Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data
2.2.1. Land Use Data
2.2.2. Different Influencing Factors Data of Land Use Changes in Bangladesh
2.3. Methodology
2.3.1. Land Use Scenarios
Baseline Scenario
Ecological Protection Priority
Economic Growth
Spatial Allocation and Transition Probability of Land Use Change
2.3.2. DLS Model
2.3.3. Validation of DLS Model
3. Results and Discussion
3.1. Performance of the DLS Model
3.2. Analysis of the Driving Factors for the Dynamics of Land Use Changes
3.3. Dynamic Simulation of Land Changes
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hasan, S.S.; Hossain, M.; Sultana, S.; Ghosh, M.K. Women’s involvement in income generating activities and their opinion about its contribution: A study of Gazipur District, Bangladesh. Sci. Innov. 2015, 3, 72–80. [Google Scholar] [CrossRef]
- Sultana, S.; Hasan, S.S. Impact of Micro-Credit on Economic Empowerment of Rural Women. Agriculturists 2010, 8, 43–49. [Google Scholar] [CrossRef]
- Planning Commission of Bangladesh. Population and Housing Census, Preliminary Result of 2011; Bangladesh Bureau of Statistics (BBS): Dhaka, Bangladesh, 2014. Available online: http://203.112.218.65/WebTestApplication/userfiles/Image/National%20Reports/SED_REPORT_Vol-4.pdf (accessed on 30 December 2012).
- Uddin, K.; Gurung, D.R. Land cover change in Bangladesh—A knowledge based classification approach. In Proceedings of the 10th International Symposium on High Mountain Remote Sensing Cartography, ICIMOD, Kathmandu, Nepal, 8–11 September 2010. [Google Scholar]
- Biro, K.; Pradhan, B.; Buchroithner, M.; Makeschin, F. Land use/land cover change analysis and its impact on soil properties in the Northern part of Gadarif region, Sudan. Land Degrad. Dev. 2013, 24, 90–102. [Google Scholar] [CrossRef]
- Leh, M.; Bajwa, S.; Chaubey, I. Impact of land use change on erosion risk: An integrated remote sensing, geographic information system modeling methodology. Land Degrad. Dev. 2013, 24, 409–421. [Google Scholar] [CrossRef]
- Wu, X.; Shen, Z.; Liu, R.; Ding, Z. Land Use/Cover Dynamics in Response to Changes in Environmental and Socio-Political Forces in the Upper Reaches of the Yangtze River, China. Sensors 2008, 8, 8104–8122. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.K.; Haque, S.M.S. Soil characteristics and carbon sequestration potentials of vegetation in degraded hills of Chittagong, Bangladesh. Land Degrad. Dev. 2013, 24, 63–71. [Google Scholar] [CrossRef]
- Zhang, J.J.; Fu, M.C.; Zeng, H.; Geng, Y.H.; Hassani, F.P. Variations in ecosystem service values and local economy in response to land use: A case study of Wuhan, China. Land Degrad. Dev. 2013, 24, 236–249. [Google Scholar] [CrossRef]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. AMBIO J. Hum. Environ. 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Mendoza, M.E.; Granados, E.L.; Geneletti, D.; Pérez-Salicrup, D.R.; Salinas, V. Analysing land cover and land use change processes at watershed level: A multi temporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Appl. Geogr. 2011, 31, 37–50. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinform. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Ellis, E. Land Use and Land Cover Change. 2013. Available online: http://www.eoearth.org/view/article/154143 (accessed on 20 March 2013).
- Shapla, T.; Park, J.; Hongo, C.; Kuze, H. Agricultural Land Cover Change in Gazipur, Bangladesh, in Relation to Local Economy Studied Using Landsat Images. Adv. Remote Sens. 2015, 4, 214–223. [Google Scholar] [CrossRef]
- Kumar, M.; Ghosh, M.K. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques. J. Appl. Remote Sens. 2012, 6, 063608. [Google Scholar] [CrossRef]
- Zaman, S.; Katoh, M. Assessment of forest cover change in tropical moist deciduous forest in Takurgaon, Bangladesh using ALOS data. J. For. Plan. 2011, 16, 285–292. [Google Scholar]
- Rahman, M.M.; Begum, S. Land cover change analysis around the Sundarbans Mangrove forest of Bangladesh using remote sensing and GIS application. J. Sci. Found. 2011, 9, 95–107. [Google Scholar] [CrossRef]
- Islam, R.M.; Hasan, M.Z. Land use changing pattern and challenges for agricultural land: A study on Rajshahi district. J. Life Earth Sci. 2011, 6, 69–74. [Google Scholar] [CrossRef]
- Mamun, A.A.; Mahmood, A.; Rahman, M. Identification and Monitoring the Change of Land Use Pattern Using Remote Sensing and GIS: A Case Study of Dhaka City. IOSR J. Mech. Civ. Eng. 2013, 6, 20–28. [Google Scholar] [CrossRef]
- Roy, S.; Farzana, K.; Papia, M.; Hasan, M. Monitoring and Prediction of Land Use/Land Cover Change using the Integration of Markov Chain Model and Cellular Automation in the Southeastern Tertiary Hilly Area of Bangladesh. Int. J. Sci. Basic Appl. Res. 2015, 24, 125–148. [Google Scholar]
- Ahmed, S.J.; Bramley, G.; Verburg, P.H. Key Driving Factors Influencing Urban Growth: Spatial-Statistical Modelling with CLUE-s. In Dhaka Megacity: Geospatial Perspectives on Urbanization, Environment and Health; Dewan, A., Corner, R., Eds.; Springer Science & Business Media: New York, NY, USA, 2014. [Google Scholar]
- Islam, M.S.; Ahmed, R. Land use change prediction in Dhaka city using GIS aided Markov Chain Modeling. J. Life Earth Sci. 2011, 6, 81–89. [Google Scholar] [CrossRef]
- Corner, R.J.; Dewan, A.M.; Chakma, S. Monitoring and Prediction of Land-Use and Land-Cover (LULC) Change. In Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health; Dewan, A., Corner, R., Eds.; Springer Science & Business Media: New York, NY, USA, 2014. [Google Scholar]
- The World Bank (WB). Sustainable Land Management. Challenges, Opportunities, and Trade-Offs; International Bank for Reconstruction and Development (IBRD): Washington, DC, USA, 2006. [Google Scholar]
- Wang, X.; Zhao, X.L.; Zhang, Z.X.; Yi, L.; Zuo, L.J.; Wen, Q.K.; Liu, F.; Xu, J.Y.; Hu, S.G.; Liu, B. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 2016, 137, 256–268. [Google Scholar] [CrossRef]
- Xie, H.L.; He, Y.; Xie, X. Exploring the factors influencing ecological land change for China’s Beijing-Tianjin-Hebei Region using big data. J. Clean. Prod. 2017, 142, 677–687. [Google Scholar] [CrossRef]
- Xie, H.L.; Yao, G.R.; Liu, G.Y. Spatial evaluation of ecological importance based on GIS for environmental management: A case study in Xingguo County of China. Ecol. Indic. 2015, 51, 3–12. [Google Scholar] [CrossRef]
- Yao, G.; Xie, H. Rural restructuring in ecologically fragile mountainous areas of southern China: A case study of Changgang Town, Jiangxi Province. J. Rural Stud. 2016, 47, 435–448. [Google Scholar] [CrossRef]
- Xie, H.L.; Liu, Z.F.; Wang, P.; Liu, G.Y.; Lu, F.C. Exploring the mechanisms of ecological land change based on the spatial autoregressive model: A case study of the Poyang Lake eco-economic zone, China. Int. J. Environ. Res. Public Health. 2014, 11, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.L.; Liu, J.Y.; Ma, Z.W.; Duan, X.F.; Cui, Y.P. Effect of surrounding land-use change on the wetland landscape pattern of a natural protected area in Tianjin, China. Int. J. Sustain. Dev. World Ecol. 2012, 19, 16–24. [Google Scholar] [CrossRef]
- Cao, V.; Margin, M.; Favis, B.D.; Deschenes, L. Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services. J. Clean. Prod. 2015, 94, 56–66. [Google Scholar] [CrossRef]
- Deng, X.Z.; Su, H.B.; Zhan, J.Y. Integration of multiple data sources to simulate the dynamics of land systems. Sensors 2008, 8, 620–634. [Google Scholar] [CrossRef] [PubMed]
- Manson, S.M. Challenges in evaluating models of geographic complexity. Environ. Plan. B. 2007, 34, 245–260. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, W.; Verburg, P.H.; van Vliet, J.; Yang, P.; Zhou, Q.; Tang, H. A survey-based exploration of land-system dynamics in an agricultural region of Northeast China. Agric. Syst. 2013, 121, 106–116. [Google Scholar] [CrossRef]
- VanVilet, J.; Bregt, A.K.; Brown, D.G.; Delden, H.V.; Heckbert, S.; Verburg, P.H. A review of current calibration and validation practices in land-change modeling. Environ. Model. Softw. 2016, 82, 174–182. [Google Scholar] [CrossRef]
- Sterk, B.; van Ittersum, M.K.; Leeuwis, C. How, when, and for what reasons does land use modelling contribute to societal problem solving? Environ. Model. Softw. 2011, 26, 310–316. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, Q.; Zhan, J.; He, S.; Lin, Y. Simulation on the dynamics of forest area changes in northeast China. J. Geogr. Sci. 2010, 20, 495–509. [Google Scholar] [CrossRef]
- Jiang, Q.; Cheng, Y.; Jin, Q.; Deng, X.; Qi, Y. Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios. Energies 2015, 8, 10558–10583. [Google Scholar] [CrossRef]
- Jiang, Q.; Ma, E.; Zhan, J.; Shi, N. Seasonal and inter annual variation in energy balance in the semi-arid grassland area of China. Adv. Meteorol. 2015, 2015, 120620. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Wu, F.; Hasan, S.S. Scenario Analysis for Water Resources in Response to Land Use Change in the Middle and Upper Reaches of the Heihe River Basin. Sustainability 2015, 7, 3086–3108. [Google Scholar] [CrossRef]
- Zhen, L.; Deng, X.; Wei, Y.; Jiang, Q.; Lin, Y.; Helming, K.; Wang, C.; König, H.; Hu, J. Future land use and food security scenarios for the Guyuan district of remote western China. iForest 2014, 7, 362. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Statistical Pocket Book of Bangladesh 2014; Planning Division, Ministry of Planning, Government of the People’s Republic of Bangladesh, 2015. Available online: http://203.112.218.65/WebTestApplication/userfiles/Image/LatestReports/PB2014.pdf (accessed on 15 April 2016).
- Globeland30. Available online: www.globallandcover.com (accessed on 25 March 2017).
- Ran, Y.H.; Li, X. First China—Comments on global land cover map at 30-m resolution. Sci. China Earth Sci. 2015, 58, 1677–1678. [Google Scholar] [CrossRef]
- Yan, H.; Zhan, J.; Jiang, Q. Scenario simulation of changes of forest land in Poyang Lake watershed. Procedia Environ. Sci. 2010, 2, 1469–1478. [Google Scholar]
- Han, H.; Yang, C.; Song, J. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability, 2015, 7, 4260–4279. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, M.L.; Tian, H.Q.; Zhuang, D.F.; Zhang, Z.X.; Zhang, W.; Tang, X.M.; Deng, X.Z. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Turner, B.L.; Moss, R.H.; Skole, D. Relating Land Use and Global Land-Cover Change: A Proposal for an IGBP-HDP Core Project; International Geosphere-Biosphere Programme: Stockholm, Sweden, 1993; Available online: http://www.ciesin.org/ (accessed on 8 January 2005).
- Yue, T.X.; Wang, Y.A.; Liu, J.Y.; Chen, S.P.; Qiu, D.S.; Deng, X.Z.; Liu, M.L.; Tian, Y.Z.; Su, B.P. Surface modeling of human population distribution in China. Ecol. Model. 2005, 181, 461–478. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Eric, P.J.; Beurs, K.M.B.; Hartkamp, A.D. Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Obs. Geoinform. 2001, 3, 146–154. [Google Scholar]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, A.; Leenaars, J.; Hengl, T.; de Mendes, J.J.; Wo, S.I.S. Serving standardised soil profile data for the world. Earth Syst. Sci. Data Discuss. 2016. [Google Scholar] [CrossRef]
- Ribeiro, E.; Batjes, N.H.; Leenaars, J.G.B.; Van Oostrum, A.J.M.; de Mendes, J.J. Towards the Standardization and Harmonization of World Soil Data: Procedures Manual ISRIC World Soil Information Service (WoSIS Version 2.0); ISRIC—World Soil Information: Wageningen, The Netherlands, 2015; p. 110. Available online: http://www.isric.org/sites/default/files/isric_report_2015_03.pdf (accessed on 1 April 2015).
- Bangladesh Bureau of Statistics (BBS). Statistical Year Book of Bangladesh 2011; Planning Division, Ministry of Planning, Government of the People’s Republic of Bangladesh, 2012. Available online: http://203.112.218.65/WebTestApplication/userfiles/Image/LatestReports/YB2011.pdf (accessed on 15 September 2012).
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.Q.; Zhang, Y.M.; Yan, J.Z.; Zhang, Y.L. Simulation of land use dynamics in the upper reaches of the Daduriver. Geogr. Res. 2005, 24, 206–212. [Google Scholar]
- Pontius, R.G.; Peethambaram, S.; Castella, J.C. Comparison of three maps at multiple resolutions: A case study of land change simulation in Cho Don District, Vietnam. Ann. Assoc. Am. Geogr. 2011, 101, 45–62. [Google Scholar] [CrossRef]
- Planning Commission of Bangladesh. Prospective Plan of Bangladesh 2010–2021: Making Vision 2021 a Reality; General Economics Division, Planning Commission, Ministry of Planning: Dhaka, Bangladesh, 2012. Available online: http://www.plancomm.gov.bd/wp-content/uploads/2013/09/Perspective-Plan-of-Bangladesh.pdf (accessed on 25 September 2013).
- Planning Commission of Bangladesh. The 6th Five Year Plan (FY2011-FY2015); Ministry of Planning: Dhaka, Bangladesh, 2015. Available online: http://www.plancomm.gov.bd/sixth-five-year-plan/ (accessed on 26 September 2011).
- Planning Commission of Bangladesh. The 7th Five Year Plan: Background Study; Ministry of Planning: Dhaka, Bangladesh, 2016. Available online: http://www.plancomm.gov.bd/7th-five-year-plan/ (accessed on 23 February 2015).
- The World Bank Data Portal. 2016. Available online: http://data.worldbank.org/country/bangladesh?view=chart (accessed on 27 July 2016).
- Mas, J.F.; Kolb, M.; Paegelow, M.; Olmedo, M.T.C.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef]
- Cohen, J.A. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Eugenio, D.B.; Glass, M. The Kappa Statistic: A Second Look. Comput. Linguist. 2004, 30, 95–101. [Google Scholar] [CrossRef]
- Kraemer, H.C.; Periyakoil, V.S.; Noda, A. Kappa coefficients in medical research. Stat. Med. 2002, 21, 2109–2129. [Google Scholar] [CrossRef] [PubMed]
- Hartling, L.; Bond, K.; Santaguida, P.L.; Viswanathan, M.; Dryden, D.M. Testing a tool for the classification of study designs in systematic reviews of interventions and exposures showed moderate reliability and low accuracy. J. Clin. Epidemiol. 2011, 64, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Ingenhoven, T.J.; Duivenvoorden, H.J.; Brogtrop, J.; Lindenborn, A.; van den Brink, W.; Passchier, J. Interrater reliability for Kernberg’s structural interview for assessing personality organization. J. Personal. Disord. 2009, 23, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.N.; Naghdi, S.; Forogh, B.; Hasson, S.; Atashband, M.; Lashgari, E. Development of the Persian version of the Modified Modified Ashworth Scale: Translation, adaptation, and examination of interrater and intrarater reliability in patients with post stroke elbow flexor spasticity. Disabil. Rehabil. 2012, 34, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.M.; Field, R. Interrater agreement measures: Comments on kappa η, Cohen’s kappa, Scott’s π and Aickin’sα. Underst. Stat. 2003, 2, 205–219. [Google Scholar] [CrossRef]
- Zwick, R. Another look at interrater agreement. Psychol. Bull. 1988, 103, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Hagen-Zanker, A.; Lajoie, G. Neutral models of landscape change as benchmarks in the assessment of model performance. Landsc. Urban Plan. 2008, 86, 284–296. [Google Scholar] [CrossRef]
- Saraux, A.; Tobón, G.J.; Benhamou, M.; Devauchelle-Pensec, V.; Dougados, M.; Mariette, X.; Berenbaum, F.; Chiocchia, G.; Rat, A.C.; Schaeverbeke, T. Potential classification criteria for rheumatoid arthritis after two years: Results from a French multi center cohort. Arthritis Care Res. 2013, 65, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Anthony, J.; Viera, M.D.; Joanne, M.G. Understanding Inter observer Agreement: The Kappa Statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L.; Cohen, J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Meas. 1973, 33, 613–619. [Google Scholar] [CrossRef]
- Hasan, M.N.; Hossain, M.S.; Bari, M.A.; Islam, M.R. Agricultural Land Availability in Bangladesh; SRDI: Dhaka, Bangladesh, 2013. Available online: http://www.srdi.gov.bd/wp-content/uploads/2014/03/Agricultural-land-availability-in-Bangladesh-monograph-1.pdf (accessed on 11 May 2014).
- Mohsin, A. The Politics of Nationalism: The Case of Chittagong Hill Tracts, Bangladesh; The University Press Limited: Dhaka, Bangladesh, 1997. [Google Scholar]
- Rasul, G.; Thapa, G.B. State Policies, Praxies and Land-Use in the Chittagong Hill Tracts of Bangladesh; IIED Working Paper; International Institute for Environment and Development: London, UK, 2005; Available online: http://hdl.handle.net/10535/6189 (accessed on 25 August 2010).
- Roy, R.D. Sustainable and equitable resource management in the Chittagong Hill Tracts. In Farming Practices and Sustainable Development in the Chittagong Hill Tracts; Khan, N.A., Alam, M.K., Khisa, S.K., Millat-e-Mustafa, M., Eds.; CHTDB and VFFP-IC: Chittagong, Bangladesh, 2002; pp. 135–154. [Google Scholar]
- Seabrook, J. In the city of hunger: Barisal Bangladesh. Race Class. 2013, 51, 39–58. [Google Scholar] [CrossRef]
- Hossain, M.; Jones, S. Production, Poverty and the Co-operative Ideal: Contradictions in Bangladesh Rural Development Policy. In Rural Development and the State: Contradictions and Dilemmas in Developing Countries; Lea, D., Chaudhuri, D., Eds.; Methuen: London, UK, 1983; pp. 161–185. [Google Scholar]
- Devine, J. NGOs, politics and grassroots mobilisation: Evidence from Bangladesh. J. South Asian Dev. 2006, 1, 77–99. [Google Scholar] [CrossRef]
- Barakat, A.; Ara, R.; Taheruddin, M.; Hoque, S.; Islam, N. Towards a Feasible Land Use Policy of Bangladesh; Human Development Research Centre (HDRC): Dhaka, Bangladesh, 2007. [Google Scholar]
- Bangladesh Formally Joins China’s Flagship ‘One Belt One Road’ Initiative. Available online: http://bdnews24.com/bangladesh/2016/10/15/bangladesh-formally-joins-chinas-flagship-one-belt-one-road-initiative (accessed on 25 October 2016).
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar]
- Verburg, P.H.; Overmars, K.P. Dynamic simulation of land-use change trajectories with the CLUE-s model. Model. Land Use Chang. 2007, 90, 321–337. [Google Scholar]
- Pontius, R.G., Jr.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 2004, 179, 445–461. [Google Scholar] [CrossRef]
Code | Land use | Description |
---|---|---|
0 | Cultivated land | Original data include both rice and non-irrigated uplands. |
1 | Forest area | Natural or planted forests with canopy covers greater than 30%; land covered by trees less than 2 m high, with a canopy cover greater than 40%; land covered by trees with canopy cover between 10% and 30%; and land used for teagardens, orchards and nurseries. |
2 | Grassland | Lands covered by herbaceous plants with coverage greater than 5% and land mixed rangeland with the coverage of shrub canopies less than 10%. |
3 | Water area | Land covered by natural water bodies or land with facilities for irrigation and water reservation, including rivers, canals, lakes, beaches and shorelines, and bottomland. |
4 | Built-up area | Land used for urban and rural settlements, industry and transportation. |
5 | Unused land | All other lands. |
Factor Type | Influencing Factor | Definition |
---|---|---|
Geophysical variables | Soil pH | pH value of the soil |
Elevation | Digital Elevation Model (m) (DEM) | |
Climatic variables | Air temperature | Mean annual temperature (°C) |
Hours of sunshine | Hours of sunshine rectified to account for the spatial variability of solar radiation (mean annual) (i.e., topographic effects) | |
Average rainfall | Mean annual rainfall (mm) | |
Proximity variables | Distance to divisional head quarter | Geometric distance to the nearest divisional head quarter (km) |
Distance to nearest highways | Distance to the nearest highway (km) | |
Distance to nearest secondary highways | Distance to the second nearest highway (km) | |
Socioeconomic variables | Population density | Interpolated population density (persons/km2) based on the population distribution model [32,49] |
GDP | Interpolated values of gross domestic product (GDP; million USD/km based on spatially explicit analyses of the relationship between economic growth and factors that might affect economic growth [50] | |
Urban population density | Interpolated urban population density (persons/km2) based on the population distribution model |
Cultivated Land | Forest Area | Grassland | Water Area | Built-Up Area | Unused Land | |
---|---|---|---|---|---|---|
Cultivated land | 0.97 | 0.02 | 0.04 | 0.15 | 0.12 | 0.04 |
Forest area | 0.02 | 0.93 | 0.08 | 0.02 | 0.01 | 0.00 |
Grassland | 0.00 | 0.02 | 0.82 | 0.03 | 0.00 | 0.35 |
Water area | 0.00 | 0.00 | 0.02 | 0.77 | 0.01 | 0.06 |
Built-up area | 0.00 | 0.01 | 0.01 | 0.02 | 0.85 | 0.00 |
Unused land | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.54 |
Driving Factors | Cultivated Land | Forest Area | Grassland | Water Area | Built-Up Area | Unused Land |
---|---|---|---|---|---|---|
Soil pH | 0.020 (0.001) | −0.014 (0.001) | 0.000 (0.001) | −0.015 (0.001) | −0.001 (0.001) | −0.006 (0.013) |
DEM | −0.015 (0.000) | 0.001 (0.000) | −0.008 (0.001) | −0.003 (0.001) | −0.017 (0.001) | −0.033 (0.047) |
Average temperature | −0.179 (0.018) | −3.256 (0.053) | 2.718 (0.053) | 0.044 (0.045) | −0.004 (0.027) | 3.194 (2.026) |
Average sunshine hours | −1.779 (0.096) | 14.676 (0.181) | 2.255 (0.261) | −1.501 (0.257) | −6.494 (0.173) | 4.305 (8.622) |
Average rainfall | −0.012 (0.000) | 0.004 (0.000) | 0.012 (0.000) | −0.015 (0.001) | −0.001 (0.000) | 0.063 (0.016) |
Distance to divisional HQ | 0.003 (0.000) | 0.002 (0.000) | −0.003 (0.001) | −0.009 (0.001) | −0.007 (0.000) | −0.028 (0.030) |
Distance to highways | 0.032 (0.002) | −0.070 (0.004) | 0.099 (0.005) | 0.006 (0.005) | −0.056 (0.003) | 0.077 (0.157) |
Distance to secondary ways | −0.002 (0.001) | −0.089 (0.002) | 0.128 (0.003) | 0.024 (0.003) | −0.051 (0.002) | −0.013 (0.126) |
Population density | 0.003 (0.000) | 0.047 (0.002) | 0.048 (0.000) | 0.002 (0.000) | 0.001 (0.000) | −0.107 (0.072) |
Urban population density | 0.010 (0.000) | 0.000 (0.001) | 0.009 (0.001) | −0.008 (0.001) | 0.004 (0.000) | −0.019 (0.084) |
GDP | 0.041 (0.004) | 0.030 (0.008) | 0.131 (0.006) | 0.019 (0.007) | 0.005 (0.000) | 0.003 (0.000) |
Constant | −1.213 | −6.672 | −1.423 | −3.165 | −2.412 | −6.502 |
Observation numbers | 165573 | 165573 | 165573 | 165573 | 165573 | 165573 |
Pseudo R2 | 0.175 | 0.432 | 0.239 | 0.141 | 0.110 | 0.315 |
Scenario | Year | Cultivated Land | Forest Area | Grassland | Water Area | Built-Up Area | Unused Land | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | % Change | Area | % Change | Area | % Change | Area | % Change | Area | % Change | Area | % Change | ||
Base year | 2010 | 108,223 | 0 | 21,513 | 0 | 8079 | 0 | 6911 | 0 | 22,964 | 0 | 170 | 0 |
Baseline scenario | 2020 | 106,777 | −1.33 | 24,387 | 13.35 | 9121 | 12.89 | 4475 | −35.24 | 23,007 | 0.19 | 93 | −45.29 |
2030 | 107,662 | −0.51 | 24,390 | 13.37 | 6962 | −13.82 | 4557 | −34.06 | 24,092 | 4.91 | 197 | 15.88 | |
Ecological protection priority | 2020 | 105,769 | −2.26 | 25,397 | 18.05 | 9071 | 12.28 | 4475 | −35.24 | 23,055 | 0.39 | 93 | −45.29 |
2030 | 99,023 | −8.50 | 29,185 | 35.66 | 10,531 | 30.35 | 4437 | −35.79 | 24,643 | 7.31 | 41 | −75.88 | |
Economic growth | 2020 | 99,298 | −8.24 | 20,752 | −3.53 | 7189 | −11.06 | 6890 | −0.30 | 33,710 | 46.79 | 21 | −87.64 |
2030 | 99,795 | −7.78 | 20,118 | −6.48 | 6113 | −24.33 | 6897 | −0.20 | 34,892 | 51.94 | 45 | −73.53 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, S.S.; Deng, X.; Li, Z.; Chen, D. Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development. Sustainability 2017, 9, 505. https://doi.org/10.3390/su9040505
Hasan SS, Deng X, Li Z, Chen D. Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development. Sustainability. 2017; 9(4):505. https://doi.org/10.3390/su9040505
Chicago/Turabian StyleHasan, Shaikh Shamim, Xiangzheng Deng, Zhihui Li, and Dongdong Chen. 2017. "Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development" Sustainability 9, no. 4: 505. https://doi.org/10.3390/su9040505
APA StyleHasan, S. S., Deng, X., Li, Z., & Chen, D. (2017). Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development. Sustainability, 9(4), 505. https://doi.org/10.3390/su9040505