Seasonal Evaluation of SMAP Soil Moisture in the U.S. Corn Belt
Abstract
:1. Introduction
2. Data and Metrics
2.1. Metrics
2.2. SMAP Products
2.3. South Fork Core Validation Site
3. SMAP L2SM Performance in the South Fork
4. SMAP L2SM Algorithm
5. SMAP L2SM Parameterizations
5.1. Vegetation Optical Depth (VOD)
5.2. Effective Surface Temperature
5.3. Single Scattering Albedo
5.4. Soil Texture
5.5. Soil Surface Roughness
6. Summary
- The used in version 2 of the SPL2SMP_E is 4 to 9 K warmer than any observed soil depth in the South Fork. Using to calculate is more physically realistic.
- The assumption that and is equivalent at SMAP overpass times is not valid in corn and soybean canopies; however, the overall impact on can be mitigated during calculation.
- Climatological VOD cannot reliably describe vegetation growth in the Corn Belt.
- Increasing to account for scattering in corn dries L2SM retrievals, worsening observed dry biases in SMAP L2SM during the summer months.
- The current clay fraction may be slightly over-estimated, but its impact on SMAP L2SM retrieval is minimal.
- Observed SMAP L2SM biases support the idea that the current HR is too smooth for the South Fork, consistent with the tillage practices of the region.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; Technical Report; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Namias, J. Spring and Summer 1988 Drought over the Contiguous United States—Causes and Prediction. J. Clim. 1991, 4, 54–65. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Viterbo, P.; Miller, M.J.; Betts, A.K. The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Weather Rev. 1996, 124, 362–383. [Google Scholar] [CrossRef]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef]
- Hornbuckle, B.K.; Patton, J.C.; VanLoocke, A.; Suyker, A.E.; Roby, M.C.; Walker, V.A.; Iyer, E.R.; Herzmann, D.E.; Endacott, E.A. SMOS Optical Thickness Changes in Response to the Growth and Development of Crops, Crop Management, and Weather. Remote Sens. Environ. 2016, 180, 320–333. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Jackson, T.; O’Neill, P.; Chan, S.; Bindlish, R.; Colliander, A.; Chen, F.; Dunbar, S.; Piepmeier, J.; Misra, S.; Cosh, M.; et al. Soil Moisture Active Passive (SMAP) Project: Calibration and Validation for the L2/3_SM_P Version 5 and L2/3_SM_P_E Version 2 Data Products; Technical Report JPL D-56297; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Walker, V.A.; Hornbuckle, B.K.; Cosh, M.H. A Five–Year Evaluation of SMOS Level 2 Soil Moisture in the Corn Belt of the United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 889–903. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture; Version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [CrossRef]
- Chan, S. SMAP Enhanced Level 2 Passive Soil Moisture Product Specification Document; Technical Report JPL D-56291; Prime Mission Release; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018. [Google Scholar]
- Peng, J.; Mohammed, P.; Chaubell, J.; Chan, S.; Kim, S.; Das, N.; Dunbar, S.; Bindlish, B.; Xu, X. Soil Moisture Active Passive (SMAP) L1-L3 Ancillary Static Data, Version 1. [Subset: SOIL_TEXTURE; LANDCOVER_CLASS]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [CrossRef]
- Cosh, M.H.; White, W.A.; Colliander, A.; Jackson, T.J.; Prueger, J.H.; Hornbuckle, B.K.; Hunt, E.R.; McNairn, H.; Powers, J.; Walker, V.A.; et al. Estimating Vegetation Water Content during the Soil Moisture Active Passive Validation Experiment 2016. J. Appl. Remote Sens. 2019, 13, 014516. [Google Scholar] [CrossRef]
- Coopersmith, E.J.; Cosh, M.H.; Petersen, W.A.; Prueger, J.; Niemeier, J. Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River. J. Hydrometeorol. 2015, 16, 1087–1101. [Google Scholar] [CrossRef]
- USDA–NASS. 2018 Iowa Cropland Data Layer; USDA National Agricultural Statistics Service, Research and Development Division, Geospatial Information Branch, Spatial Analysis Research Section: Washington, DC, USA, 2019.
- Friedl, M.A.; Sulla-Manashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Rondinelli, W.J.; Hornbuckle, B.K.; Patton, J.C.; Cosh, M.H.; Walker, V.A.; Carr, B.D.; Logsdon, S.D. Different rates of soil drying after rainfall are observed by the SMOS satellite and the South Fork in situ soil moisture network. J. Hydrometeorol. 2015, 16, 889–903. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, B.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5003. [Google Scholar] [CrossRef]
- Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A Model for Microwave Emission from Vegetation–Covered Fields. J. Geophys. Res. 1982, 87, 11229–11237. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Artech House: Dedham, MA, USA, 1986; Volume III. [Google Scholar]
- Wigneron, J.P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M.J.; Richaume, P.; Ferrazzoli, P.; de Rosnay, P.; Gurney, R.; Calvet, J.C.; et al. L–band Microwave Emission of the Biosphere (L-MEB) model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 2007, 107, 639–655. [Google Scholar] [CrossRef]
- Kucharik, C.J. A Multidecadal Trend of Earlier Corn Planting in the Central USA. Agron. J. 2006, 98, 1544–1550. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Sacks, W.J.; Kucharik, C.J. Crop Management and Phenology trends in the U. S. Corn Belt: Impacts on Yields, Evapotranspiration and Energy Balance. Agric. For. Meteorol. 2011, 151, 882–894. [Google Scholar] [CrossRef]
- Thessen, G.; Schauer, N.; Adamson, C. 2013 Iowa Agricultural Statistics; Technical Report; USDA National Agricultural Statistics Service, Upper Midwest Region, Iowa Field Office: Des Moines, IA, USA, 2013.
- Konings, A.G.; McColl, K.A.; Piles, M.; Entekhabi, D. How many parameters can be maximally estimated from a set of measurements? IEEE Geosci. Remote Sens. Lett. 2015, 12, 1081–1085. [Google Scholar] [CrossRef]
- Patton, J.C.; Hornbuckle, B.K. Initial Validation of SMOS Vegetation Optical Thickness in Iowa. IEEE Geosci. Remote Sens. Lett. 2013, 10, 647–651. [Google Scholar] [CrossRef]
- Hornbuckle, B.K.; England, A.W. Diurnal Variation of Vertical Temperature Gradients Within a Field of Maize: Implications for Satellite Microwave Radiometry. IEEE Geosci. Remote Sens. Lett. 2005, 2, 74–77. [Google Scholar] [CrossRef]
- Parton, W.J.; Logan, J.A. A Model for Diurnal Variation in Soil and Air Temperature. Agric. Meteorol. 1981, 23, 205–216. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Mo, T. A Parameterization of Effective Soil Temperature for Microwave Emission. J. Geophys. Res. 1982, 87, 1301–1304. [Google Scholar] [CrossRef]
- O’Neill, P.; Bindlish, R.; Chan, S.; Njoku, E.; Jackson, T. SMAP Algorithm Theoretical Basis Document: Level 2 and 3 Soil Moisture (Passive) Data Products; Technical Report JPL D-66480, Revision D; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018. [Google Scholar]
- Hornbuckle, B.K.; England, A.W.; De Roo, R.D.; Fischman, M.A.; Boprie, D.L. Vegetation canopy anisotropy at 1.4 GHz. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2211–2223. [Google Scholar] [CrossRef]
- Kurum, M. Quantifying scattering albedo in microwave emission of vegetated terrain. Remote Sens. Environ. 2013, 129, 66–74. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, T.J. Vegetation Effects on the Microwave Emission of Soils. Remote Sens. Environ. 1991, 36, 203–212. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.P. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens. 2017, 9, 457. [Google Scholar] [CrossRef]
- Konings, A.G.; Piles, M.; Rötzer, K.; McColl, K.A.; Chan, S.K.; Entekhabi, D. Vegetation optical depth and scattering albedo retrieval using time series of dual–polarized L–band radiometer observations. Remote Sens. Environ. 2016, 172, 178–189. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Jackson, T.J.; O’Neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J.P.; et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262. [Google Scholar] [CrossRef]
- Baver, L.D.; Gardner, W.H.; Gardner, W.R. Soil Physics; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.K. Microwave Dielectric Behavior of Wet Soil—Part 1: Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 25–34. [Google Scholar] [CrossRef]
- Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V. Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2059–2070. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46, (includes 1993 corrections). [Google Scholar] [CrossRef]
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 288–295. [Google Scholar] [CrossRef]
- Mialon, A.; Richaume, P.; Leroux, D.; Bircher, S.; Al Bitar, A.; Pellarin, T.; Wigneron, J.P.; Kerr, Y.H. Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3084–3094. [Google Scholar] [CrossRef]
- Schwarz, G.E.; Alexander, R.B. State Soil Geographic (STATSGO) Data Base for the Conterminous United States; Technical Report 95-449; U. S. Geological Survey: Reston, VA, USA, 1995. [CrossRef]
- Das, N. Ancillary Data Report: Soil Attributes; v.1; Technical Report JPL D-53058; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Davenport, I.; Ferrazzoli, P.; Wigneron, J.P. Algorithm Theoretical Basis Document (ATBD) for the SMOS Level 2 Soil Moisture Processor Development Continuation Project; v3.j; Technical Report SO-TN-ESL-SM-GS-0001; CESBIO: Toulouse, France, 2014. [Google Scholar]
- Zobeck, T.M.; Onstad, C.A. Tillage and rainfall effects on random roughness: A review. Soil Till. Res. 1987, 9, 1–20. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of Surface Roughness on the Microwave Emission from Soils. J. Geophys. Res. 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Wang, J.R.; Choudhury, B.J. Remote Sensing of Soil Moisture Content Over Bare Field at 1.4 GHz Frequency. J. Geophys. Res. 1981, 86, 5277–5282. [Google Scholar] [CrossRef]
- Peng, B.; Zhao, T.; Shi, J.; Lu, H.; Mialon, A.; Kerr, Y.H.; Liang, X.; Guan, K. Reappraisal of the roughness effect parameterization schemes for L–band radiometry over bare soil. Remote Sens. Environ. 2017, 199, 63–77. [Google Scholar] [CrossRef]
- Tomer, M.D.; Moorman, T.B.; James, D.E.; Hadish, G.; Rossi, C.G. Assessment of the Iowa River’s South Fork watershed: Part 2. Conservation practices. J. Soil Water Conserv. 2008, 63, 371–379. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Laguerre, L.; Kerr, Y.H. A simple parameterization of the L–band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. [Google Scholar] [CrossRef]
- Panciera, R.; Walker, J.P.; Merlin, O. Improved Understanding of Soil Surface Roughness Parameterization for L–Band Passive Microwave Soil Moisture Retrieval. IEEE Geosci. Remote Sens. Lett. 2009, 6, 625–629. [Google Scholar] [CrossRef]
- Parrens, M.; Wigneron, J.P.; Richaume, P.; Mialon, A.; Al Bitar, A.; Fernandez-Moran, R.; Al-Yaari, A.; Kerr, Y.H. Global-scale surface roughness effects at L-band as estimated from SMOS observations. Remote Sens. Environ. 2016, 181, 122–136. [Google Scholar] [CrossRef]
- Fernandez-Moran, R.; Wigneron, J.P.; De Lannoy, G.; Lopez-Baeza, E.; Parrens, M.; Mialon, A.; Mahmoodi, A.; Al-Yaari, A.; Bircher, S.; Al Bitar, A.; et al. A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm. Int. J. Appl. Earth Obs. 2017, 62, 27–38. [Google Scholar] [CrossRef]
- Hornbuckle, B.K.; Rowlandson, T.L. Evaluating the First–Order TAU–OMEGA Model of Terrestrial Microwave Emission. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008. [Google Scholar] [CrossRef]
Single Channel Algorithm Applied to h-pol(SCA-H) | ||||||||||||
Bias, m3 m−3 | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | All | a.m. | p.m. |
2015 | 0.100 | −0.100 | −0.038 | 0.016 | −0.010 | −0.028 | 0.003 | 0.001 | −0.094 | −0.030 | −0.037 | −0.025 |
2016 | −0.098 | −0.083 | 0.002 | −0.037 | −0.013 | −0.017 | −0.015 | −0.015 | −0.084 | −0.039 | −0.044 | −0.034 |
2017 | −0.078 | −0.056 | −0.013 | 0.006 | −0.005 | 0.019 | −0.009 | −0.037 | −0.126 | −0.030 | −0.038 | −0.022 |
2018 | −0.085 | −0.121 | −0.051 | 0.049 | −0.021 | −0.017 | 0.005 | −0.037 | −0.090 | −0.040 | −0.049 | −0.030 |
All Years | −0.087 | −0.089 | −0.025 | 0.007 | −0.012 | −0.010 | −0.004 | −0.022 | −0.107 | −0.035 | −0.042 | −0.028 |
Single Channel Algorithm Applied to v-pol (SCA-V) | ||||||||||||
Bias, m3 m−3 | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | All | a.m. | p.m. |
2015 | −0.062 | −0.021 | 0.018 | −0.029 | −0.021 | 0.002 | 0.029 | −0.040 | −0.014 | −0.013 | −0.016 | |
2016 | −0.050 | −0.033 | 0.024 | −0.036 | −0.031 | −0.017 | −0.022 | 0.015 | −0.030 | −0.020 | −0.020 | −0.020 |
2017 | −0.036 | −0.017 | 0.004 | −0.006 | −0.009 | 0.022 | 0.017 | −0.015 | −0.047 | −0.009 | −0.009 | −0.009 |
2018 | −0.035 | −0.078 | −0.020 | 0.044 | −0.029 | −0.026 | −0.020 | −0.021 | −0.088 | −0.027 | −0.030 | −0.025 |
All Years | −0.041 | −0.047 | −0.003 | 0.004 | −0.024 | −0.011 | −0.005 | 0.003 | −0.049 | −0.018 | −0.018 | −0.017 |
Dual Channel Algorithm (DCA) | ||||||||||||
Bias, m3 m−3 | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | All | a.m. | p.m. |
2015 | 0.003 | 0.004 | −0.022 | −0.043 | −0.008 | 0.006 | 0.081 | 0.070 | 0.011 | 0.015 | 0.006 | |
2016 | 0.040 | 0.050 | 0.051 | −0.037 | −0.044 | −0.017 | −0.026 | 0.065 | 0.080 | 0.017 | 0.025 | 0.010 |
2017 | 0.033 | 0.048 | 0.030 | −0.027 | −0.011 | 0.027 | 0.047 | 0.020 | 0.048 | 0.024 | 0.033 | 0.015 |
2018 | 0.061 | −0.014 | 0.024 | 0.041 | −0.033 | −0.030 | −0.039 | 0.005 | −0.021 | −0.002 | 0.002 | −0.007 |
All Years | 0.043 | 0.023 | 0.028 | −0.012 | −0.032 | −0.007 | −0.002 | 0.044 | 0.048 | 0.013 | 0.019 | 0.006 |
Single Channel Algorithm Applied to h-pol(SCA-H) | ||||||||||||
ubRMSE, m3 m−3 | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | All | a.m. | p.m. |
2015 | 0.024 | 0.046 | 0.067 | 0.026 | 0.026 | 0.041 | 0.051 | 0.041 | 0.058 | 0.056 | 0.058 | |
2016 | 0.037 | 0.040 | 0.108 | 0.052 | 0.056 | 0.045 | 0.041 | 0.034 | 0.031 | 0.064 | 0.070 | 0.058 |
2017 | 0.037 | 0.027 | 0.078 | 0.103 | 0.058 | 0.037 | 0.037 | 0.032 | 0.027 | 0.065 | 0.063 | 0.067 |
2018 | 0.063 | 0.029 | 0.041 | 0.066 | 0.032 | 0.034 | 0.057 | 0.048 | 0.061 | 0.072 | 0.071 | 0.071 |
All Years | 0.047 | 0.039 | 0.077 | 0.081 | 0.046 | 0.040 | 0.045 | 0.045 | 0.043 | 0.065 | 0.065 | 0.064 |
Single Channel Algorithm Applied to v–pol (SCA–V) | ||||||||||||
ubRMSE, m3 m−3 | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | All | a.m. | p.m. |
2015 | 0.025 | 0.040 | 0.075 | 0.020 | 0.027 | 0.034 | 0.039 | 0.035 | 0.039 | 0.054 | 0.044 | |
2016 | 0.035 | 0.038 | 0.090 | 0.047 | 0.051 | 0.048 | 0.031 | 0.024 | 0.030 | 0.053 | 0.058 | 0.047 |
2017 | 0.037 | 0.026 | 0.070 | 0.065 | 0.053 | 0.025 | 0.022 | 0.021 | 0.020 | 0.047 | 0.049 | 0.044 |
2018 | 0.060 | 0.021 | 0.042 | 0.051 | 0.032 | 0.027 | 0.035 | 0.039 | 0.059 | 0.054 | 0.057 | 0.051 |
All Years | 0.045 | 0.037 | 0.067 | 0.067 | 0.043 | 0.038 | 0.035 | 0.038 | 0.042 | 0.051 | 0.055 | 0.047 |
Dual Channel Algorithm (DCA) | ||||||||||||
ubRMSE, m3 m−3 | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | All | a.m. | p.m. |
2015 | 0.032 | 0.045 | 0.048 | 0.024 | 0.041 | 0.043 | 0.042 | 0.034 | 0.056 | 0.055 | 0.057 | |
2016 | 0.039 | 0.042 | 0.076 | 0.046 | 0.055 | 0.057 | 0.034 | 0.027 | 0.041 | 0.067 | 0.068 | 0.065 |
2017 | 0.050 | 0.034 | 0.070 | 0.038 | 0.053 | 0.042 | 0.031 | 0.023 | 0.028 | 0.050 | 0.052 | 0.045 |
2018 | 0.067 | 0.030 | 0.050 | 0.055 | 0.040 | 0.040 | 0.041 | 0.039 | 0.074 | 0.059 | 0.058 | 0.060 |
All Years | 0.054 | 0.044 | 0.064 | 0.056 | 0.047 | 0.050 | 0.051 | 0.046 | 0.058 | 0.059 | 0.060 | 0.058 |
– , K | ||||
---|---|---|---|---|
Corn | Soybean | |||
a.m. | p.m. | a.m. | p.m. | |
6 cm (2015) | −2.1 | 2.3 | −1.9 | 0.6 |
9 cm (2018) | −2.5 | 1.7 |
SMAP —South Fork In Situ Temperature, K | ||||||
---|---|---|---|---|---|---|
SPL2SMP_E, v1 | SPL2SMP_E, v2 | Proposed | ||||
a.m. | p.m. | a.m. | p.m. | a.m. | p.m. | |
network | −1.1 | −0.7 | −1.2 | 0.6 | −1.2 | 0.6 |
5 cm | −0.7 | −1.7 | 5.0 | 6.4 | −0.7 | 0.6 |
10 cm | −0.9 | −1.3 | 4.8 | 6.9 | −0.9 | 1.1 |
20 cm | −1.3 | −0.3 | 4.4 | 7.8 | −1.3 | 2.0 |
50 cm | −1.1 | 0.6 | 4.6 | 8.7 | −1.1 | 2.9 |
Bias, m3 m−3 | ubRMSE, m3 m−3 | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|
SCA-H | SCA-V | DCA | SCA-H | SCA-V | DCA | SCA-H | SCA-V | DCA | |
0.009 | −0.004 | −0.014 | 0.059 | 0.046 | 0.061 | 0.54 | 0.55 | 0.27 | |
−0.044 | −0.064 | −0.077 | 0.053 | 0.055 | 0.051 | 0.54 | 0.50 | 0.48 | |
−0.098 | −0.119 | −0.126 | 0.078 | 0.107 | 0.079 | 0.30 | 0.09 | 0.28 |
Issue | Understanding | Next Steps and Importance |
---|---|---|
radio-frequency interference (RFI) | RFI is minimal in most, if not all, of the Corn Belt (this work and [12]). | Continue to use RFI mitigation techniques (minor impact). |
in situ soil moisture network representativeness (upscaling) | The 20 South Fork CVS stations are adequate for pixel characterization since as few as 5 indicate a SMAP dry bias [12]. | Continue to improve station weighting function (moderate impact). |
effective temperature in retrieval algorithm | in L2SM version 2 is 5–9 K too high as compared to in situ soil temperature (this work). | Use version 1 (major impact). |
soil–vegetation canopy temperature gradient | at 6 a.m. and 6 p.m. (this work and [31]). | Consider separate and in retrieval algorithm or a modified (moderate impact). |
sampling depth mismatch | Soil layer SMAP “sees” is different than what is observed by in situ sensors, which increases ubRMSE but not bias [20]. | Take into account when assessing validation statistics (minor impact). |
clay fraction | Different values used for South Fork CVS: STATSGO = 0.31; SSURGO = 0.27; SMOS = 0.25 (this work). | Resolve differences (minor impact). |
soil dielectric model | Mironov [44] and Wang & Schmugge [46] models result in dry biased retrievals if clay is underestimated. Dobson model [45] exhibits the opposite behavior (this work and [12]). | Resolve differences (minor impact). |
soil surface roughness | Soil roughness is not static: rainfall, tillage, and other soil management activities modify soil roughness throughout the year [30,51]. Roughness effect depends on soil moisture [56]. | Use the DCA and allow roughness parameter HR to vary during bare-soil periods (major impact). |
single-scattering albedo of vegetation canopy | Vegetation canopy volume scattering is significant [35]; non-zero values of increase dry bias, lower values of result in lower ubRMSE and higher R2 (this work). | Determine a satellite-scale , consider how it may change with crop phenology (major impact). |
vegetation optical depth | VOD varies from year-to-year due to weather and farm management activities [8]. | Use the DCA and allow VOD to vary when crops are present (major impact). |
vegetation transmissivity | Sensitivity to soil moisture is likely higher than predicted by current retrieval model [31]; allowing multiple scattering in vegetation canopy would reduce dry bias (this work and [60]). | Use a new radiometric forward model in the retrieval algorithm (major impact). |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, V.A.; Hornbuckle, B.K.; Cosh, M.H.; Prueger, J.H. Seasonal Evaluation of SMAP Soil Moisture in the U.S. Corn Belt. Remote Sens. 2019, 11, 2488. https://doi.org/10.3390/rs11212488
Walker VA, Hornbuckle BK, Cosh MH, Prueger JH. Seasonal Evaluation of SMAP Soil Moisture in the U.S. Corn Belt. Remote Sensing. 2019; 11(21):2488. https://doi.org/10.3390/rs11212488
Chicago/Turabian StyleWalker, Victoria A., Brian K. Hornbuckle, Michael H. Cosh, and John H. Prueger. 2019. "Seasonal Evaluation of SMAP Soil Moisture in the U.S. Corn Belt" Remote Sensing 11, no. 21: 2488. https://doi.org/10.3390/rs11212488
APA StyleWalker, V. A., Hornbuckle, B. K., Cosh, M. H., & Prueger, J. H. (2019). Seasonal Evaluation of SMAP Soil Moisture in the U.S. Corn Belt. Remote Sensing, 11(21), 2488. https://doi.org/10.3390/rs11212488