Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015)
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Cloud Removal Algorithm
3.2. Landsat-TM Snow Mapping
3.3. Accuracy Assessment of the Snow-Cover Images
3.4. Analysis of the Snow Cover Variation
4. Results
4.1. Validation of the Daily Cloud-Free Snow Product
4.2. Spatio-Temporal Variation of SCA in the Northern Hemisphere
4.3. Spatio-Temporal Variation of SCDs in the Northern Hemisphere
4.4. Snow Cover Change in the Northern Hemisphere
5. Discussion
6. Conclusions
- (1)
- The maximum, minimum, and annual average SCA in the Northern Hemisphere all exhibited a downward trend with fluctuations. The variation trend in snow cover in the Northern Hemisphere exhibited significant inter-annual and regional differences.
- (2)
- The largest average SCA in the Northern Hemisphere occurred in January, while the smallest was in August. For the monthly variations, between 2000 and 2015, the SCA in the Northern Hemisphere for January, July, and October exhibited an upward trend, while the SCA in February, March, April, June, August, and December exhibited a downward trend. As for the seasonal variation, the SCA in the Northern Hemisphere during the spring, summer, and fall seasons exhibited a downward trend. The reduction magnitude of the SCA was relatively large in the spring and summer, and the SCA in winter did not exhibit an obvious trend.
- (3)
- The spatial distribution of the annual average SCDs was based on latitudinal zonality. The upward trend region was mainly confined to the mid- to low-latitude seasonal SCA with unstable snow cover.
- (4)
- A decreasing trend in the SCA was observed in regions with perennial snow cover, including the high-latitude or high-elevation mountainous regions in the Northern Hemisphere (between 35° and 50°N), such as the Tibetan Plateau, the Tianshan Mountains, the Pamir Plateau in Asia, the Alps in Europe, the Caucasus Mountains, and the Cordillera Mountains in North America. Overall, the perennial snow in the Northern Hemisphere is transitioning to seasonal snow cover.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Armstrong, R.L.; Brodzik, M.J. Recent Northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett. 2001, 28, 3673–3676. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Armstrong, R.L. Northern hemisphere snow extent trends derived from visible and microwave satellite data. Eos Trans. AGU 2002, 83, U72A-0006. [Google Scholar]
- Robinson, D.A.; Dewey, K.F.; Heim, R.R. Global Snow Cover Monitoring: An Update. Bull. Am. Meteorol. Soc. 1993, 74, 1689–1696. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Karl, T.R.; Knight, R.W.; Stenchikov, G.L. Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Clim. 1994, 7, 1633–1656. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Armstrong, R.L.; Weatherhead, E.C.; Savoie, M.; Knowles, K.; Robinson, D.A. Regional trend analysis of satellite-derived snow extent and global temperature anomalies. Eos Trans. AGU 2006, 87, U33A-0011. [Google Scholar]
- Qin, D.H.; Chen, Z.L.; Luo, Y.; Ding, Y.H.; Dai, X.S.; Ren, J.W.; Zhai, P.M.; Zhang, X.Y.; Zhao, Z.C.; Zhang, D.E.; et al. Updated understanding of climate change sciences. Adv. Clim. Chang. Res. 2007, 3, 63–73. [Google Scholar]
- Xiao, C.; Liu, S.; Zhao, L.; Wu, Q.; Li, P.; Liu, C.; Zhang, Q.; Ding, Y.; Yao, T.; Li, Z.; et al. Observed changes of cryosphere in China over the second half of the 20th century: An overview. Ann. Glaciol. 2007, 46, 382–390. [Google Scholar] [CrossRef]
- Nolin, A.W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 2010, 56, 1141–1150. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D.; Mote, P.W. The Response of Northern Hemisphere Snow Cover to a Changing Climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Dye, D.G. Variability and tendencys in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol. Process. 2002, 16, 3065–3077. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere Snow Seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Déry, S.J.; Brown, R.D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett. 2007, 34, 60–64. [Google Scholar] [CrossRef]
- Cess, R.D.; Potter, G.L.; Zhang, M.H.; Blanchet, J.P.; Chalita, S.; Colman, R.; Dazlich, D.A.; del Genio, A.D.; Dymnikov, V.; Galin, V.; et al. Interpretation of Snow-Climate Feedback as Produced by 17 General Circulation Models. Science 1991, 253, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Fletcher, C.G. Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Prog. Phys. Geogr. 2016, 40, 392–408. [Google Scholar] [CrossRef]
- Chen, Y.L.; Huang, F.; Wang, H.; Fang, Y.S. Temporal and spatial variability of snow water equivalent major modes in Northern Hemisphere on seasonal and interannual timescales. Period. Ocean Univ. China 2015, 45, 11–17. [Google Scholar]
- Thackeray, C.; Fletcher, C.G.; Mudryk, L.; Derksen, C. Quantifying the uncertainty in historical and future simulations of Northern Hemisphere spring snow cover. J. Clim. 2016, 29, 8647–8663. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, 2013: Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Wang, L.H.; Fu, P.J.; Lu, A.X. The Application of the Remote Sensing in the Research of Pastureland Snow Disaster. Remote Sens. Technol. Appl. 1998, 13, 32–36. [Google Scholar]
- Metsämäki, S.; Pulliainen, J.; Salminen, M.; Luojus, K.; Wiesmann, A.; Solberg, R.; Böttcher, K.; Hiltunen, M.; Ripper, E. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sens. Environ. 2015, 156, 96–108. [Google Scholar] [CrossRef]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.-P.; Koskinen, J.; Bojkov, B. Estimating Northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande river basin for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [Google Scholar] [CrossRef]
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Dennis, P.L. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process. 2003, 17, 59–71. [Google Scholar] [CrossRef]
- Huang, X.D.; Liang, T.G.; Zhang, X.T.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over Northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Ritter, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water. Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Wulder, M.A.; Nelson, T.A.; Derksen, C.; Seemann, D. Snow cover variability across central Canada (1978–2002) derived from satellite passive microwave data. Clim. Chang. 2007, 82, 113–130. [Google Scholar] [CrossRef]
- Chen, C.; Lakhankar, T.; Romanov, P.; Helfrich, S.; Powell, A.; Khanbilvardi, R. Validation of NOAA-interactive multisensor snow and Ice Mapping System (IMS) by comparison with ground-based measurements over continental United States. Remote Sens. 2012, 4, 1134–1145. [Google Scholar] [CrossRef]
- Liu, X.; Jin, X.; Ke, C.Q. Accuracy evaluation of the IMS snow and ice products in stable snow covers regions in China. J. Glaciol. Geocryol. 2014, 36, 500–507. [Google Scholar]
- Mazari, N.; Tekeli, A.E.; Xie, H.; Sharif, H.O.; El Hassan, A.A. Assessment of ice mapping system and moderate resolution imaging spectroradiometer snow cover maps over Colorado Plateau. J. Appl. Remote Sens. 2013, 7, 073540. [Google Scholar] [CrossRef]
- Sönmez, I.; Tekeli, A.E.; Erdi, E. Snow cover tendency analysis using Interactive Multisensor Snow and Ice Mapping System data over Turkey. Int. J. Climatol. 2014, 34, 2349–2361. [Google Scholar] [CrossRef]
- Ramsay, B.H. The interactive multisensor snow and ice mapping system. Hydrol. Process. 1998, 12, 1537–1546. [Google Scholar] [CrossRef]
- Yang, J.T.; Jiang, L.M.; Shi, J.C.; Wu, F.M.; Wang, S.; Kou, X.K. Evaluation and comparison of FY-2E VISSR, MODIS and IMS snow cover over the Tibetan Plateau. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013; pp. 1182–1185. [Google Scholar]
- Frei, A.; Lee, S.Y. A comparison of optical-band based snow extent products during spring over North America. Remote Sens. Environ. 2010, 114, 1940–1948. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Atmos. 2010, 115, 751–763. [Google Scholar] [CrossRef]
- Liang, T.G.; Huang, X.D.; Wu, C.X.; Liu, X.Y.; Li, W.L.; Guo, Z.G.; Ren, J.Z. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1514–1526. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, H.J.; Lv, N.; Yao, T.D.; Liang, T.G. Toward advanced daily cloud-free snow cover and snow water equvalent products form Terra-Aqua and Aqua AMSR-E measurement. J. Hydrol. 2010, 385, 23–35. [Google Scholar] [CrossRef]
- Huang, X.D.; Hao, X.H.; Feng, Q.S.; Wang, W.; Liang, T.G. A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid Reg. 2014, 6, 116–123. [Google Scholar]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Yu, J.Y.; Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Zhang, H.B.; Ke, C.Q.; Yao, R.Z. Developing Daily Cloud-Free Snow Composite Products From MODIS Terra-Aqua and IMS for the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2171–2180. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2001. [Google Scholar]
- Friedl, M.A.; Mciver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Albert, R. Algorithm Theoretical Basis Document for the AMSR-E Snow Water Equivalent Algorithm; Version 3.1; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002. [Google Scholar]
- Kardoulas, N.G.; Bird, A.C.; Lawan, A.I. Geometric correction of SPOT and Landsat imagery: A comparison of map and GPS-derived control points. Photogramm. Eng. Remote Sens. 1996, 62, 1173–1177. [Google Scholar]
- Xie, H.; Wang, X.; Liang, T. Development and assessment of combined terra and aqua snow cover products in colorado plateau, USA and Northern Xinjiang, China. J. Appl. Remote Sens. 2009, 3, 1319–1332. [Google Scholar] [CrossRef]
- Parajka, J.; Holko, L.; Kostka, Z.; Blöschl, G. MODIS snow cover mapping accuracy in a small mountain catchment—Comparison between open and forest sites. Hydrol. Earth Syst. Sci. 2012, 16, 2365–2377. [Google Scholar] [CrossRef]
- Huang, X.D.; Hao, X.H.; Wang, W.; Feng, Q.S.; Liang, T.G. Algorithms for Cloud Removal in MODIS Daily Snow Products. J. Glaciol. Geocryol. 2012, 34, 1118–1126. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier, Science Publishers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Modarres, R.; Vdeprda, S. Rainfall trends in arid and semi-arid regions of Iran. J. Arid Environ. 2007, 70, 344–355. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Huang, X.D.; Deng, J.; Ma, X.F.; Wang, Y.L.; Feng, Q.S.; Hao, X.H.; Liang, T.G. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 2016, 10, 2453–2463. [Google Scholar] [CrossRef]
- McBean, E.; Motiee, H. Assessment of impact of climate change on water resources: A long term analysis of the Great Lakes of North America. Hydrol. Earth Syst. Sci. 2008, 12, 239–255. [Google Scholar] [CrossRef]
- Yue, S.; Hashino, M. Temperature trends in Japan: 1900–1996. Theor. Appl. Climatol. 2003, 75, 15–27. [Google Scholar]
- Elnesr, M.N.; Abuzreig, M.M.; Alazba, A.A. Temperature trends and distribution in the Arabian Peninsula. Am. J. Environ. Sci. 2010, 6, 191–203. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S. Changes of Pan Evaporation in the West of Iran. Water Resour. Manag. 2011, 25, 97–111. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.; Alley, R.B. Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Brown, R.D. Northern Hemisphere snow cover variability and change, 1915–1997. J. Clim. 2000, 13, 2339–2355. [Google Scholar] [CrossRef]
- Estilow, T.W.; Young, A.H.; Robinson, D.A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data 2015, 7, 137–142. [Google Scholar] [CrossRef]
- Hernándezhenríquez, M.A.; Déry, S.J.; Derksen, C. Polar amplification and elevation-dependence in trends of Northern hemisphere snow cover extent, 1971–2014. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Cohen, J.L.; Furtado, J.C.; Barlow, M.; Alexeev, V.A.; Cherry, J.E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 2012, 39, 54–62. [Google Scholar] [CrossRef]
- Bai, Y.C.; Feng, X.Z. Introduction to some research work on snow remote sensing. Remote Sens. Technol. Appl. 1997, 12, 60–66. [Google Scholar]
Dataset | Resolution | Period | Distribution | Reference |
---|---|---|---|---|
MOD10A1/MYD10A1 | 500 m | from the date of release until 31 December 2015 | NSIDC | [42] |
MCD12Q1 | 500 m | 1 January 2008 | USGS | [43] |
AMSR-E | 25 km | 1 September 2002 to 2 September 2011 | NSIDC | [44] |
Landsat-TM | 30 m | 1 January 2000 to 31 December 2015 (28 scenes in total) | USGS | [45] |
IMS | 24 km | 1 January 2000 to 31 August 2002 | NSIDC | [33] |
4 km | 2 September 2011 to 1 December 2014 | |||
1 km | 2 December 2014 to 31 December 2015 |
Snow-Covered Days (SCDs) | Asia | Europe | North America |
---|---|---|---|
SCDs ≤ 10 | 26.1% | 7.9% | 13.6% |
10 < SCDs ≤ 60 | 13.8% | 25.9% | 8.6% |
60 < SCDs ≤ 350 | 60.1% | 66.2% | 65.1% |
SCDs > 350 | 0.02% | 0.01% | 12.70% |
Continent | Increase | No Change | Decrease | ||
---|---|---|---|---|---|
Significant | Not Significant | Significant | Not Significant | ||
Asia | 2.5% | 47.1% | 22.1% | 17.6% | 10.7% |
Europe | 3.2% | 41.2% | 12.8% | 5.3% | 37.5% |
North America | 2.7% | 53.7% | 14.6% | 7.1% | 21.9% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Huang, X.; Liang, H.; Sun, Y.; Feng, Q.; Liang, T. Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015). Remote Sens. 2018, 10, 136. https://doi.org/10.3390/rs10010136
Wang Y, Huang X, Liang H, Sun Y, Feng Q, Liang T. Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015). Remote Sensing. 2018; 10(1):136. https://doi.org/10.3390/rs10010136
Chicago/Turabian StyleWang, Yunlong, Xiaodong Huang, Hui Liang, Yanhua Sun, Qisheng Feng, and Tiangang Liang. 2018. "Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015)" Remote Sensing 10, no. 1: 136. https://doi.org/10.3390/rs10010136
APA StyleWang, Y., Huang, X., Liang, H., Sun, Y., Feng, Q., & Liang, T. (2018). Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015). Remote Sensing, 10(1), 136. https://doi.org/10.3390/rs10010136