Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches
Abstract
:1. Introduction
2. Research Methodology
2.1. Study Area
2.2. Data Sources
Data types | Year | Resolution/scale | Sources |
---|---|---|---|
Satellite imageries: | |||
CORONA | 1967.02.05 | 1 Meter | USGS |
LANDSAT MSS | 1976.10.28 | 57 Meter | University of Maryland |
LANDSAT TM | 1989.10.31 | 30 Meter | University of Maryland |
SPIN-2 | 1991 * | 2 Meter | USGS |
LANDSAT TM | 1999.11.04 | 30 Meter | University of Maryland |
IKONOS | 2000 * | 1 Meter | GeoEye, Space Imaging |
QuickBird | 2007 * | 0.6 Meter | Google Earth |
Aerial photographs | 1979, 1981, 1992, 1998 | - | Survey Department, Nepal |
Vector layers: | |||
Spot height (points) | 1995 | 20 Meter | [24] |
Land cover map | 1978 | - | |
Land use map | 1995 | 1:25000 | |
Road map | 2000 | - | |
Field survey (geographic references, observations and interviews) | 2007.12 | - | Kathmandu fieldwork |
2.3. Mapping of Spatial Patterns
2.4. Analysis of Spatial Patterns
Metrics | Description | Units | Measure of |
---|---|---|---|
PD | PD equals the number of patches of a specific land cover class divided by total landscape area. | No./ 100 ha. | fragmentation |
ED | The sum of the lengths of all edge segments involving a specific class, divided by the total landscape area multiplied by 10000. | Meters/ ha | fragmentation |
LPI | The area of largest patch of the corresponding class divided by total area covered by that class, multiplied by 100. | Percent | dominance |
ENNMN | The distance mean value of all patches of a land use to the nearest neighbor patch of the land use based on shortest edge-to-edge distance from cell centre to cell centre. | Meters | isolation/ proximity |
AWMPFD | It describes the complexity and fragmentation of a patch by a perimeter-area ratio. Lower values indicate compact form of a patch. If the patches are more complex and fragmented, the perimeter increases representing higher values. | None, range: 1-2 | fragmentation and complexity |
COHESION | Approaches 0 as the portion of the landscape comprised of the focal class decreases and becomes increasingly subdivided and less physically connected. | None, range: 0-100 | physical connectedness |
CONTAG* | Contagion index describes the fragmentation of a landscape by the random and conditional probabilities that a pixel of patch class is adjacent to another patch class. It measures to what extent landscapes are aggregated or clumped. | None, range: 1-100 | fragmentation and the degree of aggregation |
SHDI* | Shannon’s diversity index quantifies the diversity of the landscape based on two components: the number of different patch types and the proportional area distribution among patch types. | Information | patch diversity |
3. Results
3.1. Spatial Patterns of Land Use
Year | 1967 | 1978 | 1991 | 2000 | ||||
---|---|---|---|---|---|---|---|---|
Land use type | Hectare | % | Hectare | % | Hectare | % | Hectare | % |
Shrubs | 13563 | 19.81 | 12124 | 17.71 | 8129 | 11.87 | 7150 | 10.44 |
Forest | 15800 | 23.08 | 16311 | 23.83 | 13887 | 20.29 | 13301 | 19.43 |
Water | 1337 | 1.95 | 1380 | 2.02 | 1341 | 1.96 | 1266 | 1.85 |
Urban/builtup area* | 2010 | 2.94 | 3362 | 4.91 | 6313 | 9.22 | 9717 | 14.19 |
Open Space | 100 | 0.15 | 95 | 0.14 | 135 | 0.20 | 171 | 0.25 |
Agricultural area | 35649 | 52.07 | 35186 | 51.40 | 38652 | 56.46 | 36854 | 53.83 |
Total | 68458 | 100.00 | 68458 | 100.00 | 68458 | 100.00 | 68458 | 100.00 |
3.2. Spatial Patterns Changes
1978 | |||||||
---|---|---|---|---|---|---|---|
1967 | Shrubs | Forest | Water | Urban /builtup area | Open space | Agricultural area | Total |
Shrubs | 17.68 | 2.13 | 0.00 | 0.00 | 0.00 | 0.01 | 19.81 |
Forest | 0.03 | 21.70 | 0.01 | 0.01 | 0.00 | 1.33 | 23.08 |
Water | 0.00 | 0.00 | 1.95 | 0.00 | 0.00 | 0.00 | 1.95 |
Urban/builtup area | 0.00 | 0.00 | 0.00 | 2.93 | 0.00 | 0.00 | 2.94 |
Open space | 0.00 | 0.00 | 0.00 | 0.01 | 0.14 | 0.00 | 0.15 |
Agricultural area | 0.00 | 0.00 | 0.06 | 1.96 | 0.00 | 50.05 | 52.07 |
Total | 17.71 | 23.83 | 2.02 | 4.91 | 0.14 | 51.40 | 100.00 |
1991 | |||||||
---|---|---|---|---|---|---|---|
1978 | Shrubs | Forest | Water | Urban /builtup area | Open space | Agricultural area | Total |
Shrubs | 11.41 | 0.89 | 0.00 | 0.13 | 0.00 | 5.27 | 17.71 |
Forest | 0.46 | 19.32 | 0.00 | 0.21 | 0.03 | 3.81 | 23.83 |
Water | 0.00 | 0.00 | 1.92 | 0.04 | 0.00 | 0.06 | 2.02 |
Urban/builtup area | 0.00 | 0.00 | 0.00 | 4.90 | 0.00 | 0.01 | 4.91 |
Open space | 0.00 | 0.00 | 0.00 | 0.03 | 0.10 | 0.00 | 0.14 |
Agricultural area | 0.00 | 0.07 | 0.04 | 3.90 | 0.07 | 47.32 | 51.40 |
Total | 11.87 | 20.28 | 1.96 | 9.22 | 0.20 | 56.46 | 100.00 |
2000 | |||||||
---|---|---|---|---|---|---|---|
1991 | Shrubs | Forest | Water | Urban /builtup area | Open space | Agricultural area | Total |
Shrubs | 10.35 | 0.12 | 0.00 | 0.19 | 0.00 | 1.21 | 11.87 |
Forest | 0.08 | 19.23 | 0.00 | 0.36 | 0.04 | 0.57 | 20.29 |
Water | 0.00 | 0.00 | 1.84 | 0.03 | 0.00 | 0.09 | 1.96 |
Urban/builtup area | 0.00 | 0.01 | 0.00 | 9.19 | 0.01 | 0.01 | 9.22 |
Open space | 0.00 | 0.00 | 0.00 | 0.02 | 0.18 | 0.00 | 0.20 |
Agricultural area | 0.01 | 0.07 | 0.01 | 4.40 | 0.02 | 51.95 | 56.46 |
Total | 10.44 | 19.43 | 1.85 | 14.19 | 0.25 | 53.83 | 100.00 |
3.3. Landscape Fragmentation and Heterogeneity Analysis
4. Discussion
5. Conclusions
Acknowledgements
References and Notes
- Weber, C.; Puissant, A. Urbanization pressure and modeling of urban growth: example of the Tunis Metropolitan Area. Remote Sens. Environ. 2003, 86, 341–352. [Google Scholar] [CrossRef]
- United Nation Report of the meeting–urbanization: a global perspective. In Proceedings of the Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development, New York, USA, January 21-23, 2008; pp. 21–23.
- Thapa, R.B.; Murayama, Y.; Ale, S. Kathmandu. Cities 2008, 25, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Portnov, B.A.; Adhikari, M.; Schwartz, M. Urban growth in Nepal: Does location matter? Urban Stud. 2007, 44, 915–937. [Google Scholar] [CrossRef]
- Sharma, P. Urbanization and development. In Population Monograph of Nepal; Central Bureau of Statistics: Kathmandu, Nepal, 2003; pp. 375–412. [Google Scholar]
- Pradhan, P.K. Population growth, migration and urbanisation: environmental consequences in Kathmandu Valley, Nepal. In Environmental Change and its Implications for Population Migration; Unruh, J.D., Krol, M.S., Kliot, N., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 177–199. [Google Scholar]
- Mesev, V. Urban land use uncertainty: Bayesian approaches to urban image classification. In Remotely Sensed Cities; Mesev, V., Ed.; Taylor & Francis: New York, USA, 2003; pp. 207–222. [Google Scholar]
- Weng, Y. Spatiotemporal changes of landscape pattern in response to urbanization. Landscape Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Miller, R.B.; Small, C. Cities from space: potential applications of remote sensing in urban environmental research and policy. Environ. Sci. Policy 2003, 6, 129–137. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: measurement, analysis and modelling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Zhang, S. Investigating landscape pattern and its dynamics in Daqing, China. Int. J. Remote Sens. 2005, 26, 2259–2280. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Thapa, R.B.; Murayama, Y. Spatial structure of land use dynamics in Kathmandu Valley. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of Commission VIII, ISPRS Congress; Chen, J., Jiang, J., Peled, A., Eds.; ISPRS: Beijing, China, 2008; Volume XXXVII, (Part-B8); pp. 11–16. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Thapa, R.B.; Murayama, Y. Urban mapping, accuracy, & image classification: a comparison of multiple approaches in Tsukuba City, Japan. Appl. Geog. 2009, 29, 135–144. [Google Scholar]
- Yu, X.; Ng, C. An integrated evaluation of landscape change using remote sensing and landscape metrics: a case study of Panyu, Guangzhou. Int. J. Remote Sens. 2006, 27, 1075–1092. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landscape Urban Plan. 2004, 69, 335–354. [Google Scholar] [CrossRef]
- Seto, K.C.; Kaufmann, R.K. Modeling the drivers of urban land use change in the Perl River Delta, China: Integrating remote sensing with socioeconomic data. Land Econ. 2003, 79, 106–121. [Google Scholar] [CrossRef]
- Gatrell, J.D.; Jensen, R.R. Sociospatial applications of remote sensing in urban environments. Geography Compass 2008, 2, 728–743. [Google Scholar] [CrossRef]
- Carlson, T.N.; Arthur, T.S. The impact of land use - land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global Planet Change 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Zandbergen, P. Applications of shuttle radar topography mission elevation data. Geography Compass 2008, 2, 1404–1431. [Google Scholar] [CrossRef]
- HMGN/UNCTN. Nepal Millennium Development Goals Progress Report; His Majesty’s Government of Nepal: Kathmandu, Nepal, 2005.
- Haack, B.N.; Khatiwada, G. Rice and bricks: environmental issues and mapping of the unusual crop rotation pattern in the Kathmandu Valley, Nepal. Environ. Manage. 2007, 39, 774–782. [Google Scholar] [CrossRef] [PubMed]
- ICIMOD/UNEP. Kathmandu Valley GIS Database, CD-ROM, ICIMOD: Kathmandu, Nepal, 2001.
- Yuan, H.; Van Der Wiele, C.F.; Khorram, S. An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens. 2009, 1, 243–265. [Google Scholar] [CrossRef]
- Prenzel, B.; Treitz, P. Comparison of function- and structure-based schemes for classification of remotely sensed data. Int. J. Remote Sens. 2005, 26, 543–561. [Google Scholar] [CrossRef]
- Openshaw, S.; Alvandies, S. Applying geocomputation to the analysis of spatial distributions. In Geograhpic Information Systems: Principles and Technical Issues; Longley, P., Goodchild, M., Maguire, D., Rhind, D., Eds.; John Wiley and Sons Inc.: New York, NY, USA, 1999; pp. 267–282. [Google Scholar]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley Publishing Company: Reading, MA, USA, 1974. [Google Scholar]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.S.; Christensen, W.; Dale, V.H.; Graham, R.L. Indices of landscape pattern. Landscape Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M. C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts Amherst: Amherst, MA, USA, 2002; Retrieved 12 February, 2008; Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html.
- Abdullah, S.A.; Nakagoshi, N. Changes in landscape spatial pattern in the highly developing state of Selangor, Peninsular Malaysia. Landscape Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Bruijn, C.A.D. Spatial factors in urban growth: toward GIS models for cities in development countries. ITC J. 1991, 4, 221–231. [Google Scholar]
- Eastman, J.R.; Jiang, H.; Toledano, J. Multi-criteria and multi-objective decision making for land allocation using GIS. In Multicriteria Analysis for Land-use Management; Beinat, E., Nijkamp, P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 227–252. [Google Scholar]
- Industrial Development Management Ltd. IDM, Present Status. 2007. Retrieved 12 September, 2008. Available online: http://www.idm.com.np/presentstatus.php.
- Gautam, R.; Baral, S.; Herat, S. Opportunities and challenges in implementing pollution prevention strategies to help revive the ailing carpet manufacturing sector of Nepal. Resour. Conserv. Recycling 2008, 52, 920–930. [Google Scholar] [CrossRef]
- Tucker, C.J.; Grant, D.M.; Dykstra, J.D. NASA’s global orthoreactified Landsat data set. Photogramm. Eng. Rem. Sens. 2004, 70, 313–322. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Thapa, R.B.; Murayama, Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sens. 2009, 1, 534-556. https://doi.org/10.3390/rs1030534
Thapa RB, Murayama Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sensing. 2009; 1(3):534-556. https://doi.org/10.3390/rs1030534
Chicago/Turabian StyleThapa, Rajesh Bahadur, and Yuji Murayama. 2009. "Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches" Remote Sensing 1, no. 3: 534-556. https://doi.org/10.3390/rs1030534
APA StyleThapa, R. B., & Murayama, Y. (2009). Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sensing, 1(3), 534-556. https://doi.org/10.3390/rs1030534