Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from Almería (Spain)
Abstract
:1. Introduction
2. Study Area
3. Datasets and Pre-Processing
3.1. WorldView-2 Image
3.2. Landsat 8 Images
3.3. Sentinel-2A Images
3.4. Horticultural Crops under PCG Reference Data
4. Methodology
4.1. Segmentation
- The 15-m GSD of the L8 pan-sharpened orthoimages was increased to 0.937 m by halving four times the original pixel size. This was necessary to guaranty a better fit between the L8 segmentations (the entire L8 time series) and the WV2 segmentation. A more in-depth explanation of this process is provided in Aguilar et al. [11].
- In the case of S2A images (the entire S2A time series), the 10-m GSD was also increased to 1.25 m by halving three times the original pixel size, following the same methodology that was used for L8 pan-sharpened orthoimages.
- In other words, L8 and S2A segmentations were derived from the best WV2-based segmentation in order to improve the final results by taking advantage of the better spatial resolution of the WV2 data.
4.2. Definition and Extration of Object-Based Features
4.3. Decision Tree Modeling
4.4. Accuracy Assessment for Binary Pre-Classification
4.5. Accuracy Assessment for Crops Classification
5. Results and Discussion
5.1. Segmentation
5.2. Binary Pre-Classification
5.3. Crop Classification
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Espi, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic films for agricultural applications. J. Plast. Film Sheet. 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Briassoulis, D.; Dougka, G.; Dimakogianni, D.; Vayas, I. Analysis of the collapse of a greenhouse with vaulted roof. Biosyst. Eng. 2016, 151, 495–509. [Google Scholar] [CrossRef]
- Wu, C.F.; Deng, J.S.; Wang, K.; Ma, L.G.; Tahmassebi, A.R.S. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int. J. Agric. Biol. Eng. 2016, 9, 79–88. [Google Scholar] [CrossRef]
- Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Song, X.-P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree classifier for extracting transparent Plastic-Mulched landcover from landsat-5 TM images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Vallario, A.; Aguilar, F.J.; García Lorca, A.; Parente, C. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain. Remote Sens. 2015, 7, 7378–7401. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.A.; Nemmaoui, A.; Novelli, A.; Aguilar, F.J.; García Lorca, A. Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series. Remote Sens. 2016, 8, 513. [Google Scholar] [CrossRef]
- Yang, D.; Chen, J.; Zhou, Y.; Chen, X.; Chen, X.; Cao, X. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS J. Photogramm. Remote Sens. 2017, 128, 47–60. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z. Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote Sens. 2017, 9, 557. [Google Scholar] [CrossRef]
- Lanorte, A.; De Santis, F.; Nolè, G.; Blanco, I.; Loisi, R.V.; Schettini, E.; Vox, G. Agricultural plastic waste spatial estimation by Landsat 8 satellite images. Comput. Electron. Agric. 2017, 141, 35–45. [Google Scholar] [CrossRef]
- González-Yebra, Ó.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J. Methodological proposal to assess plastic greenhouses land cover change from the combination of archival aerial orthoimages and Landsat data. Biosyst. Eng. 2018, 175, 36–51. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection fromSentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Li, T.; Yue, Y.; Warner, T. Utilizing landsat TM imagery to map greenhouses in Qingzhou, Shandong Province, China. Pedosphere 2004, 14, 363–369. [Google Scholar]
- Salas, E.A.L.; Henebry, G.M. Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Isr. J. Plant Sci. 2012, 60, 65–76. [Google Scholar] [CrossRef]
- Badhwar, G. Classification of Corn and Soybeans Using Multitemporal Thematic Mapper Data. Remote Sens. Environ. 1984, 16, 175–181. [Google Scholar] [CrossRef]
- Petitjean, F.; Kurtz, C.; Passat, N.; Gançarski, P. Spatio-temporal reasoning for the classification of satellite image time series. Pattern Recognit. Lett. 2012, 33, 1805–1815. [Google Scholar] [CrossRef] [Green Version]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553–562. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). EarthExplorer Download Tool. Available online: https://earthexplorer.usgs.gov/ (accessed on 27 June 2018).
- Levin, N.; Lugassi, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. Int. J. Remote Sens. 2007, 28, 183–202. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Copernicus Open Access Hub. Available online: https://scihub.copernicus. eu/dhus/#/home (accessed on 27 June 2018).
- Main-Knorn, M.; Pflug, B.; Debaecker, V.; Louis, J. Calibration and validation plan for the L2A processor and products of the Sentinel-2 mission. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Müller-Wilm, U. Sentinel-2 MSI-Level-2A Prototype Processor Installation and User Manual. Available online: http://step.esa.int/thirdparties/sen2cor/2.2.1/S2PAD-VEGA-SUM-0001-2.2.pdf (accessed on 27 June 2018).
- Aguilar, M.A.; Novelli, A.; Nemmaoui, A.; Aguilar, F.J.; García Lorca, A.M.; González-Yebra, O. Optimizing Multiresolution Segmentation for Extracting Plastic Greenhouses from WorldView-3 Imagery. In Intelligent Interactive Multimedia Systems and Services 2017; KES-IIMSS-18 2018, Smart Innovation, Systems and Technologies; De Pietro, G., Gallo, L., Howlett, R., Jain, L., Eds.; Springer: Cham, Switzerland, 2018; Volume 76. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, M. Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation. In Angewandte Geographische Informations-Verarbeitung XII; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Tian, J.; Chen, D.M. Optimization in multi-scale segmentation of high resolution satellite images for artificial feature recognition. Int. J. Remote Sens. 2007, 28, 4625–4644. [Google Scholar] [CrossRef]
- Trimble Germany GmbH. eCognition Developer 8.8 Reference Book; Trimble Germany GmbH: Munich, Germany, 2012. [Google Scholar]
- Novelli, A.; Aguilar, M.A.; Aguilar, F.J.; Nemmaoui, A.; Tarantino, E. AssesSeg—A command line tool to quantify image segmentation quality: A test carried out in Southern Spain from satellite imagery. Remote Sens. 2017, 9, 40. [Google Scholar] [CrossRef]
- Liu, Y.; Biana, L.; Menga, Y.; Wanga, H.; Zhanga, S.; Yanga, Y.; Shaoa, X.; Wang, B. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS-J. Photogramm. Remote Sens. 2012, 68, 144–156. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Aguilar, F.J.; Nemmaoui, A.; Tarantino, E. C_AssesSeg Concurrent Computing Version of AssesSeg: A Benchmark Between the New and Previous Version. In Computational Science and Its Applications—ICCSA 2017; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10407, pp. 45–56. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Solovchenko, A.E.; Pogosyan, S.L. Application of reflectance spectroscopy for analysis of higher plant pigments. Russ. J. Plant Physiol. 2003, 50, 704–710. [Google Scholar] [CrossRef]
- Roy, P.S.; Sharma, K.P.; Jain, A. Stratification of density in dry deciduous forest using satellite remote sensing digital data—An approach based on spectral indices. J. Biosci. 1996, 21, 723–734. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 1973 Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Van Deventer, A.; Ward, A.; Gowda, P.; Lyon, J. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-Destructive and Remote Sensing Techniques for estimation of vegetation status. In Proceedings of the 3rd European Conference on Precision Agriculture, Montpelier, France, 18–20 June 2001; pp. 205–210. [Google Scholar]
- Sentinel Hub. Sentinel 2 EO Products. Available online: https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts (accessed on 10 July 2018).
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the potential of WorldView-2 data to classify tree species and different levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Gao, B. NDWI -A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Abdel-rahman, E.M.; Landmann, T.; Kyalo, R.; Ong, G.; Mwalusepo, S.; Sulieman, S.; Le, B. Predicting stem borer density in maize using RapidEye data and generalized linear models. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 61–74. [Google Scholar] [CrossRef]
- Jasper, J.; Reusch, S.; Link, A. Active sensing of the N status of wheat using optimized wavelength combination: Impact of seed rate, variety and growth stage. In Proceedings of the Precision Agriculture Conference, Wageningen, The Netherlands, 6–8 July 2009; Henten, E.J., van Goense, D., Lokhorst, C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 23–30. [Google Scholar]
- Chen, J.C.; Yang, C.M.; Wu, S.T.; Chung, Y.L.; Charles, A.L.; Chen, C.T. Leaf chlorophyll content and surface spectral reflectance of tree species along a terrain gradient in Taiwan’s Kenting National Park. Bot. Stud. 2007, 48, 71–77. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Zillmann, E.; Gonzalez, A.; Montero Herrero, E.J.; van Wolvelaer, J.; Esch, T.; Keil, M.; Weichelt, H.; Garzón, A.M. Pan-European grassland mapping using seasonal statistics from multisensor image time series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3461–3472. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.I. Classification and Regression Trees; Chapman & Hall/CRC Press: Boca Raton, NY, USA, 1984. [Google Scholar]
- Loh, W.Y.; Shin, Y.-S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840. [Google Scholar]
- Zambon, M.; Lawrence, R.; Bunn, A.; Powell, S. Effect of alternative splitting rules on image processing using classification tree analysis. Photogramm. Eng. Remote Sens. 2006, 72, 25–30. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-based image classification of summer crops with machine learning methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Aksoy, S.; Akcay, H.G.; Wassenaar, T. Automatic mapping of linear woody vegetation features in agricultural landscapes using very high-resolution imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.A.; Bianconi, F.; Aguilar, F.J.; Fernández, I. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens. 2014, 6, 3554–3582. [Google Scholar] [CrossRef]
- Lu, L.; Hang, D.; Di, L. Threshold model for detecting transparent plastic-mulched landcover using moderate-resolution imaging spectroradiometer time series data: A case study in southern Xinjiang, China. J. Appl. Remote Sens. 2015, 9. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef] [Green Version]
- García-Torres, L.; Caballero-Novella, J.J.; Gómez-Candón, D.; Peña-Barragén, J.M. Census parcels cropping system classification from multitemporal remote imagery: A proposed universal methodology. PLoS ONE 2015, 10, e0117551. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.C.; Al-Gaadi, K.A.; Madugundu, R.; Tola, E.; Zeyada, A.M.; Marey, S.; Biradar, C.M. CART and IDC—Based classification of irrigated agricultural fields using multi-source satellite data. Geocarto Int. 2018, 33, 70–88. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Binging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based timeweighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Boykin, K.G.; Valdez, R. Multispectral and texture feature application in image-object analysis of summer vegetation in Eastern Tajikistan Pamirs. Remote Sens. 2016, 8, 78. [Google Scholar] [CrossRef]
Path | Row | Date of Acquisition (Day/Month/Year) | Start Time (UTC) | Sun Azimuth (Degrees) | Sun Elevation (Degrees) |
---|---|---|---|---|---|
199 | 35 | 9 June 2016 | 10:43:50 | 120.25 | 67.76 |
200 | 34 | 18 July 2016 | 10:50:09 | 124.64 | 64.65 |
199 | 35 | 12 August 2016 | 10:44:27 | 131.41 | 60.96 |
200 | 34 | 19 August 2016 | 10:50:17 | 136.86 | 58.58 |
199 | 35 | 13 September 2016 | 10:44:38 | 146.09 | 52.72 |
199 | 35 | 31 October 2016 | 10:44:45 | 159.50 | 37.21 |
200 | 34 | 7 November 2016 | 10:50:31 | 160.92 | 33.88 |
200 | 34 | 25 December 2016 | 10:50:25 | 158.92 | 26.14 |
200 | 34 | 27 February 2017 | 10:50:03 | 148.98 | 39.21 |
200 | 34 | 15 March 2017 | 10:49:55 | 146.52 | 45.22 |
199 | 35 | 9 April 2017 | 10:43:55 | 140.16 | 55.59 |
200 | 34 | 2 May 2017 | 10:49:27 | 135.83 | 61.80 |
200 | 34 | 18 May 2017 | 10:49:39 | 130.47 | 65.19 |
199 | 35 | 12 June 2017 | 10:43:50 | 119.63 | 67.78 |
Orbit | Granule | Date of Acquisition (Day/Month/Year) | Start Time (UTC) | Sun Azimuth (Degrees) | Sun Elevation (Degrees) |
---|---|---|---|---|---|
R094 | 30SWF | 13 June 2016 | 11:05:59 | 132.42 | 71.65 |
R094 | 30SWF | 23 July 2016 | 11:07:12 | 135.11 | 68.14 |
R094 | 30SWF | 12 August 2016 | 10:56:22 | 142.91 | 64.02 |
R051 | 30SWF | 19 August 2016 | 10:50:32 | 141.47 | 61.07 |
R051 | 30SWF | 18 September 2016 | 10:50:22 | 153.95 | 52.19 |
R094 | 30SWF | 31 October 2016 | 11:02:02 | 166.98 | 38.16 |
R051 | 30SWF | 7 November 2016 | 10:52:42 | 164.56 | 35.56 |
R051 | 30SWF | 27 December 2016 | 10:54:42 | 161.83 | 27.93 |
R094 | 30SWF | 28 February 2017 | 11:00:01 | 155.74 | 42.62 |
R094 | 30SWF | 10 March 2017 | 10:58:41 | 154.63 | 46.45 |
R094 | 30SWF | 9 April 2017 | 10:56:51 | 150.93 | 58.11 |
R051 | 30SWF | 6 May 2017 | 10:50:31 | 139.81 | 65.44 |
R094 | 30SWF | 19 May 2017 | 10:56:51 | 140.54 | 69.43 |
R051 | 30SWF | 5 June 2017 | 10:50:31 | 129.34 | 69.89 |
Crop | Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | |
Tomato | T | T | T | T/R | T/R | T | R | R | R | ||||
Pepper | T | T | T | T | T | R | R | R | R | R | R | R | |
Aubergine | T | T | R | R | R | R | R | R | |||||
Cucumber | T | T | T | T/R | R | R | T/R | T/R | R | R | R | R | |
Melon or Watermelon | T | T | T | R | R | R |
Name | Definitions | References |
---|---|---|
Mean and Standard Deviation (SD) (16 features) | Mean and SD of each pan-sharpened L8 band | [33] |
BRI (Browning Reflectance Index) * | [37] | |
BSI (Bare Soil Index) * | [38] | |
Cirrus_NIR | [12] | |
GNDVI (Green NDVI) * | [39] | |
GRVI (Green Red Vegetation Index) * | [40] | |
MDLP (Moment Distance from the Left pivot) * | [19] | |
MDRP (Moment Distance from the Right pivot) * | [19] | |
MDI (Moment Distance Index) * | [19] | |
GDI (Greenhouse Detection Index) * | [16] | |
MSAVI (Modified Soil-Adjusted Vegetation Index) * | [41] | |
MSR (Modified Simple Ratio) * | [42] | |
NDBI (Normalized Difference Built-up Index) * | [43] | |
NDVI (Normalized Difference Vegetation Index) * | [44] | |
NDTI (Normalized Difference Tillage Index) * | [45] | |
PGI (Plastic Greenhouse Index) * | [13] | |
PMLI (Plastic-Mulched Landcover Index) * | [10] | |
RPGI (Retrogressive Plastic Greenhouse Index) * | [13] | |
SW1_SW2_NIR * | [12] | |
SWIR2_NIR * | [12] | |
Vi (Index Greenhouse Vegetable Land Extraction) * | [18] |
Name | Definitions | References |
---|---|---|
Mean and Standard Deviation (SD) (20 features) | Mean and SD of each S2A band | [33] |
ARI (Anthocyanin Reflectance Index) | [46] | |
ARIRE (modified Anthocyanin Reflectance Index) | [46,47] | |
BR (Blue Ratio) | [48] | |
CIRE (Chlorophyll Red-Edge Index) | [49] | |
CRI2 (Carotenoid Reflectance Index 2) | [46] | |
IRECI (Red-Edge Chlorophyll Index) | [50] | |
LAISAVI (Leaf Area Index–Soil Adjusted Vegetation Index) | [46] | |
Modified Swir1_NIR | [12] | |
MTCI (MERIS Terrestrial Chlorophyll Index) | [51] | |
NDWIRE (Red-Edge Normalized difference Water Index) | [52] | |
RE-EVI2 (Red-Edge Enhanced Vegetation Index) | [53] | |
RENDVI (Red-Edge Normalized Difference Vegetation Index) | [54] | |
RE-NDVI2 (Red-Edge NDVI 2) | [54] | |
RERVI (Red-Edge Ratio Vegetation Index) | [55] | |
RR (Red Ratio) | [48] | |
S2REP (Sentinel-2 Red-Edge Position) | [50] |
Season | Strategy | OA (%) | Kappa | Fβ (%) | |||
---|---|---|---|---|---|---|---|
Others | Tomato | Pepper | Melon&Watermelon | ||||
Autumn 2016 | L8 single | 73.13 | 0.59 | 61.46 | 68.61 | 82.19 | - |
S2A single | 75.87 | 0.63 | 62.16 | 71.36 | 86.53 | - | |
L8 seasonal | 74.04 | 0.61 | 63.01 | 70.40 | 84.41 | - | |
S2A seasonal | 72.96 | 0.59 | 60.75 | 69.41 | 83.37 | - | |
Spring 2017 | L8 single | 72.44 | 0.61 | 42.35 | 72.99 | 65.85 | 93.38 |
S2A single | 75.40 | 0.66 | 41.53 | 75.05 | 76.76 | 94.74 | |
L8 seasonal | 73.79 | 0.64 | 45.37 | 73.77 | 70.04 | 95.08 | |
S2A seasonal | 74.42 | 0.65 | 51.93 | 73.42 | 69.68 | 95.15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemmaoui, A.; Aguilar, M.A.; Aguilar, F.J.; Novelli, A.; García Lorca, A. Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from Almería (Spain). Remote Sens. 2018, 10, 1751. https://doi.org/10.3390/rs10111751
Nemmaoui A, Aguilar MA, Aguilar FJ, Novelli A, García Lorca A. Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from Almería (Spain). Remote Sensing. 2018; 10(11):1751. https://doi.org/10.3390/rs10111751
Chicago/Turabian StyleNemmaoui, Abderrahim, Manuel A. Aguilar, Fernando J. Aguilar, Antonio Novelli, and Andrés García Lorca. 2018. "Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from Almería (Spain)" Remote Sensing 10, no. 11: 1751. https://doi.org/10.3390/rs10111751
APA StyleNemmaoui, A., Aguilar, M. A., Aguilar, F. J., Novelli, A., & García Lorca, A. (2018). Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from Almería (Spain). Remote Sensing, 10(11), 1751. https://doi.org/10.3390/rs10111751