Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010
Abstract
:1. Introduction
2. Data and Method
2.1. Afforestation in South Korea
2.1.1. Study Area
2.1.2. Afforestation Program
2.1.3. Establishing the Forest Stock Map
2.1.4. Forest Stock Change Map in the Past Four Decades
2.2. Forest Water Supply by the InVEST Model
2.2.1. The Concept of Forest Water Supply and Yield
2.2.2. InVEST Model
2.2.3. Input Data and Parameters of the InVEST Model
2.3. Soil Loss by the SWAT Model
2.3.1. The Concept of Soil Loss
2.3.2. SWAT Model and MUSLE
2.3.3. Input Data and Parameters of the SWAT Model
2.4. Evaluation and Sensitivity Analysis
2.4.1. InVEST Model
2.4.2. SWAT Model
3. Result and Discussion
3.1. Forest Water Supply by the InVEST Model
3.1.1. Evaluation and Sensitivity of the Model Estimate
3.1.2. Estimating Forest Water Yield by Afforestation
3.2. Soil Loss by SWAT
3.2.1. Calibration and Validation of SWAT Model
3.2.2. Estimating Soil Loss by Afforestation
3.3. Comparisons of the Effect of Afforestation and Climate Change
3.4. Implications of National Scale Afforestation to Other Regions
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Muñiz, M. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Kim, D.; Lim, C.H.; Song, C.; Lee, W.K.; Piao, D.; Heo, S.; Jeon, S. Estimation of future carbon budget with climate change and reforestation scenario in North Korea. Adv. Space Res. 2016, 58, 1002–1016. [Google Scholar] [CrossRef]
- Gregersen, H.M. Village Forestry Development in the Republic of Korea. A Case Study; FAO: Rome, Italy, 1982. [Google Scholar]
- Creed, I.F.; Spargo, A.T.; Jones, J.A.; Buttle, J.M.; Adams, M.B.; Beall, F.D.; Green, M.B. Changing forest water yields in response to climate warming: Results from long-term experimental watershed sites across North America. Glob. Chang. Biol. 2014, 20, 3191–3208. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhao, T.; Shi, X.; Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 2016, in press. [Google Scholar] [CrossRef]
- Song, M.; Bae, J.S.; Seol, M.H. Development of the Forest Carbon Sink Index on Afforestation and Reforestation Activities. J. Korean For. Soc. 2014, 103, 137–146. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, T.K.; Han, S.; Kim, S.; Yi, M.J.; Park, G.S.; Kim, S.; Son, Y.M.; Kim, R.; Son, Y. Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 2014, 11, 4637–4650. [Google Scholar] [CrossRef]
- Park, H.; Lee, J.Y.; Song, M. Scientific activities responsible for successful forest greening in Korea. For. Sci. Technol. 2017, 13, 1–8. [Google Scholar] [CrossRef]
- The Economics of Ecosystems and Biodiversity (TEEB). The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2016, in press. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, K.D.; Kim, R.H.; Park, C.Y.; Yoon, H.J.; Lee, S.W.; Choi, H.T.; Kim, J.J. A Study on the Estimation and the Evaluation Methods of Public Function of Forest, Research Report 10–26; Korea Forest Research Institute(later called as National Institute of Forest Service (NIFoS)): Seoul, Korea, 2010.
- National Institute of Forest Science (NIFoS). Causes of Forest Degradation and Drivers of Forest Recovery in South Korea; NIFoS: Seoul, Korea, 2010.
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458, 246–255. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Kim, J.H.; Kim, R.H.; Youn, H.J.; Lee, S.W.; Choi, H.T.; Kim, J.J.; Park, C.R.; Kim, K.D. Valuation of nonmarket forest resources. J. Korean Inst. For. Recreat. 2012, 16, 9–18. [Google Scholar]
- Jung, Y.G.; Lee, S.W.; Lee, K.H.; Park, K.Y.; Lee, H.H. Application of RUSLE and MUSLE for prediction of soil loss in small mountainous basin. J. Korean For. Soc. 2014, 103, 98–104. [Google Scholar] [CrossRef]
- Jang, C.; Shin, Y.; Kum, D.; Kim, R.; Yang, J.E.; Kim, S.C.; Jung, Y. Assessment of soil loss in South Korea based on land-cover type. Stoch. Environ. Res. Risk Assess. 2015, 29, 2127–2141. [Google Scholar] [CrossRef]
- Ewane, B.E.; Lee, H.H. Influence of vegetation cover and other sources of variability on sediment and runoff response in a burned forest in South Korea. J. Mt. Sci. 2017, 14, 296–315. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Available online: http://www.kma.go.kr/weather/climate/average_south.jsp (accessed on 7 April 2017).
- Korea Forest Service (KFS). Statistical Yearbooks of Forestry (1968–2010); KFS: Daejeon, Korea, 1968–2010.
- National Institute of Forest Service (NIFoS). The 5th National Forest Inventory Report; NIFOS: Seoul, Korea, 2011. (In Korean)
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Su, Y. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.J.; Caldwell, P.V.; Brantley, S.T.; Miniat, C.F.; Vose, J.M.; Swank, W.T. Water yield following forest-grass-forest transitions. Hydrol. Earth Syst. Sci. 2017, 21, 981. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2015. [Google Scholar]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Lee, W.K.; Choi, H.A.; Jeon, S.W.; Kim, J.U.; Kim, J.S.; Kim, J.T. Application of InVEST water yield model for assessing forest water provisioning ecosystem service. J. Korean Assoc. Geogr. Inf. Stud. 2015, 18, 120–134. [Google Scholar] [CrossRef]
- Cho, H.W.; Song, C.H.; Jeon, S.W.; Kim, J.S.; Lee, W.K. Evaluation of the spatial distribution of water yield service based on precipitation and population. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 1–15. [Google Scholar] [CrossRef]
- Yun, J.I.; Choi, J.Y.; Ahn, J.H. Seasonal trend of elevation effect on daily air temperature in Korea. Korean J. Agric. For. Meteorol. 2001, 17, 35–44. [Google Scholar]
- Jeon, S.W.; Kim, J.; Jung, H. A study on the forest classification for ecosystem services valuation – focused on forest type map and landcover Map. J. Korea Soc. Environ. Restor. Technol. 2013, 16, 31–39. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.H. Eco-Environmental Hydraulics; Cheong Moon Gak: Seoul, Korea, 2003. [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef]
- Zheng, F.L. Effect of Vegetation Changes on Soil Erosion on the Loess Plateau11Project supported by the Chinese Academy of Sciences (No. KZCX3-SW-422) and the National Natural Science Foundation of China (No. 9032001 and 40335050). Pedosphere 2006, 16, 420–427. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains; Agriculture Handbook 282; USDA-ARS: Washington, DC, USA, 1965.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Losses: A Guide to Conservation Planning; USDA Agricultural Handbook No. 537; U.S. Government Printing Office: Washington, DC, USA, 1965.
- Williams, J.R. Sediment-yield prediction with universal equation using runoff energy factor. In Present and Prospective Technology for Predicting Sediment Yield and Sources, Proceedings of the Sedimentyield Workshop, USDA Sedimentation Laboratory, Oxford, MS, USA, 28–30 November 1972; ARS-S-40; USDA-ARS: Washington, DC, USA, 1975; pp. 244–252. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Invited Review Series. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 1211–1250. [Google Scholar]
- Phuong, T.T.; Thong, C.V.T.; Ngoc, N.B.; Van Chuong, H. Modeling Soil Erosion within Small Moutainous Watershed in Central Vietnam Using GIS and SWAT. Resource Environ. 2014, 4, 139–147. [Google Scholar]
- Schiffer, R.; Klik, A.; Strohmeier, S.; Srinivasan, R. Simulation of surface runoff and soil erosion in small watersheds in Northern Ethiopia-application and verification of the SWAT model. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; Volume 17, p. 3438. [Google Scholar]
- Ministry of Science and Technology, Korea Institute of Civil Engineering and Building Technology (KICT). Development of Analysing System for Surface Water Hydrological Components—Sustainable Water Resources Research Program; Ministry of Science and Technology: Gwacheon, Korea, 2007. (In Korean)
- Lee, J.S.; Lee, M.H.; Son, H.G. A study on analysis of discharge and sediment for the stream in Korea. Korea Water Resour. Assoc. 2013, 5, 494–498. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2015, 55, 1491–1508. [Google Scholar] [CrossRef]
- Yesuf, H.M.; Assen, M.; Alamirew, T.; Melesse, A.M. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 2015, 127, 191–205. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H.; Chen, G.; Ren, W.; Zhang, C.; Liu, J. Effects of Land-Use and Land-Cover Change on Evapotranspiration and Water Yield in China during 1900–2001. J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Ellison, D.N.; Futter, M.; Bishop, K. On the forest cover-water yield debate: From demand-to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Van Rompaey, A.J.; Govers, G.; Puttemans, C. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surf. Process. Landf. 2002, 27, 481–494. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil erosion under forest. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; pp. 321–344. [Google Scholar]
- Zhou, Z.C.; Shangguan, Z.P.; Zhao, D. Modelling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecol. Model. 2006, 198, 263–268. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E.; Callegari, G. Investigating the effects of afforestation on soil erosion and sediment mobilisation in two small catchments in Southern Italy. Catena 2009, 79, 181–188. [Google Scholar] [CrossRef]
- Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B.E.; Jones, K.C.; Di Guardo, A. Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 2013, 74, 378–384. [Google Scholar] [CrossRef]
- Song, C.H.; Lee, W.K.; Choi, H.A.; Kim, J.; Jeon, S.W.; Kim, J.S. Spatial assessment of ecosystem functions and services for air purification of forests in South Korea. Environ. Sci. Policy 2016, 63, 27–34. [Google Scholar] [CrossRef]
Period | Precipitation (mm) | Forest Stock (million m3) | Water Yield (million m3 year−1) | Soil Loss (ton ha−1) |
---|---|---|---|---|
1970s | 1253 | 102.18 | 1276.42 | 3.041 |
1980s | 1304 | 191.74 | 1658.73 | 2.611 |
1990s | 1260 | 324.16 | 1813.64 | 1.518 |
2000s | 1317 | 564.66 | 2220.95 | 0.601 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.S.; Lim, C.-H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.-K. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. https://doi.org/10.3390/su9061017
Kim GS, Lim C-H, Kim SJ, Lee J, Son Y, Lee W-K. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability. 2017; 9(6):1017. https://doi.org/10.3390/su9061017
Chicago/Turabian StyleKim, Gang Sun, Chul-Hee Lim, Sea Jin Kim, Jongyeol Lee, Yowhan Son, and Woo-Kyun Lee. 2017. "Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010" Sustainability 9, no. 6: 1017. https://doi.org/10.3390/su9061017
APA StyleKim, G. S., Lim, C. -H., Kim, S. J., Lee, J., Son, Y., & Lee, W. -K. (2017). Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability, 9(6), 1017. https://doi.org/10.3390/su9061017