Comparison of Artificial Intelligence and Physical Models for Forecasting Photosynthetically-Active Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Data
2.1.1. Observation Data
2.1.2. Satellite Products
2.1.3. Terrain and Climate Division Data
2.2. Photosynthetically-Active Radiation Models
2.2.1. Physically-Based Models
BBM
PBM
EPP
LUT
2.2.2. The AI models
BP
ANFIS
LSSVM
Genetic
- (1)
- Initialize the random population: The basic structure of the BP neural network in this study was 6–10-1 (Figure 3a) with six input layers, ten hidden layers, and one output layer. Thus, the number of weights was 6 × 10 + 10 × 1 = 70; the number of thresholds was 10 + 1 = 11. So, the encoding length was 70 + 11 = 81.
- (2)
- Selection operation: The new individuals with the high-fitness values would be selected from old individuals using a roulette selection method. The selection probability for individuals were calculated as the following equation:
- (3)
- Crossover operation: The crossover operation was conducted using the arithmetic crossover algorithm:
- (4)
- Mutation operation: The mutation operation was conducted using following equations:
M5Tree
MARS
2.3. Preprocesses for PAR Measurements
2.4. The Statistical Indicators Representing Model Accuracy
3. Result and Discussion
3.1. Validation of Daily PAR Estimations at CERN Stations
3.2. Validation of PAR Models in Various Climate Zones and Terrains
3.3. Spatial and Temporal Variations of PAR in China
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
the daily PAR under all-sky conditions | the neuronal bias | ||
the daily PAR under clear sky conditions | altitude | ||
the beam PAR under clear sky conditions | surface temperature | ||
the diffuse PAR under clear sky conditions | precipitation | ||
the transmittances due to cloud scattering and absorption | surface pressure | ||
the relative sunshine duration | rh | relative humidity | |
eccentricity correction factor for the mean sun-earth distance | sunshine duration | ||
the spectral irradiance (400–700 nm) at the mean distance between earth and sun in PAR band | air temperature | ||
the beam transmittance in clear sky conditions | wind speed | ||
the diffuse transmittance in clear sky conditions. | visibility | ||
global transmittance for water cloud | sunrise time | ||
global transmittance for ice cloud | Aerosol optical depth | ||
transmittances for mixed gasses absorption | cloud water path | ||
transmittances for Rayleigh scattering | Precipitable water vapor | ||
transmittances for water vapor absorption | total zone amount | ||
transmittances for ozone absorption | Surface albedo | ||
transmittances for aerosol extinction | effective particle radius | ||
the absorption coefficients of water vapor | cloud fraction | ||
the absorption coefficients of aerosols | solar zenith angle | ||
the absorption coefficients of mixed gasses | Earth-atmospheric albedo | ||
extraterrestrial solar irradiation at the top of atmosphere in PAR band | m-dimensional weight vector | ||
atmospheric spherical albedo | δ | mapping function | |
atmospheric spherical albedo for clear sky conditions | b | bias term | |
atmospheric spherical albedo for water cloudy sky conditions | selection probability | ||
atmospheric spherical albedo for ice cloudy sky conditions | fitness value | ||
day number since the first day of the year | is the number of input layers of Genetic | ||
cloud fractions for water cloud | i-th expected output value | ||
cloud fractions for ice cloud | i-th predicted output values | ||
PAR in clear sky conditions | hidden transfer function | ||
PAR in water cloudy sky conditions | the weight | ||
PAR in ice cloudy sky conditions | the input parameters indiscrete time space | ||
the estimated PAR | solar constant |
Appendix A
References
- Purohit, I.; Purohit, P. Inter-comparability of solar radiation databases in Indian context. Renew. Sustain. Energy Rev. 2015, 50, 735–747. [Google Scholar] [CrossRef]
- Feng, L.; Lin, A.; Wang, L.; Qin, W.; Gong, W. Evaluation of sunshine-based models for predicting diffuse solar radiation in China. Renew. Sust. Energy Rev. 2018, 94, 168–182. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Feng, L.; Lin, A.; Hu, B.; Zhou, M. Estimation of hourly and daily photosynthetically active radiation in Inner Mongolia, China, from 1990 to 2012. Int. J. Climatol. 2015, 35, 3120–3131. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834. [Google Scholar] [CrossRef] [PubMed]
- Loutzenhiser, P.G.; Manz, H.; Felsmann, C.; Strachan, PA.; Frank, T.; Maxwell, G.M. Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Sol. Energy 2007, 81, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Majasalmi, T.; Rautiainen, M.; Stenberg, P. Modeled and measured fPAR in a boreal forest: Validation and application of a new model. Agric. For. Meteorol. 2014, 189–190, 118–124. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Niu, X.; Min, M.; Liang, S. An efficient algorithm for calculating photosynthetically active radiation with MODIS products. Remote Sens. Environ. 2017, 194, 146–154. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef] [Green Version]
- Pinker, R.T.; Laszlo, I. Global distribution of photosynthetically active radiation as observed from satellites. J. Clim. 1992, 5, 56–65. [Google Scholar] [CrossRef]
- Eck, T.F.; Dye, D.G. Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance. Remote Sens. Environ. 1991, 38, 135–146. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Menzel, W.P.; Tanré, D. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 1992, 30, 2–27. [Google Scholar] [CrossRef]
- Moon, P. Proposed standard solar-radiation curves for engineering use. J. Franklin Inst. 1940, 230, 583–617. [Google Scholar] [CrossRef]
- Mccree, K.J. A solarimeter for measuring photosynthetically active radiation. Agric. Meteorol. 1966, 3, 353–366. [Google Scholar] [CrossRef]
- Janjai, S.; Kumharn, W.; Laksanaboonsong, J. Determination of Angstrom’s turbidity coefficient over Thailand. Renew. Energy 2003, 28, 1685–1700. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Jiang, W.; Guo, X. Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States. Energy Convers. Manag. 2015, 89, 71–82. [Google Scholar] [CrossRef]
- Tan, P.Y.; Ismail, M.R.B. Photosynthetically active radiation and comparison of methods for its estimation in equatorial Singapore. Theor. Appl. Climatol. 2016, 123, 873–883. [Google Scholar] [CrossRef]
- Gueymard, C. SMARTS2: A simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; Florida Solar Energy Center: Cocoa, FL, USA, 1995. [Google Scholar]
- Bosch, J.L.; López, G.; Batlles, F.J. Global and direct photosynthetically active radiation parameterizations for clear-sky conditions. Agric. For. Meteorol. 2009, 149, 146–158. [Google Scholar] [CrossRef]
- Alados, I.; Olmo, F.J.; Foyo-Moreno, I.; Alados-Arboledas, L. Estimation of photosynthetically active radiation under cloudy conditions. Agric. For. Meteorol. 2000, 102, 39–50. [Google Scholar] [CrossRef]
- Gueymard, C.A. REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation–Validation with a benchmark dataset. Sol. Energy 2008, 82, 272–285. [Google Scholar] [CrossRef]
- Janjai, S.; Wattan, R. Development of a model for the estimation of photosynthetically active radiation from geostationary satellite data in a tropical environment. Remote Sens. Environ. 2011, 115, 1680–1693. [Google Scholar] [CrossRef]
- Singh, R.K.; Liu, S.; Tieszen, L.L.; Suyker, A.E.; Verma, S.B. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States. J. Appl. Remote Sens. 2012, 6, 63521–63522. [Google Scholar]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Li, L.; Xin, X.; Zhang, H.; Yu, J.; Liu, Q.; Yu, S.; Wen, J. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sens. Environ. 2015, 165, 14–26. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.H.; Wang, M.; ILaszlo, S.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Hu, B.; Gong, W. Modeling and comparison of hourly photosynthetically active radiation in different ecosystems. Renew. Sustain. Energy Rev. 2016, 56, 436–453. [Google Scholar] [CrossRef]
- López, G.; Rubio, M.A.; Mart, N.M.; Batlles, F.J. Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agric. For. Meteorol. 2001, 107, 279–291. [Google Scholar] [CrossRef]
- Pankaew, P.; Milton, E.J.; Dash, J. Estimating hourly variation in photosynthetically active radiation across the UK using MSG SEVIRI data. In Proceedings of the IOP Conference Series-Earth and Environmental Science, Jakarta, Indonesia, 23–24 January 2014. [Google Scholar]
- Yu, X.; Guo, X. Hourly photosynthetically active radiation estimation in Midwestern United States from artificial neural networks and conventional regressions models. Int. J. Biometeorol. 2016, 60, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Alados, I.; Alados-Arboledas, L. Direct and diffuse photosynthetically active radiation: Measurements and modelling. Agric. For. Meteorol. 1999, 93, 27–38. [Google Scholar]
- Zhang, X.Z.; Zhang, Y.G.; Zhoub, Y.H. Measuring and modellingphotosynthetically active radiation in Tibet Plateau during April-October. Agric. For. Meteorol. 2000, 102, 207–212. [Google Scholar] [CrossRef]
- Xie, X.; Gao, W.; Gao, Z. Estimation of land photosynthetically active radiation in clear sky using MODIS atmosphere and land products. Proc. SPIE Int. Soc. Opt. Eng. 2008, 7083. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Niu, X.; Zhang, X.; Yu, Y.; Zhu, X. Reconstruction of daily photosynthetically active radiation and its trends over China. J. Geophys. Res. Atoms. 2013, 118, 13292–13302. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Liang, S.; Tang, W. Estimation of Daily Mean Photosynthetically Active Radiation under All-Sky Conditions Based on Relative Sunshine Data. J. Appl. Meteorol. Climatol. 2012, 51, 150–160. [Google Scholar] [CrossRef]
- Sun, Z. Improving transmission calculations for the Edwards-Slingo radiation scheme using a correlated-k distribution method. Q. J. R. Meteorol. Soc. 2011, 137, 2138–2148. [Google Scholar] [CrossRef]
- Liu, R.; Liang, S.; He, H.; Liu, J.; Zheng, T. Mapping incident photosynthetically active radiation from MODIS data over China. Remote Sens. Environ. 2008, 112, 998–1009. [Google Scholar]
- Zheng, T.; Liang, S.; Wang, K. Estimation of incident photosynthetically active radiation from GOES visible imagery. J. Appl. Meteorol. Climatol. 2008, 47, 853–868. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.; Liu, G. Measurements and estimations of photosynthetically active radiation in Beijing. Atmos. Res. 2007, 85, 361–371. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, J.; Zeng, X.; Liang, H. Parameterization of instantaneous global horizontal irradiance: Cloudy-sky component. J. Geophys. Res. Atoms. 2012, 117, D14. [Google Scholar] [CrossRef]
- Jang, J.S.R. Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm. In Proceedings of the National Conference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 2012; pp. 762–767. [Google Scholar]
- Zou, L.; Wang, L.; Xia, L.; Lin, A.; Hu, B.; Zhu, H. Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems. Renew. Energy 2017, 106, 343–353. [Google Scholar] [CrossRef]
- Kumar, M.; Kar, I.N. Non-linear HVAC computations using least square support vector machines. Energy Convers. Manag. 2009, 50, 1411–1418. [Google Scholar] [CrossRef]
- Kisi, O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 2015, 528, 312–320. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in natural and artificial systems. Q. Rev. Biol. 1975, 6, 126–137. [Google Scholar]
- Quinlan, J.R. Learning with Continuous Classes. In Proceedings of the Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, Australia, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Solomatine, D.P. M5 Model Trees and Neural Networks: Application to Flood Forecasting in the Upper Reach of the Huai River in China. J. Hydrol. Eng. 2004, 9, 491–501. [Google Scholar] [CrossRef]
- Rahimikhoob, A.; Asadi, M.; Mashal, M. A Comparison Between Conventional and M5 Model Tree Methods for Converting Pan Evaporation to Reference Evapotranspiration for Semi-Arid Region. Water Resour. Manag. 2013, 27, 4815–4826. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Samui, P. Determination of ultimate capacity of driven piles in cohesionless soil: A Multivariate Adaptive Regression Spline approach. Int. J. Numer. Anal. Met. 2012, 36, 1434–1439. [Google Scholar] [CrossRef]
- Sharda, V.N.; Patel, R.M.; Prasher, S.O.; Ojasvi, P.R.; Prakash, C. Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques. Agric. Water Manag. 2006, 83, 233–242. [Google Scholar] [CrossRef]
- Dye, D.G. Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
Statistics | a (m) | pre (mm) | ps (hpa) | rh | sh (h/day) | at (°C) | ws (m/s) | vis (km) | trise (h) | tset (h) |
---|---|---|---|---|---|---|---|---|---|---|
Max | 3688 | 263 | 1044.3 | 1 | 15.1 | 36.4 | 20.3 | 41.25 | 10.09 | 22.11 |
Min | 3 | 0 | 638 | 0.05 | 0 | −35.1 | 0 | 0.06 | 3.68 | 15.60 |
Std | 977.26 | 8.65 | 91.46 | 0.19 | 4.08 | 11.99 | 1.33 | 7.92 | 1.13 | 1.16 |
Mean | 754.79 | 2.28 | 939.45 | 0.65 | 6.25 | 13.18 | 2.09 | 18.37 | 6.65 | 18.70 |
Data Set Name | Parameters | Spatial Resolution | Temporal Resolution |
---|---|---|---|
MTSAT (VIS) | Earth-atmospheric albedo | 0.05 degree | Hourly |
MOD04/MYD04 | Aerosol optical depth (AOD) | 5 km | Daily |
MOD06/MYD06 | Cloud phase optical thickness (CPO), solar zenith angle (h), cloud water path (CWP), effective particle radius (re), cloud fraction (TCP) | 1 km | Daily |
MOD07/MYD07 | Precipitable water vapor (w), total zone amount (Ioz) | 5 km | Daily |
MOD09CMG/MYD09CMG | Surface albedo (ρg) | 0.05 degree | Daily |
Statistics | Models | HII | II | IIE | III | IV | V | VI | VII |
---|---|---|---|---|---|---|---|---|---|
RMSE | BBM | 1.178 | 1.112 | 1.186 | 1.116 | 1.189 | 1.201 | 1.266 | 1.453 |
EPP | 1.666 | 1.466 | 1.369 | 1.627 | 1.500 | 1.568 | 1.555 | 1.832 | |
PBM | 2.776 | 2.454 | 2.814 | 2.263 | 2.728 | 2.748 | 2.780 | 3.141 | |
LUT | 1.820 | 2.095 | 1.857 | 1.854 | 2.013 | 1.922 | 2.195 | 2.007 | |
BP | 0.918 | 0.963 | 0.876 | 0.973 | 0.823 | 0.873 | 0.902 | 0.675 | |
ANFIS | 0.830 | 0.769 | 0.567 | 0.806 | 0.711 | 0.708 | 0.719 | 0.507 | |
M5Tree | 0.817 | 0.819 | 0.663 | 0.858 | 0.828 | 0.743 | 0.754 | 0.515 | |
Genetic | 0.540 | 0.520 | 0.377 | 0.519 | 0.488 | 0.479 | 0.513 | 0.324 | |
MARS | 0.988 | 0.923 | 0.780 | 0.959 | 0.861 | 0.855 | 0.897 | 0.770 | |
SVM | 0.969 | 0.861 | 0.579 | 0.998 | 0.958 | 0.878 | 0.849 | 0.458 | |
Mean | 1.250 | 1.198 | 1.107 | 1.197 | 1.210 | 1.197 | 1.243 | 1.168 | |
MAE | BBM | 0.946 | 0.928 | 1.041 | 0.935 | 0.992 | 0.989 | 1.056 | 1.226 |
EPP | 1.460 | 1.220 | 1.198 | 1.348 | 1.266 | 1.308 | 1.284 | 1.556 | |
PBM | 2.319 | 2.100 | 2.544 | 1.868 | 2.365 | 2.334 | 2.447 | 2.729 | |
LUT | 1.319 | 1.533 | 1.430 | 1.336 | 1.495 | 1.430 | 1.740 | 1.605 | |
BP | 0.724 | 0.769 | 0.735 | 0.789 | 0.653 | 0.710 | 0.710 | 0.540 | |
ANFIS | 0.642 | 0.558 | 0.435 | 0.609 | 0.524 | 0.538 | 0.526 | 0.394 | |
M5Tree | 0.617 | 0.602 | 0.518 | 0.648 | 0.604 | 0.564 | 0.557 | 0.392 | |
Genetic | 0.368 | 0.333 | 0.251 | 0.339 | 0.317 | 0.320 | 0.330 | 0.215 | |
MARS | 0.823 | 0.749 | 0.654 | 0.787 | 0.706 | 0.703 | 0.727 | 0.663 | |
SVM | 0.723 | 0.639 | 0.435 | 0.716 | 0.669 | 0.630 | 0.569 | 0.343 | |
Mean | 0.994 | 0.943 | 0.924 | 0.938 | 0.959 | 0.953 | 0.994 | 0.966 |
Statistics | Models | Wetland | Desert | Lake | Forest | Farmland | City | Grassland |
---|---|---|---|---|---|---|---|---|
RMSE | BBM | 1.239 | 1.058 | 1.063 | 1.148 | 1.124 | 1.341 | 1.116 |
EPP | 1.757 | 1.226 | 1.352 | 1.852 | 1.492 | 1.647 | 1.378 | |
PBM | 2.868 | 2.133 | 2.433 | 2.171 | 2.487 | 3.032 | 2.554 | |
LUT | 1.752 | 2.354 | 2.027 | 1.562 | 2.038 | 2.100 | 1.937 | |
BP | 1.002 | 0.875 | 0.952 | 0.981 | 0.900 | 0.830 | 0.937 | |
ANFIS | 0.912 | 0.743 | 0.735 | 0.839 | 0.734 | 0.655 | 0.739 | |
M5Tree | 0.908 | 0.860 | 0.835 | 0.842 | 0.813 | 0.677 | 0.786 | |
Genetic | 0.571 | 0.491 | 0.485 | 0.546 | 0.500 | 0.461 | 0.474 | |
MARS | 1.062 | 0.884 | 0.882 | 0.988 | 0.894 | 0.835 | 0.897 | |
SVM | 0.993 | 0.639 | 1.115 | 1.000 | 0.933 | 0.711 | 0.820 | |
Mean | 1.306 | 1.126 | 1.188 | 1.193 | 1.191 | 1.229 | 1.164 | |
MAE | BBM | 1.011 | 0.872 | 0.879 | 0.943 | 0.935 | 1.131 | 0.950 |
EPP | 1.535 | 1.004 | 1.122 | 1.582 | 1.251 | 1.365 | 1.166 | |
PBM | 2.437 | 1.866 | 2.131 | 1.668 | 2.111 | 2.674 | 2.243 | |
LUT | 1.234 | 1.822 | 1.437 | 1.090 | 1.486 | 1.683 | 1.489 | |
BP | 0.789 | 0.721 | 0.780 | 0.773 | 0.721 | 0.661 | 0.769 | |
ANFIS | 0.706 | 0.556 | 0.541 | 0.639 | 0.548 | 0.477 | 0.553 | |
M5Tree | 0.684 | 0.651 | 0.630 | 0.645 | 0.604 | 0.497 | 0.587 | |
Genetic | 0.384 | 0.329 | 0.312 | 0.369 | 0.324 | 0.297 | 0.305 | |
MARS | 0.878 | 0.724 | 0.726 | 0.803 | 0.733 | 0.688 | 0.742 | |
SVM | 0.770 | 0.487 | 0.786 | 0.723 | 0.672 | 0.488 | 0.589 | |
Mean | 1.043 | 0.903 | 0.934 | 0.923 | 0.939 | 0.996 | 0.939 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Qin, W.; Wang, L.; Lin, A.; Zhang, M. Comparison of Artificial Intelligence and Physical Models for Forecasting Photosynthetically-Active Radiation. Remote Sens. 2018, 10, 1855. https://doi.org/10.3390/rs10111855
Feng L, Qin W, Wang L, Lin A, Zhang M. Comparison of Artificial Intelligence and Physical Models for Forecasting Photosynthetically-Active Radiation. Remote Sensing. 2018; 10(11):1855. https://doi.org/10.3390/rs10111855
Chicago/Turabian StyleFeng, Lan, Wenmin Qin, Lunche Wang, Aiwen Lin, and Ming Zhang. 2018. "Comparison of Artificial Intelligence and Physical Models for Forecasting Photosynthetically-Active Radiation" Remote Sensing 10, no. 11: 1855. https://doi.org/10.3390/rs10111855
APA StyleFeng, L., Qin, W., Wang, L., Lin, A., & Zhang, M. (2018). Comparison of Artificial Intelligence and Physical Models for Forecasting Photosynthetically-Active Radiation. Remote Sensing, 10(11), 1855. https://doi.org/10.3390/rs10111855