Utilizing Multilevel Features for Cloud Detection on Satellite Imagery
Abstract
:1. Introduction
- FEature Concatenation Network for cloud detection. Since different levels of the network contain different levels of image information, the final cloud detection results can be improved by making decisions from the concatenated features for the full use of the image information. Extensive experiments are conducted to compare different forms of utilizing multilevel features and the specific types of the network.
- Multi-Window Guided Filtering for better cloud mask refining. Different from the conventional guided filtering, the proposed filtering technology excavates multilevel structural features from the imagery. Filters with smaller window sizes can capture smaller structure features, especially the details of the imagery, while the filters with larger window sizes can grasp larger structure information, which seems to be the first-glance cloud distribution of the whole imagery. By combining the refined cloud probability maps filtered by different window sizes, the final cloud masks can be improved.
- A novel cloud detection method on satellite images for Big Data Era. The proposed cloud detection method utilizes multilevel image features by combining FEature Concatenation Network and Multi-Window Guided Filtering. Our method can outperform other state-of-the-art cloud detection methods qualitatively and quantitatively on a challenging dataset with 502 GF-1 WFV images, which contains different land features such as ice, snow, desert, sea and vegetation and is the largest cloud dataset to the best of our knowledge.
2. The Framework of Fully Convolutional Networks
3. FEature Concatenation Network for Cloud Detection
4. Multi-Window Guided Filtering for Cloud Detection
Algorithm 1 Multi-Window Guided Filtering for Cloud Detection Result Refining |
|
5. Experiments and Discussion
5.1. Dataset
5.2. Experiment Setup and Benchmark Metrics Setup
5.3. Effectiveness of FEature Concatenation Network
5.3.1. Comparisons between Two Ways of Utilizing Multilevel Feature Information
5.3.2. Analysis on Different Types of FECN
5.4. Benefit of Multi-Window Guided Filtering
5.5. Comparison with Other Methods
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Wang, L.; Sun, Z.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Shi, Z. Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832–5845. [Google Scholar] [CrossRef]
- Lin, H.; Shi, Z.; Zou, Z. Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network. Remote Sens. 2017, 9, 480. [Google Scholar] [CrossRef]
- Lin, H.; Shi, Z.; Zou, Z. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1665–1669. [Google Scholar] [CrossRef]
- Shi, T.; Xu, Q.; Zou, Z.; Shi, Z. Automatic Raft Labeling for Remote Sensing Images via Dual-Scale Homogeneous Convolutional Neural Network. Remote Sens. 2018, 10, 1130. [Google Scholar] [CrossRef]
- Shi, Z.; Zou, Z. Can a machine generate humanlike language descriptions for a remote sensing image? IEEE Trans. Geosci. Remote Sens. 2017, 55, 3623–3634. [Google Scholar] [CrossRef]
- Zou, Z.; Shi, Z. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans. Image Process. 2018, 27, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, C. Cloud detection of RGB color aerial photographs by progressive refinement scheme. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7264–7275. [Google Scholar] [CrossRef]
- An, Z.; Shi, Z. Scene learning for cloud detection on remote-sensing images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 4206–4222. [Google Scholar] [CrossRef]
- Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel cloud detection in remote sensing images based on deep learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3631–3640. [Google Scholar] [CrossRef]
- Irish, R.R. Landsat 7 automatic cloud cover assessment. In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery Vi; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 4049, pp. 348–356. [Google Scholar]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Zhong, B.; Chen, W.; Wu, S.; Hu, L.; Luo, X.; Liu, Q. A Cloud Detection Method Based on Relationship Between Objects of Cloud and Cloud-Shadow for Chinese Moderate to High Resolution Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 4898–4908. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Qiu, S.; He, B.; Zhu, Z.; Liao, Z.; Quan, X. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images. Remote Sens. Environ. 2017, 199, 107–119. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Mi, X.; Wei, J.; Wang, J.; Tian, X.; Yu, H.; Gan, P. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS J. Photogramm. Remote Sens. 2017, 124, 70–88. [Google Scholar] [CrossRef]
- Wu, T.; Hu, X.; Zhang, Y.; Zhang, L.; Tao, P.; Lu, L. Automatic cloud detection for high resolution satellite stereo images and its application in terrain extraction. ISPRS J. Photogramm. Remote Sens. 2016, 121, 143–156. [Google Scholar] [CrossRef]
- Fisher, A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated morphological feature extraction. Remote Sens. 2014, 6, 776–800. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005; pp. 886–893. [Google Scholar]
- Heusch, G.; Rodriguez, Y.; Marcel, S. Local binary patterns as an image preprocessing for face authentication. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, Southampton, UK, 10–12 April 2006; pp. 9–14. [Google Scholar]
- Wang, Q.; Chen, M.; Nie, F.; Li, X. Detecting Coherent Groups in Crowd Scenes by Multiview Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2018. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Z.; Xiao, B.; Cao, X. Ground-based Cloud Detection Using Automatic Graph Cut. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1342–1346. [Google Scholar]
- Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42. [Google Scholar] [CrossRef]
- Munkres, J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38. [Google Scholar] [CrossRef]
- Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D. Shape distributions. ACM Trans. Gr. 2002, 21, 807–832. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, Y.; Wang, C.; Xiao, B. Ground-Based Cloud Detection Using Graph Model Built Upon Superpixels. IEEE Geosci. Remote Sens. Lett. 2017, 14, 719–723. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Wang, Q.; Wan, J.; Nie, F.; Liu, B.; Yan, C.; Li, X. Hierarchical Feature Selection for Random Projection. IEEE Trans. Neural Netw. Learn. Syst. 2018. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Zhan, Y.; Wang, J.; Shi, J.; Cheng, G.; Yao, L.; Sun, W. Distinguishing Cloud and Snow in Satellite Images via Deep Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1785–1789. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–14. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv, 2015; arXiv:1511.07289. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Draper, N.; Smith, H. Applied Regression Analysis, 2nd ed.; John Wiley: Hoboken, NJ, USA, 1981. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning; Springer: New York, NY, USA, 2003. [Google Scholar]
- Pytorch: PyTorch Is a Deep Learning Framework for Fast, Flexible Experimentation. Available online: https://pytorch.org/ (accessed on 10 February 2018).
Layer Group | Layer Name | Remarks |
---|---|---|
conv1_1, conv1_2 | kernel size: , kernel nums: 64 | |
conv_block 1 | pool1 | pooling size: , stride: 2 |
conv2_1, conv2_2 | kernel size: , kernel nums: 128 | |
conv_block 2 | pool2 | pooling size: , stride: 2 |
conv3_1, conv3_2, conv3_3 | kernel size: , kernel nums: 256 | |
conv_block 3 | pool3 | pooling size: , stride: 2 |
conv_block 4 | conv4_1, conv4_2, conv4_3 | kernel size: , kernel nums: 512 |
conv_block 5 | conv5_1, conv5_2, conv5_3 | kernel size: , kernel nums: 512, atrous: 2 |
conv6 | kernel size: , kernel nums: 512, atrous: 4 | |
conv_block 7 | conv7 | kernel size: , kernel nums: 4096 |
score_block | score_layer | kernel size: , kernel nums: 2 |
Items | Parameters |
---|---|
Band 1 (blue) | 0.45∼0.52m |
Band 2 (green) | 0.52∼0.59m |
Band 3 (red) | 0.63∼0.69m |
Band 4 (infared) | 0.77∼0.89m |
Ground Sample Distance | 16 m |
Swath Width | 830 km |
Method | A (%) | POD (%) | FAR (%) | HK (%) | IOU (%) |
---|---|---|---|---|---|
Prediction Fusion | 90.72 | 87.85 | 3.69 | 88.17 | 80.26 |
Feature Concatenation (ours) | 92.92 | 90.08 | 2.93 | 90.83 | 84.29 |
Method | A (%) | POD (%) | FAR (%) | HK (%) | IOU (%) |
---|---|---|---|---|---|
Baseline | 90.74 | 66.14 | 7.09 | 83.96 | 61.95 |
FECN_457 | 88.77 | 80.46 | 5.19 | 84.71 | 73.02 |
FECN_3457 | 89.08 | 82.02 | 4.90 | 85.34 | 74.53 |
FECN_23457 | 93.10 | 85.34 | 3.48 | 89.49 | 80.26 |
FECN_123457 | 92.92 | 90.08 | 2.93 | 90.83 | 84.29 |
Method | A (%) | POD (%) | FAR (%) | HK (%) | IOU (%) | Rank in IOU |
---|---|---|---|---|---|---|
FECN without filtering | 92.92 | 90.08 | 2.93 | 90.83 | 84.29 | — |
GF_300 | 95.69 | 88.42 | 2.72 | 93.28 | 85.04 | 143rd |
GF_200 | 95.07 | 88.82 | 2.76 | 92.74 | 84.91 | 249th |
GF_400 | 95.99 | 88.02 | 2.74 | 93.49 | 84.89 | 254st |
MWGF_10_500 | 94.87 | 89.39 | 2.70 | 92.64 | 85.27 | 8th |
MWGF_20_500 | 94.99 | 89.23 | 2.70 | 92.74 | 85.22 | 20th |
MWGF_10_400 | 94.71 | 89.45 | 2.72 | 92.51 | 85.19 | 32nd |
MWGF_10_400_500 | 95.35 | 89.09 | 2.67 | 93.07 | 85.38 | 1st |
MWGF_10_300_500 | 95.21 | 89.17 | 2.68 | 92.95 | 85.34 | 2nd |
MWGF_20_400_500 | 95.41 | 88.94 | 2.68 | 93.10 | 85.29 | 5th |
MWGF_10_300_400_500 | 95.46 | 88.94 | 2.67 | 93.15 | 85.33 | 3rd |
MWGF_10_200_400_500 | 95.32 | 89.03 | 2.68 | 93.03 | 85.30 | 4th |
MWGF_10_150_400_500 | 95.23 | 89.09 | 2.69 | 92.95 | 85.28 | 7th |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Shi, Z. Utilizing Multilevel Features for Cloud Detection on Satellite Imagery. Remote Sens. 2018, 10, 1853. https://doi.org/10.3390/rs10111853
Wu X, Shi Z. Utilizing Multilevel Features for Cloud Detection on Satellite Imagery. Remote Sensing. 2018; 10(11):1853. https://doi.org/10.3390/rs10111853
Chicago/Turabian StyleWu, Xi, and Zhenwei Shi. 2018. "Utilizing Multilevel Features for Cloud Detection on Satellite Imagery" Remote Sensing 10, no. 11: 1853. https://doi.org/10.3390/rs10111853
APA StyleWu, X., & Shi, Z. (2018). Utilizing Multilevel Features for Cloud Detection on Satellite Imagery. Remote Sensing, 10(11), 1853. https://doi.org/10.3390/rs10111853