WEF). Water Security: The Water-Food-Energy-Climate Nexus; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Penning de Vries, F.W.T.; Acquay, H.; Molden, D.; Scherr, S.J.; Valentin, C.; Cofie, O. Integrated Land and Water Management for Food and Environmental Security; Comprehensive Assessment Research Paper No. 1; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2002; p. 70. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L. Trends in Land Degradation in Europe; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ilan, S.; Lal, L. Achieving zero net land degradation: Challenges and opportunities. J. Arid Environ. 2015, 112, 44–51. [Google Scholar]
- Myers, S.; Gaffikin, L.; Golden, C.; Ostfeld, R.; Redford, K.; Ricketts, T.; Turner, W.; Osofsky, S. Human health impacts of ecosystem alteration. Proc. Natl. Acad. Sci. USA 2013, 110, 18753–18760. [Google Scholar] [CrossRef] [PubMed]
- Hillel, D.; Vlek, P.L.G. The sustainability of irrigation. Adv. Agron. 2005, 87, 55–84. [Google Scholar]
- Ibrakhimov, M.; Khamzina, A.; Forkutsa, I.; Paluasheva, G.; Lamers, J.P.A.; Tischbein, B.; Vlek, P.L.G.; Martius, C. Groundwater table and salinity: Spatial and temporal distribution and influence on soil salinization in Khorezm Region (Uzbekistan, Aral Sea Basin). Irrig. Drain. Syst. 2007, 21, 219–236. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). UNEP Live Natural Resources: Resource Efficient Indicators; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, A.F.; Kroeze, C.; Beusen, A.H.W.; Billen, G.; Van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 2010, 24, GB0A08. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency. Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Dewan, A.; Corner, R.; Saleem, A.; Rahman, M.M.; Haider, M.R.; Rahman, M.M.; Sarker, M.H. Assessing channel changes of the Ganges-Padma river system in Bangladesh using Landsat and hydrological data. Geomorphology 2017, 276, 257–279. [Google Scholar] [CrossRef]
- Berga, L.; Buil, J.M.; Bofill, E.; De Cea, J.C.; Perez, J.G.; Mañueco, G.; Polimon, J.; Soriano, A.; Yagüe, J. Dams and Reservoirs, Societies and Environment in the 21st Century. In Proceedings of the International Symposium on Dams in the Societies of the 21st Century, 22nd International Congress on Large Dams (ICOLD), Barcelona, Spain, 18 June 2006; CRC Press: Barcelona, Spain, 2006. [Google Scholar]
- Richter, B.D.; Mathews, R.; Harrison, D.L.; Wigington, R. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- McCartney, M.; Smakhtin, V. Water Storage in an Era of Climate Change: Addressing the Challenge of Increasing Rainfall Variability; Blue Paper; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2010; p. 14. [Google Scholar]
- Bhaduri, A.; Ringler, C.; Dombrowski, I.; Mohtar, R.; Scheumann, W. Sustainability in the water–energy–food nexus. Water Int. 2015, 40, 723–732. [Google Scholar] [CrossRef]
- Bharati, L.; Sharma, B.R.; Smakhtin, V. The Ganges River Basin: Status and Challenges in Water, Environment and Livelihoods; Routledge: Berlin, Germany, 2016. [Google Scholar]
- Scott, C.A.; Shah, T. Groundwater overdraft reduction through agricultural energy policy: Insights from India and Mexico. Int. J. Water Resour. Dev. 2004, 20, 149–164. [Google Scholar] [CrossRef]
- Shah, T.; Scott, C.; Kishore, A.; Sharma, A. Energy-Irrigation Nexus in South Asia: Improving Groundwater Conservation and Power Sector Viability; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2004; Volume 70. [Google Scholar]
- Bogardi, J.J.; Dudgeon, D.; Lawford, R.; Flinkerbusch, E.; Meyn, A.; Pahl-Wostl, C.; Vielhauer, K.; Vörösmarty, C. Water security for a planet under pressure: Interconnected challenges of a changing world call for sustainable solutions. Curr. Opin. Environ. Sustain. 2012, 4, 35–43. [Google Scholar] [CrossRef]
- Hussey, K.; Pittock, J. The energy–water nexus: Managing the links between energy and water for a sustainable future. Ecol. Soc. 2012, 17, 31. [Google Scholar] [CrossRef]
- World Food Organization (FAO). Agricultural and Development Economics Division. Available online: http://www.fao.org/forestry/13128-0e6f36f27e0091055bec28ebe830f46b3.pdf (accessed on 27 November 2017).
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the anthropocene epoch: Report of the Rockefeller Foundation—Lancet Commission on Planetary Health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity: Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Brussaard, L.; Caron, P.; Campbell, B.; Lipper, L.; Mainka, S.; Rabbinge, R.; Babin, D.; Pulleman, M. Reconciling biodiversity conservation and food security: Scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2010, 2, 34–42. [Google Scholar] [CrossRef]
- Schroth, G.; Da Fonseca, A.B.; Harvey, C.A.; Gascon, C.; VasconceloS, H.L.; Izac, A.-M. Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Godfray, C.H.; Beddington, J.; Crute, I.; Haddad, L.; Lawrence, D.; Miur, J.; Pretty, J.; Robinson, S.; Thomas, S.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.J.; Lavalle, L. Food security and biodiversity: Can we have both? An agroecological analysis. Agric. Hum. Values 2011, 28, 3–26. [Google Scholar] [CrossRef]
- Putz, F.E.; Blate, G.M.; Redford, K.H.; Fimbel, R.; Robinson, J. Tropical forest management and conservation of biodiversity: An overview. Conserv. Biol. 2001, 15, 7–20. [Google Scholar] [CrossRef]
- Sayer, J.A.; Maginnis, S. Forests in Landscapes: Ecosystem Approaches to Sustainability; Earthscan: London, UK, 2005. [Google Scholar]
- Padoch, C.; Pinedo-Vasquez, M. Saving slash and burn to save biodiversity. Biotropica 2010, 42, 550–552. [Google Scholar] [CrossRef]
- Powell, B.; Thilsted, S.H.; Ickowitz, A.; Termote, C.; Sunderland, T.; Herforth, A. Improving diets with wild and cultivated biodiversity from across the landscape. Food Secur. 2015, 7, 535–554. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Wilson, E.O. Biodiversity studies: Science and policy. Science 1991, 253, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Toledo, A.; Burlingame, B. Biodiversity and nutrition; a common path toward global food security and sustainable development. J. Food Compos. Anal. 2006, 19, 477–483. [Google Scholar] [CrossRef]
- Thrupp, L.A. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. Int. Aff. 2000, 76, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Tuxill, J. Appreciating the benefits of plant biodiversity. In State of the World 1999: A Worldwatch Institute Report on Progress toward a Sustainable Society; Brown, L.R., Flavin, C., French, H., Starke, L., Eds.; W.W. Norton: New York, NY, USA, 1999; pp. 96–114. [Google Scholar]
- Pilling, D. Threats to animal genetic resources for food and agriculture—Approaches to recording, description, classification and analysis. Anim. Genet. Resour. 2010, 47, 11–22. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation (FAO). Biodiversity to Curb World’s Food Insecurity; Food and Agriculture Organisation: Rome, Italy, 2008. [Google Scholar]
- Vincenti, B.; Eyzaguirre, P.; Johns, T. The nutritional role of forest plant foods for rural communities. In Human Health and Forests: A Global Overview of Issues, Practice and Policy; Colfer, C.J.P., Ed.; Earthscan: London, UK, 2008; pp. 63–93. [Google Scholar]
- Ten Kate, K.; Laird, S.A. The Commercial Use of Biodiversity; Earthscan: London, UK, 1999; p. 398. [Google Scholar]
- Cotter, J.; Tirado, R. Food security and climate change: The answer is biodiversity. In Greenpeace Research Laboratories Report; Greenpeace Intrenational: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Karjalainen, E.; Sarjala, T.; Raito, H. Promoting human health through forests: Overview and major challenges. Environ. Health Prev. Med. 2010, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fa, J.E.; Currie, D.; Meeuwig, J. Bushmeat and food security in the congo basin: Linkages between wildlife and people’s future. Environ. Conserv. 2003, 30, 71–78. [Google Scholar] [CrossRef]
- Herndon, C.N.; Butler, R.A. Significance of biodiversity to human health. Biotropica 2010, 42, 558–560. [Google Scholar] [CrossRef]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2008, 68, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Suso, M.J.; Bebeli, P.J.; Christmann, S.; Mateus, C.; Negri, V.; Pinheiro de Carvalho, M.A.A.; Torricelli, R.; Veloso, M.M. Enhancing legume ecosystem services through an understanding of plant–pollinator interplay. Front. Plant Sci. 2016, 7, 333. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R.; Batáry, P.; DeClerck, F.; Gratton, C.; Hunt, L.; Ives, A.; Jonsson, M.; Larsen, A.; et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef]
- Verchot, L. The Science Is Clear: Forest Loss Behind Brazil’s Drought. Available online: http://blog.cifor.org/26559/the-science-is-clear-forest-loss-behind-brazils-drought?fnl=en (accessed on 27 November 2017).
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Milder, J.C.; Moroge, M.; Shames, S. Operationalizing climate-smart agricultural landscapes: The case of a tea-producing landscape in Kericho, Kenya. In Climate-Smart Landscapes: Multifunctionality in Practice; Minang, P.A., van Noordwijk, M., Freeman, O.E., Mbow, C., de Leeuw, J., Catacutan, D., Eds.; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015. [Google Scholar]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed]
- Rudi, L.M.; Azadi, H.; Witlox, F. Reconcilability of socio-economic development enhancement and environmental improvement in the context of Sub-Saharan Africa. Glob. Planet. Chang. 2012, 86–87, 1–10. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka metropolitan, Bangladesh. GeoJournal 2010, 77, 315–330. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Braimoh, A.K.; Onish, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Azadi, H.; Van Acker, V.; Zarafshani, K.; Witlox, F. Food systems: New-ruralism versus new-urbanism. J. Sci. Food Agric. 2012, 92, 2224–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Clement, F.; Amezaga, J.M. Linking reforestation policies with land use change in northern Vietnam: Why local factors matter. Geoforum 2008, 31, 265–277. [Google Scholar] [CrossRef]
- German Advisory Council on Global Change (WBGU). Humanity on the Move; WBGU: Berlin, Germany, 2016. [Google Scholar]
- Buxton, M.; Taylor, E. Urban land supply, governance and the pricing of land. Urban Policy Res. 2011, 29, 5–22. [Google Scholar] [CrossRef]
- Valerial, P.; Fiona, H. Peri-urban land conservation and development of alternative food networks: Insights from a case study area in metropolitan barcelona (Catalonia), Spain. Land Use Policy 2012, 30, 94–105. [Google Scholar]
- Ho, S.P.S.; Lin, G.C.S. Converting land to non agricultural use in China’s coastal provinces: Evidence from Jiangsu. Mod. China 2004, 30, 81–112. [Google Scholar] [CrossRef]
- Fazal, S. The need for preserving farmland: A case study from a predominantly agrarian economy (India). Landsc. Urban Plan. 2001, 55, 1–13. [Google Scholar] [CrossRef]
- Jaysawal, N.; Saha, S. Urbanization in India: An impact assessment. Int. J. Appl. Sociol. 2014, 4, 60–65. [Google Scholar]
- Jedwab, R.; Christiaensen, L.; Gindelsky, M. Rural Push, Urban Pull and... Urban Push? New Historical Evidence from Developing Countries; Institute for International Economic Policy: Washington, DC, USA, 2014. [Google Scholar]
- Malik, R.; Ali, M. The impact of urbanization on agriculture sector: A case study of Peshawar, Pakistan. J. Resour. Dev. Manag. 2015, 8, 79–85. [Google Scholar]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China: A case study in Beijing–Tianjin–Hebei region. Land Use Policy 2004, 22, 187–196. [Google Scholar] [CrossRef]
- Xu, W. The changing dynamic of land-use change in rural China: A case study of Yuhang, Zhejiang province. Environ. Plan. 2004, 36, 1595–1615. [Google Scholar] [CrossRef]
- Zhong, T.; Huang, X.; Zhang, X.; Wang, K. Temporal and spatial variability of agricultural land loss in relation to policy and accessibility in a low hilly region of southeast China. Land Use Policy 2011, 28, 762–769. [Google Scholar] [CrossRef]
- Azadi, H.; Houshyar, E.; Zarafshani, K.; Hosseininia, G.; Witlox, F. Agricultural outsourcing: A two-headed coin? Glob. Planet. Chang. 2013, 100, 20–27. [Google Scholar] [CrossRef]
- Vandergeten, E.; Azadi, H.; Teklemariam, D.; Nyssen, D.; Witlox, F.; Vanhaute, E. Agricultural outsourcing or land grabbing: A meta-analysis. Landsc. Ecol. 2016, 31, 1395–1417. [Google Scholar] [CrossRef]
- Azadi, H.; Ho, P.; Hasfiati, L. Agricultural land conversion drivers: A comparison between less developed, developing and developed countries. Land Degrad. Dev. 2011, 22, 596–604. [Google Scholar] [CrossRef]
- Deininger, K.; Feder, G. Land Registration, Governance, and Development: Evidence and Implications for Policy; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ramakrishna, N. Production system planning for natural resource conservation in a micro watershed. Electron. Green J. 2003, 1, 1–10. [Google Scholar]
- International Fund for Agricultural Development (IFAD). Improving Access to Land and Tenure Security; IFAD: Rome, Italy, 2008. [Google Scholar]
- Le Meur, P.-Y. Synthesis Report (Benin, South Africa). FAO Normative Work on Land Tenure Data & Policy-Making, 22–23, September 2005; FAO: Rome, Italy, 2005. [Google Scholar]
- Lavigne Delville, P. Changes in customary land management institutiopns: Evidence from West Africa. In Changes in “Customary” Land Tenure Systems in Africa; Cotula, L., Ed.; IIED, FAO: London, UK, 2007; pp. 35–50. [Google Scholar]
- Makhdum, M. Fundamental of Land Use Planning; Tehran University Press: Tehran, Iran, 2009. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Mendoza, G.A.; Martins, H. Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Ananda, J.; Herath, G. The use of analytic hierarchy process to incorporate stakeholder preferences into regional forest planning. For. Policy Econ. 2003, 5, 13–26. [Google Scholar] [CrossRef]
- Pirdashti, M.; Ghadi, A.; Mohammadi, M.; Shojatalab, G. Multi-criteria decision-making selection model with application to chemical engineering management decisions. World Acad. Sci. Eng. Technol. 2009, 49, 54–59. [Google Scholar]
- Xu, M.; Zeng, G.M.; Xu, X.Y.; Xuang, G.; Jiang, R.; Sun, W. Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North Carolina. Water Air Soil Pollut. 2006, 172, 167–184. [Google Scholar] [CrossRef]
- Zeng, G.M.; Jiang, R.; Huang, G.H.; Xu, M.; Li, J. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis. J. Environ. Manag. 2007, 82, 250–289. [Google Scholar] [CrossRef] [PubMed]
- Joerin, F.; Theriault, M.; Musy, A. Using gis and outranking multicriteria analysis for land-use suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 153–174. [Google Scholar] [CrossRef]
- Sicat, S.R.; Carranza, E.J.M.; Nidumolu, U.B. Fuzzy modeling of farmers’ knowledge for land suitability classification. Agric. Syst. 2005, 83, 49–75. [Google Scholar] [CrossRef]
Biomes | Area (Million km2) | Carbon Stocks (Gt) and Proportion in the Ecosystem (%) | ||||
---|---|---|---|---|---|---|
Vegetation | Proportion (%) | Soils | Proportion (%) | Total | ||
Tropical forests | 17.6 | 212 | 49.5 | 216 | 50.5 | 428 |
Temperate forests | 10.4 | 59 | 37.1 | 100 | 62.9 | 159 |
Boreal forests | 13.7 | 88 | 15.7 | 471 | 84.3 | 559 |
Tropical savannas | 22.5 | 66 | 20.0 | 264 | 80.0 | 330 |
Temperate grasslands | 12.5 | 9 | 3.0 | 295 | 97.0 | 304 |
Deserts | 45.5 | 8 | 4.0 | 191 | 96.0 | 199 |
Tundra | 9.5 | 6 | 4.7 | 121 | 95.3 | 127 |
Wetlands | 3.5 | 15 | 6.3 | 225 | 93.8 | 240 |
Croplands | 16 | 3 | 2.3 | 128 | 97.7 | 131 |
Total | 151.2 | 466 | 2011 | 2477 | ||
Proportion (%) | 19 | 81 | 100 |
Sub-Saharan Africa | Near East/ North Africa | East Asia | South Asia | Latin America and Caribbean | Total | |
---|---|---|---|---|---|---|
Increase in cereal yield (%) from a 20% increase in the use of fertilizer | ||||||
Rice | 5.1 | 8.7 | 9.8 | 10.0 | 10.7 | 8.9 |
Wheat | 11.0 | 11.1 | NA | 7.4 | 12.2 | 10.4 |
Maize | 9.9 | 11.3 | 20.0 | 8.3 | 13.2 | 12.5 |
Potential spared land area (Mha) | 2.0 | 2.7 | 6.1 | 7.0 | 5.0 | 22.9 |
CO2 emission from a 20% increase in fertilizer production (Mt) | 0.37 | 1.20 | 1.90 | 6.54 | 1.85 | 11.9 |
Potential CO2 sequestration from forest regeneration (Mt) on spared land | ||||||
Low rate (4 tCO2 ha−1 yr−1) | 8.1 | 10.7 | 24.8 | 28.4 | 20.3 | 92.3 |
High rate (9.5 tCO2 ha−1 yr−1) | 19.2 | 25.3 | 58.5 | 67.2 | 47.9 | 218 |
CO2 balance (Mt) | ||||||
Low | 7.7 | 9.5 | 22.9 | 21.9 | 18.4 | 80.4 |
High | 18.8 | 24.1 | 56.6 | 60.8 | 46.1 | 206 |
Average | 13.3 | 16.8 | 39.8 | 41.2 | 32.3 | 143 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlek, P.L.G.; Khamzina, A.; Azadi, H.; Bhaduri, A.; Bharati, L.; Braimoh, A.; Martius, C.; Sunderland, T.; Taheri, F. Trade-Offs in Multi-Purpose Land Use under Land Degradation. Sustainability 2017, 9, 2196. https://doi.org/10.3390/su9122196
Vlek PLG, Khamzina A, Azadi H, Bhaduri A, Bharati L, Braimoh A, Martius C, Sunderland T, Taheri F. Trade-Offs in Multi-Purpose Land Use under Land Degradation. Sustainability. 2017; 9(12):2196. https://doi.org/10.3390/su9122196
Chicago/Turabian StyleVlek, Paul L. G., Asia Khamzina, Hossein Azadi, Anik Bhaduri, Luna Bharati, Ademola Braimoh, Christopher Martius, Terry Sunderland, and Fatemeh Taheri. 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation" Sustainability 9, no. 12: 2196. https://doi.org/10.3390/su9122196
APA StyleVlek, P. L. G., Khamzina, A., Azadi, H., Bhaduri, A., Bharati, L., Braimoh, A., Martius, C., Sunderland, T., & Taheri, F. (2017). Trade-Offs in Multi-Purpose Land Use under Land Degradation. Sustainability, 9(12), 2196. https://doi.org/10.3390/su9122196