Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Sampling
2.2. Protocol for Ground Image Acquisition
2.3. RGB Image Analysis
2.3.1. Image Segmentation
2.3.2. Image Gap Analysis
2.3.3. Deriving Image Canopy Porosity
2.4. Deriving Vegetation Indices from Canopy Spectral Information
2.5. Statistical Analysis
3. Results
3.1. RGB Image-Derived Canopy Porosity
3.2. Canopy Porosity Limits for Disease Ranks
3.3. Remotely Sensed VI for Estimating Visual Rankings and Camera-Derived Canopy Porosity
3.4. Generating PRR Disease Severity Map from WV-3 Satellite Imagery
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Erwin, D.C.; Ribeiro, O.K. Phytophthora cinnamomi Rands (1922) var. cinnamomi. In Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996; pp. 269–279. ISBN 978-0-89054-212-5. [Google Scholar]
- Marais, L.J.; Menge, J.A.; Bender, G.S.; Faber, B. Phytophthora Root Rot. AvoResearch Calif. Avocado Comm. 2002, 2, 3–6. [Google Scholar]
- Pegg, K.; Whiley, A.; Langdon, P.; Saranah, J. Comparison of phosetyl-Al, phosphorous acid and metalaxyl for the long-term control of Phytophthora root rot of avocado. Aust. J. Exp. Agric. 1987, 27, 471–474. [Google Scholar] [CrossRef]
- Dann, E.K.; Ploetz, R.C.; Coates, L.M.; Pegg, K.G. Foliar, Fruit and Soilborne Diseases. In The Avocado: Botany, Production and Uses; Schaffer, B., Whiley, A.W., Wolstenholme, B.N., Eds.; CABI: Cambridge, MA, USA, 2012; pp. 397–398. ISBN 978-1-84593-701-0. [Google Scholar]
- Nutter, F.W.; Esker, P.D.; Netto, R.A.C. Disease Assessment Concepts and the Advancements Made in Improving the Accuracy and Precision of Plant Disease Data. Eur. J. Plant Pathol. 2006, 115, 95–103. [Google Scholar] [CrossRef]
- Darvas, J.M.; Toerien, J.C.; Mine, D.L. Control of Avocado Root Rot by Trunk Injection with Phosethyl-Al. Plant Dis. 1984, 68, 691–693. [Google Scholar] [CrossRef]
- Horner, I.J.; Jensen, E.H. Evaluation of Phytoptora Control in Avocados; New Zealand Avocado Growers’ Association Annual Research Report; Avocado Grower’s Association: Tauranga, New Zealand, 2004; pp. 1–7. [Google Scholar]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef]
- Bock, C.H.; Parker, P.E.; Cook, A.Z.; Gottwald, T.R. Visual Rating and the Use of Image Analysis for Assessing Different Symptoms of Citrus Canker on Grapefruit Leaves. Plant Dis. 2008, 92, 530–541. [Google Scholar] [CrossRef]
- Newton, A.C.; Hackett, C.A. Subjective components of mildew assessment on spring barley. Eur. J. Plant Pathol. 1994, 100, 395–412. [Google Scholar] [CrossRef]
- Steddom, K.; Bredehoeft, M.W.; Khan, M.; Rush, C.M. Comparison of Visual and Multispectral Radiometric Disease Evaluations of Cercospora Leaf Spot of Sugar Beet. Plant Dis. 2005, 89, 153–158. [Google Scholar] [CrossRef]
- Nixon, M.S.; Aguado, A.S. Human and computer vision. In Feature Extraction and Image Processing; Elsevier: Oxford, UK, 2008; pp. 1–29. ISBN 978-0-08-050625-8. [Google Scholar]
- Goodenough, A.E.; Goodenough, A.S. Development of a Rapid and Precise Method of Digital Image Analysis to Quantify Canopy Density and Structural Complexity. Int. Sch. Res. Not. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of leaf area index in eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188. [Google Scholar] [CrossRef]
- Mora, M.; Avila, F.; Carrasco-Benavides, M.; Maldonado, G.; Olguín-Cáceres, J.; Fuentes, S. Automated computation of leaf area index from fruit trees using improved image processing algorithms applied to canopy cover digital photograpies. Comput. Electron. Agric. 2016, 123, 195–202. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Fuentes, S.; Ortega-Farias, S.; Gonzalez-Talice, J.; Yuri, J. Digital Cover Photography for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient. Sensors 2015, 15, 2860–2872. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Ruiz, F.; Castro-Garcia, S.; Blanco-Roldan, G.; Sola-Guirado, R.; Gil-Ribes, J. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect. Sensors 2016, 16, 723. [Google Scholar] [CrossRef] [PubMed]
- De Bei, R.; Fuentes, S.; Gilliham, M.; Tyerman, S.; Edwards, E.; Bianchini, N.; Smith, J.; Collins, C. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine. Sensors 2016, 16, 585. [Google Scholar] [CrossRef] [PubMed]
- Pekin, B.; Macfarlane, C. Measurement of crown cover and leaf area index using digital cover photography and its application to remote sensing. Remote Sens. 2009, 1, 1298–1320. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.; Zarco-Tejada, P. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef]
- Robson, A. Remote Sensing Application for the Determination of Yeild, Maturity and Aflatoxin Contamination in Peanut. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2007. [Google Scholar]
- Robson, A.; Rahman, M.M.; Muir, J.; Saint, A.; Simpson, C.; Searle, C. Evaluating satellite remote sensing as a method for measuring yield variability in Avocado and Macadamia tree crops. Adv. Anim. Biosci. 2017, 8, 498–504. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indexes. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef]
- Barton, C.V.M. Advances in remote sensing of plant stress. Plant Soil 2012, 354, 41–44. [Google Scholar] [CrossRef]
- Weiss, M. Can_Eye V6.4.91 User Manual; French National Institute for Agriculture Research (INRA): Toulouse, France, 2017. [Google Scholar]
- Macfarlane, C.; Arndt, S.K.; Livesley, S.J.; Edgar, A.C.; White, D.A.; Adams, M.A.; Eamus, D. Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. For. Ecol. Manag. 2007, 242, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, S.; Palmer, A.R.; Taylor, D.; Zeppel, M.; Whitley, R.; Eamus, D. An automated procedure for estimating the leaf area index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application to an examination of the relationship between remotely sensed and field measurements of LAI. Funct. Plant Biol. 2008, 35, 1070–1079. [Google Scholar] [CrossRef]
- Fuentes, S.; Poblete-Echeverría, C.; Ortega-Farias, S.; Tyerman, S.; De Bei, R. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods: New automated canopy vigour monitoring tool. Aust. J. Grape Wine Res. 2014, 20, 465–473. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- López-López, M.; Calderón, R.; González-Dugo, V.; Zarco-Tejada, P.; Fereres, E. Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery. Remote Sens. 2016, 8, 276. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Oerke, E.-C.; Steiner, U.; Dehne, H.-W. Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 2012, 133, 197–209. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Steiner, U.; Dehne, H.-W.; Oerke, E.-C. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 2010, 11, 413–431. [Google Scholar] [CrossRef]
- Yi, Q.; Jiapaer, G.; Chen, J.; Bao, A.; Wang, F. Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J. Photogramm. Remote Sens. 2014, 91, 72–84. [Google Scholar] [CrossRef]
- Nelson, M.R.; Orum, T.V.; Jaime-Garcia, R.; Nadeem, A. Applications of Geographic Information Systems and Geostatistics in Plant Disease Epidemiology and Management. Plant Dis. 1999, 83, 308–319. [Google Scholar] [CrossRef]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide. In Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996; pp. 8–38. ISBN 978-0-89054-212-5. [Google Scholar]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Formulation and assessment of narrow-band vegetation indices from EO-1 Hyperion imagery for discriminating sugarcane disease. In Proceedings of the Spatial Sciences Institute Biennial Conference, Canberra, Australia, 22–26 September 2003. [Google Scholar]
- Suarez, L.A.; Apan, A.; Werth, J. Detection of phenoxy herbicide dosage in cotton crops through the analysis of hyperspectral data. Int. J. Remote Sens. 2017, 38, 6528–6553. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Fu, Y.-Y.; Wang, J.-H.; Yang, G.-J.; Song, X.-Y.; Xu, X.-G.; Feng, H.-K. Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2013, 33, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, E.J.; Falzon, G.; Miron, D.; Lamb, D. Fast object detection in pastoral landscapes using a Colour Feature Extreme Learning Machine. Comput. Electron. Agric. 2017, 139, 204–212. [Google Scholar] [CrossRef]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
PRR Disease Ranking | ||
---|---|---|
Visual Interpretation of Canopy | Ciba-Geigy | Simpson |
Very healthy no decline | 1 or 0 | 1 |
Healthy no decline | 2 | 1 |
Early decline | 3 | 1 |
Early decline to Moderate | 4 | 2 |
Moderate decline | 5 | 3 |
Moderate to severe decline | 6 | 3 |
Severe decline | 7 | 4 |
Very severe decline | 8 | 4 |
Almost denuded | 9 | - |
Complete denuded | 10 | - |
Vegetation Indices | Formula * | |
---|---|---|
Pigment indices | ||
1. | Red-edge Normalized Difference Vegetation Index | |
2. | Transformed Chlorophyll Absorption in Reflectance Index | |
3. | Structure Insensitive Pigment Index | |
4. | Structure Insensitive Pigment Index | |
5. | Normalized Difference Red-edge Index 1 | |
6. | Normalized Difference Red-edge Index 2 | |
Pigment and Structural indices | ||
7. | Normalized Difference Red-edge Index | |
8. | Normalized Difference NIR Index | |
9. | Green normalized difference vegetation Index | |
10. | Modified Simple Ratio | |
11. | Simple Ratio Vegetation Index | |
12. | Normalized Difference Vegetation Index 1 | |
13. | Normalized Difference Vegetation Index 2 | |
14. | Renormalized Difference Vegetation Index 1 | |
15. | Renormalized Difference Vegetation Index 2 | |
16. | Transformed Difference Vegetation Index 1 | |
17. | Transformed Difference Vegetation Index 2 | |
18. | Non Linear Index |
Modified Ciba-Geigy Dis. Ranks | Confidence Limits for Derived Canopy Porosity % | Original Ciba-Geigy Disease Ranks | Average Canopy Porosity % * | Standard Deviation | Confidence Level | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
1 * | 29.40 | 38.24 | 2 & 3 | 33.82 a | 8.404 | 99% |
2 * | 40.46 | 49.98 | 4 | 45.22 b | 7.83 | 99% |
3 * | 51.70 | 60.06 | 5, 6 & 7 | 55.88 c | 9.99 | 99% |
Vegetation Indices | p-Values for Each Correlation Combination with VI | |||
---|---|---|---|---|
Ciba-Geigy | Simpson | Derived Canopy Porosity % | ||
Pigment indices | ||||
1. | RENDVI | 2.53 × 10−10 | 3.24 × 10−8 | 1.73 × 10−8 |
2. | TCARI | 0.86 | 0.947 | 0.789 |
3. | SIPI | 5.17 × 10−5 | 1.05 × 10−3 | 3.23 × 10−5 |
4. | CB SIPI | 4.42 × 10−9 | 3.07 × 10−7 | 3.93 × 10−9 |
5. | N1RENDVI | 4.53 × 10−9 | 9.36 × 10−8 | 6.26 × 10−10 |
6. | N2RENDVI | 5.43 × 10−8 | 2.46 × 10−7 | 1.04 × 10−8 |
Pigment and Structural indices | ||||
7. | N1/RENDVI | 1.68 × 10−11 | 2.36 × 10−9 | 2.40 × 10−11 |
8. | N1/N2 NDVI | 2.24 × 10−10 | 4.30 × 10−9 | 7.31 × 10−9 |
9. | N1R1 GNDVI | 2.41 × 10−12 | 3.17 × 10−9 | 8.97 × 10−12 |
10. | MSR | 1.13 × 10−12 | 2.16 × 10−10 | 6.96 × 10−12 |
11. | SRVI * | 1.09 × 10−12 * | 1.51 × 10−10 * | 4.50 × 10−12 * |
12. | N1NDVI | 5.79 × 10−12 | 1.68 × 10−9 | 8.21 × 10−11 |
13. | N2NDVI | 5.12 × 10−12 | 8.19 × 10−10 | 8.28 × 10−11 |
14. | RDVI1 | 1.50 × 10−10 | 8.90 × 10−9 | 2.23 × 10−10 |
15. | RDVI2 | 1.73 × 10−10 | 5.50 × 10−9 | 4.20 × 10−10 |
16. | TDVI1 | 7.17 × 10−12 | 2.10 × 10−9 | 1.06 × 10−10 |
17. | TDVI2 | 6.37 × 10−12 | 1.04 × 10−9 | 1.06 × 10−10 |
18. | NLI | 2.57 × 10−11 | 6.52 × 10−9 | 1.00 × 10−10 |
Modified Ciba-Geigy Disease Ranks | Confidence Limits of SRVI | Original Ciba-Geigy Disease Ranks | Average SRVI Values | Standard Deviation | Confidence Level | |
---|---|---|---|---|---|---|
Upper | Lower | |||||
1 ** | 10.15 | 8.87 | 2 | 9.51 a | 0.83 | 97% |
2 ** | 8.87 | 7.86 | 3 & 4 | 8.37 b | 1.25 | 98% |
3 ** | 7.83 | 6.67 | 5 | 7.25 c | 0.93 | 98% |
4 ** | 6.49 | 5.40 | 6 & 7 | 5.95 d | 1.12 | 98% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgadoe, A.S.A.; Robson, A.J.; Lamb, D.W.; Dann, E.K.; Searle, C. Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis. Remote Sens. 2018, 10, 226. https://doi.org/10.3390/rs10020226
Salgadoe ASA, Robson AJ, Lamb DW, Dann EK, Searle C. Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis. Remote Sensing. 2018; 10(2):226. https://doi.org/10.3390/rs10020226
Chicago/Turabian StyleSalgadoe, Arachchige Surantha Ashan, Andrew James Robson, David William Lamb, Elizabeth Kathryn Dann, and Christopher Searle. 2018. "Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis" Remote Sensing 10, no. 2: 226. https://doi.org/10.3390/rs10020226
APA StyleSalgadoe, A. S. A., Robson, A. J., Lamb, D. W., Dann, E. K., & Searle, C. (2018). Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis. Remote Sensing, 10(2), 226. https://doi.org/10.3390/rs10020226