Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Satellite Data
2.2. Bagging Classification Trees
2.3. Accuracy Assessment
2.4. Image Entropy
2.5. Design of the Experiments
2.5.1. Experimental Setting 1
2.5.2. Experimental Setting 2
2.5.3. Experimental Setting 3
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thenkabail, P.S. (Ed.) Remote Sensing Handbook. Volume I, Remotely Sensed Data Characterization, Classification, and Accuracies; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9781482217865. [Google Scholar]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Serra-Sagristà, J.; Aulí-Llinàs, F. Remote Sensing Data Compression. Comput. Intell. Remote Sens. 2008, 27–61. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of View]. Proc. IEEE 2012, 100, 1907–1910. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Radiometric resolution for monitoring vegetation How many bits are needed? Int. J. Remote Sens. 1980, 1, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.; Garg, P.; Ghosh, S. The Effect of Radiometric Resolution on the Retrieval of Leaf Area Index from Agricultural Crops. GISci. Remote Sens. 2006, 43, 377–387. [Google Scholar] [CrossRef]
- Irons, J.R.; Markham, B.L.; Nelson, R.F.; Toll, D.L.; Williams, D.L.; Latty, R.S.; Stauffer, M.L. The effects of spatial resolution on the classification of Thematic Mapper data. Int. J. Remote Sens. 1985, 6, 1385–1403. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Marcus, A.; Lawrence, R.L. Effects of Sensor Resolution on Mapping In-Stream Habitats. Photogramm. Eng. Remote Sens. 2002, 68, 801–807. [Google Scholar]
- Platt, R.; Goetz, A. A comparison of AVIRIS and synthetic Landsat data for land use classification at the urban fringe. Photogramm. Eng. Remote Sens. 2004, 70, 813–819. [Google Scholar] [CrossRef]
- Singh, R.P.; Dadhwal, V.K.; Singh, K.P.; Navalgund, R.R. Study on sensor’s spatial, radiaometric and temporal resolution requirements for crop monitoring. In Proceedings of the Symposium on Advances in Electronics, ELECTRO-2001, Varanasi, India, 4–6 January 2001; pp. 4–6. [Google Scholar]
- Rama Rao, N.; Garg, P.K.; Ghosh, S.K. Evaluation of radiometric resolution on land use/land cover mapping in an agricultural area. Int. J. Remote Sens. 2007, 28, 443–450. [Google Scholar] [CrossRef]
- Bernstein, R.; Lotspiech, J.B.; Myers, H.J.; Kolsky, H.G.; Lees, R.D. Analysis and Processing of LANDSAT-4 Sensor Data Using Advanced Image Processing Techniques and Technologies. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 192–221. [Google Scholar] [CrossRef]
- Malila, W.A. Comparison of the Information Contents of Landsat TM and MSS Data. Photogramm. Eng. Remote Sens. 1985, 51, 1449–1457. [Google Scholar]
- Masek, J.G.; Honzak, M.; Goward, S.N.; Liu, P.; Pak, E. Landsat-7 ETM+ as an observatory for land cover initial radiometric and geometric comparisons with Landsat-5 Thematic Mapper. Remote Sens. Environ. 2001, 78, 118–130. [Google Scholar] [CrossRef]
- Karnieli, A.; Ben-Dor, E.; Bayarjargal, Y.; Lugasi, R. Radiometric saturation of Landsat-7 ETM+ data over the Negev Desert (Israel): Problems and solutions. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 219–237. [Google Scholar] [CrossRef]
- Alonso, C.; Tarquis, A.M.; Zúñiga, I.; Benito, R.M. Spatial and radiometric characterization of multi spectrum satellite images through multi-fractal analysis. Nonlinear Process. Geophys. 2017, 24, 141–155. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F. Precision and accuracy of EO-1 Advanced Land Imager (ALI) data for semiarid vegetation studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1311–1320. [Google Scholar] [CrossRef]
- Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 347–349. [Google Scholar] [CrossRef]
- Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 2177–2192. [Google Scholar] [CrossRef]
- Roth, K.L.; Roberts, D.A.; Dennison, P.E.; Peterson, S.H.; Alonzo, M. The impact of spatial resolution on the classification of plant species and functional types within imaging spectrometer data. Remote Sens. Environ. 2015, 171, 45–57. [Google Scholar] [CrossRef]
- Herold, M.; Gardner, M.E.; Roberts, D.A. Spectral resolution requirements for mapping urban areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1907–1919. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens. Environ. 2009, 113, 2345–2355. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. Analysis of Time-Series Spectral Index Data to Enhance Crop Identification Over a Mediterranean Rural Landscape. IEEE Geosci. Remote Sens. Lett. 2017, 1–5. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăgu, L.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Chrysafis, I.; Mallinis, G.; Gitas, I.; Tsakiri-Strati, M. Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sens. Environ. 2017, 199, 154–166. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Katiyar, S.; Arun, P. A Review Over the Applicability of Image Entropy in Analyses of Remote Sensing Datasets. arXiv. 2014. Available online: https://arxiv.org/ftp/arxiv/papers/1405/1405.6133.pdf (accessed on 11 August 2018).
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Hausser, J.; Strimmer, K. Entropy: Estimation of Entropy, Mutual Information and Related Quantities 2014. Available online: https://cran.r-project.org/web/packages/entropy/index.html (accessed on 11 August 2018).
- Franks, S. How Many Bits? Radiometric Resolution as a Factor in Obtaining Forestry Information with Remotely Sensed Measurements. Master’s Thesis, University of Maryland, College Park, MD, USA, 2006. [Google Scholar]
- Pope, A.; Rees, W.G. Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens. Environ. 2014, 141, 1–13. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Chica-Olmo, M.; Abarca-Hernández, F. Computing geostatistical image texture for remotely sensed data classification. Comput. Geosci. 2000, 26, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Sarp, G. Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul. Eur. J. Remote Sens. 2014, 47, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Y.; Pu, R.; Zhang, Z. Mapping Robinia Pseudoacacia Forest Health Conditions by Using Combined Spectral, Spatial, and Textural Information Extracted from IKONOS Imagery and Random Forest Classifier. Remote Sens. 2015, 7, 9020–9044. [Google Scholar] [CrossRef] [Green Version]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237–250. [Google Scholar] [CrossRef]
- Navulur, K. Radiometric Resolution. In Multispectral Image Analysis Using the Object-Oriented Paradigm; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; pp. 10–11. ISBN 9781420043068. [Google Scholar]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Liu, C.; Chen, W. Band Selection in Sentinel-2 Satellite for Agriculture Applications. In Proceedings of the 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 7–8. [Google Scholar]
- Aplin, P.; Atkinson, P.M.; Curran, P.J. Fine spatial resolution simulated satellite sensor imagery for land cover mapping in the United Kingdom. Remote Sens. Environ. 1999, 68, 206–216. [Google Scholar] [CrossRef]
Acquisition Year | Radiometric Resolution (bits) | Spatial Resolution (m) | OOB Error Rate (%) | Khat | Overall Accuracy (%) | Computational Time (s) |
---|---|---|---|---|---|---|
2007 | 11 | 1 | 6.33 | 0.82 | 91 | 94.74 |
2007 | 8 | 1 | 6.25 | 0.82 | 91 | 79.80 |
2007 | 11 | 3 | 6.25 | 0.78 | 89 | 62.15 |
2007 | 8 | 3 | 6.67 | 0.86 | 93 | 63.33 |
2007 | 11 | 5 | 6.33 | 0.75 | 88 | 61.96 |
2007 | 8 | 5 | 6.25 | 0.78 | 89 | 59.47 |
2010 | 11 | 1 | 8.00 | 0.72 | 86 | 93.46 |
2010 | 8 | 1 | 7.67 | 0.75 | 88 | 84.03 |
2010 | 11 | 3 | 5.50 | 0.75 | 88 | 61.83 |
2010 | 8 | 3 | 6.08 | 0.81 | 91 | 72.18 |
2010 | 11 | 5 | 8.17 | 0.78 | 89 | 61.09 |
2010 | 8 | 5 | 8.42 | 0.80 | 90 | 60.25 |
Radiometric Resolution (bits) | Spatial Resolution (m) | Khat | Overall Accuracy (%) |
---|---|---|---|
16 | 1 | 0.73 | 86 |
8 | 1 | 0.71 | 86 |
16 | 3 | 0.71 | 85 |
8 | 3 | 0.75 | 88 |
16 | 5 | 0.63 | 82 |
8 | 5 | 0.62 | 82 |
Dataset | Original Image Radiometry (bits) | Texture Radiometry (bits) | Window Size (p) | OOB Error Rate (%) | Khat | Overall Accuracy (%) | Computational Time (s) |
---|---|---|---|---|---|---|---|
Pansharpened MS | 11 | - | - | 34.43 | 0.62 | 68 | 344.19 |
Pansharpened MS | 8 | - | - | 35.67 | 0.61 | 67 | 340.27 |
Panchromatic | 11 | 16 | 5 | 46.57 | 0.52 | 60 | 537.1 |
Panchromatic | 11 | 8 | 5 | 26.93 | 0.59 | 66 | 467.26 |
Panchromatic | 8 | 16 | 5 | 45.6 | 0.51 | 59 | 552.36 |
Panchromatic | 8 | 8 | 5 | 47.97 | 0.44 | 54 | 510.27 |
Panchromatic | 11 | 16 | 15 | 27.3 | 0.62 | 68 | 502.01 |
Panchromatic | 11 | 8 | 15 | 29.27 | 0.59 | 66 | 476.69 |
Panchromatic | 8 | 16 | 15 | 26.53 | 0.63 | 69 | 497.73 |
Panchromatic | 8 | 8 | 15 | 29.47 | 0.58 | 65 | 469.38 |
Panchromatic | 11 | 16 | 25 | 18.63 | 0.66 | 71 | 478.99 |
Panchromatic | 11 | 8 | 25 | 19.53 | 0.63 | 69 | 460.47 |
Panchromatic | 8 | 16 | 25 | 19.03 | 0.66 | 72 | 482.86 |
Panchromatic | 8 | 8 | 25 | 20.17 | 0.63 | 69 | 460.79 |
Dataset | Original Image Radiometry (bits) | Spectral Indices Radiometry (bits) | OOB Error Rate (%) | Khat | Overall Accuracy (%) | Computational Time (s) |
---|---|---|---|---|---|---|
Original bands | 12 | - | 23.40 | 0.60 | 78 | 17964.47 |
Original bands | 8 | - | 23.84 | 0.60 | 77 | 17566.97 |
Spectral Indices | 12 | 16 | 24.39 | 0.59 | 77 | 11535.23 |
Spectral Indices | 12 | 8 | 23.95 | 0.58 | 78 | 11492.83 |
Spectral Indices | 8 | 16 | 24.72 | 0.59 | 78 | 12412.53 |
Spectral Indices | 8 | 8 | 25.28 | 0.58 | 77 | 12380.53 |
Dataset | Radiometric Resolution (bits) | Blue (B) | Green (G) | Red (R) | Red Edge (RE1) | Red Edge (RE2) | Near InfraRed Narrow 1 (NIRn1) | Near InfraRed (NIR) | Near InfraRed Narrow 2 (NIRn2) | ShortWave InfraRed (SWIR1) | ShortWave InfraRed (SWIR2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ikonos-2007 | 11 | 19.88 | 19.87 | 19.84 | - | - | - | 19.86 | - | - | - |
Ikonos-2007 | 8 | 19.86 | 19.86 | 19.84 | - | - | - | 19.85 | - | - | - |
Difference (%) | 0.10 | 0.05 | 0.00 | 0.05 | |||||||
Ikonos-2010 | 11 | 19.83 | 19.81 | 19.75 | - | - | - | 19.83 | - | - | - |
Ikonos-2010 | 8 | 19.83 | 19.81 | 19.75 | - | - | - | 19.83 | - | - | - |
Difference (%) | 0.00 | 0.00 | 0.00 | 0.00 | |||||||
Quickbird | 11 | 23.55 | 23.55 | 23.52 | - | - | - | 23.52 | - | - | - |
Quickbird | 8 | 23.53 | 23.55 | 23.52 | - | - | - | 23.52 | - | - | - |
Difference (%) | 0.08 | 0.00 | 0.00 | 0.00 | |||||||
S2-March 2017 | 12 | 23.51 | 23.53 | 23.36 | 23.44 | 23.4 | 23.38 | 23.38 | 23.38 | 23.4 | 23.35 |
S2-March 2017 | 8 | 23.51 | 23.53 | 23.36 | 23.44 | 23.4 | 23.38 | 23.38 | 23.38 | 23.4 | 23.35 |
Difference (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
S2-May 2017 | 12 | 23.51 | 23.56 | 23.47 | 23.55 | 23.47 | 23.45 | 23.43 | 23.43 | 23.37 | 23.33 |
S2-May 2017 | 8 | 23.51 | 23.56 | 23.47 | 23.55 | 23.47 | 23.45 | 23.43 | 23.43 | 23.37 | 23.33 |
Difference (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
S2-June 2017 | 12 | 23.34 | 23.47 | 23.23 | 23.47 | 23.48 | 23.46 | 23.46 | 23.46 | 23.46 | 23.41 |
S2-June 2017 | 8 | 23.33 | 23.47 | 23.23 | 23.47 | 23.48 | 23.46 | 23.46 | 23.46 | 23.46 | 23.4 |
Difference (%) | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | |
S2-July 2017 | 12 | 23.28 | 23.44 | 23.12 | 23.45 | 23.46 | 23.43 | 23.43 | 23.43 | 23.47 | 23.39 |
S2-July 2017 | 8 | 23.27 | 23.44 | 23.12 | 23.45 | 23.46 | 23.43 | 23.43 | 23.43 | 23.47 | 23.39 |
Difference (%) | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
S2-August 2017 | 12 | 23.42 | 23.48 | 23.20 | 23.41 | 23.39 | 23.37 | 23.37 | 23.38 | 23.39 | 23.3 |
S2-August 2017 | 8 | 23.42 | 23.48 | 23.21 | 23.41 | 23.39 | 23.37 | 23.37 | 23.38 | 23.38 | 23.29 |
Difference (%) | 0.00 | 0.00 | −0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verde, N.; Mallinis, G.; Tsakiri-Strati, M.; Georgiadis, C.; Patias, P. Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sens. 2018, 10, 1267. https://doi.org/10.3390/rs10081267
Verde N, Mallinis G, Tsakiri-Strati M, Georgiadis C, Patias P. Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sensing. 2018; 10(8):1267. https://doi.org/10.3390/rs10081267
Chicago/Turabian StyleVerde, Natalia, Giorgos Mallinis, Maria Tsakiri-Strati, Charalampos Georgiadis, and Petros Patias. 2018. "Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy" Remote Sensing 10, no. 8: 1267. https://doi.org/10.3390/rs10081267
APA StyleVerde, N., Mallinis, G., Tsakiri-Strati, M., Georgiadis, C., & Patias, P. (2018). Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sensing, 10(8), 1267. https://doi.org/10.3390/rs10081267