Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Calibration Sites
2.2. Satellite Datasets
2.3. Atmospheric Parameters
3. Methodology
3.1. Radiation Transfer of Satellite Observations
3.2. Assessment of Potential Effects on Radiometric Calibration
3.2.1. Atmospheric Effects
3.2.2. Spectral Band Difference Effect (SBDE)
3.2.3. Environmental Effect
3.3. Relationship between Radiation and Digital Number of FS-5 RSI
3.4. On-Orbit Absolute Radiometric Calibration
3.4.1. Vicarious Calibration
3.4.2. Cross-Calibration
4. Results and Discussion
4.1. Sensitivity Study: At-Sensor Radiance/Reflectance Simulation
4.2. Calibration Results
4.2.1. Vicarious Calibration
4.2.2. Cross Calibration
5. Conclusions
- Atmospheric variables are essential for the accurate radiometric calibration of on-orbit sensors including aerosol property, ozone, and water vapor, especially for the large viewing angle of the observations. For example, the effect of improper ozone content on radiometric calibration could reach 6%–10% uncertainty in the Red, Green, and Pan spectral bands (Figure 5a). Thus, on-orbit cross calibration is recommended rather than vicarious calibration when atmospheric measurements are lacking.
- Both vicarious and cross-calibration methods show a decaying optical sensitivity, which resulted in rapid changes (6%–24% in radiometric coefficient) during the first year after launch. Most calibration results remained stable, around 3%–5% relative difference, in the second year. To maintain image quality, further research is suggested to keep track of FORMOSAT-5 RSI radiometric variation.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ling, J. Applications of CMOS Sensors on FORMOSAT-5 Remote Sensing Instrument. In Proceedings of the Workshop on CMOS Applications in Astronomy and Space Sciences, National Tsing Hua University, Hsinchu, Taiwan, 5–6 January 2011. [Google Scholar]
- Chern, J.S.; Wu, A.M.; Lin, S.F. On-orbit performance verification of FORMOSAT-2—A look back. J. Aeronaut. Astronaut. Aviat. Ser. A 2009, 41, 205–211. [Google Scholar]
- Hsu, K.-H.; Lee, S.; Chen, N.-Y.; Wu, A.-M. Evolution of On-Orbit Radiometric Calibration of Formosat-2 Remote Sensing Instrument; Technical Report; National Space Organization (NSPO): Hsinchu, Taiwan, 2016. [Google Scholar]
- Kamei, A.; Nakamura, K.; Yamamoto, H.; Nakamura, R.; Tsuchida, S.; Yamamoto, N.; Sekiguchi, S.; Kato, S.; Liu, C.C.; Hsu, K.H.; et al. Cross Calibration of Formosat-2 Remote Sensing Instrument (RSI) Using Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 2012, 50, 4821–4831. [Google Scholar] [CrossRef]
- Lin, T.H.; Liu, G.R. On-orbit Radiometric Calibration of the FORMOSAT-2 Remote Sensing Instrument. Terr. Atmos. Ocean Sci. 2009, 20, 833–838. [Google Scholar] [CrossRef]
- Liu, C.C.; Kamei, A.; Hsu, K.H.; Tsuchida, S.; Huang, H.M.; Kato, S.; Nakamura, R.; Wu, A.M. Vicarious calibration of the Formosat-2 remote sensing instrument. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2162–2169. [Google Scholar]
- Mendenhall, J.A.; Lencioni, D.E.; Evans, J.B. Spectral and radiometric calibration of the Advanced Land Imager. Linc. Lab. J. 2005, 15, 207. [Google Scholar]
- Flood, N. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: A Study in the Australian landscape. Remote Sens. 2014, 6, 7952–7970. [Google Scholar] [CrossRef]
- Hagolle, O.; Goloub, P.; Deschamps, P.Y.; Cosnefroy, H.; Briottet, X.; Bailleul, T.; Nicolas, J.M.; Parol, F.; Lafrance, B.; Herman, M. Results of POLDER in-flight calibration. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1550–1566. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Morfitt, R.; Barsi, J.; Levy, R.; Markham, B.; Micijevic, E.; Ong, L.; Scaramuzza, P.; Vanderwerff, K. Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit. Remote Sens. 2015, 7, 2208–2237. [Google Scholar] [CrossRef]
- Sakuma, F.; Kikuchi, M.; Inada, H.; Akagi, S.; Ono, H. Onboard calibration of the ASTER instrument over twelve years. In Sensors, Systems, and Next-Generation Satellites XVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8533, p. 853305. [Google Scholar]
- Thome, K.J.; Biggar, S.F.; Wisniewski, W. Cross comparison of EO-1 sensors and other Earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1180–1188. [Google Scholar] [CrossRef]
- Barnes, R.A.; Eplee, R.E.; Patt, F.S.; McClain, C.R. Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements. Appl. Opt. 1999, 38, 4649–4664. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.R.; Lin, T.H.; Kuo, T.H. Estimation of aerosol optical depth by applying the optimal distance number to NOAA AVHRR data. Remote Sens. Environ. 2002, 81, 247–252. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A. Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2747–2760. [Google Scholar] [CrossRef]
- Arai, K. Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols. Adv. Space Res. 2007, 39, 13–19. [Google Scholar] [CrossRef]
- Biggar, S.F.; Slater, P.N.; Gellman, D.I. Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4–1.1 μm range. Remote Sens. Environ. 1994, 48, 245–252. [Google Scholar] [CrossRef]
- Lacherade, S.; Fougnie, B.; Henry, P.; Gamet, P. Cross calibration over desert sites: Description, methodology, and operational implementation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1098–1113. [Google Scholar] [CrossRef]
- Nieke, J.; Aoki, T.; Tanikawa, T.; Motoyoshi, H.; Hori, M.A. satellite cross-calibration experiment. IEEE Geosci. Remote Sens. Lett. 2004, 1, 215–219. [Google Scholar] [CrossRef]
- Teillet, P.M.; Slater, P.N.; Ding, Y.; Santer, R.P.; Jackson, R.D.; Moran, M.S. Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote Sens. Environ. 1990, 31, 105–120. [Google Scholar] [CrossRef]
- Villa-Aleman, E.; Kurzeja, R.J.; Pendergast, M.M. Temporal, spatial, and spectral variability at the Ivanpah Playa vicarious calibration site. In Laser Radar Techniques for Atmospheric Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5093, pp. 320–330. [Google Scholar]
- Naughton, D.; Brunn, A.; Czapla-Myers, J.; Douglass, S.; Thiele, M.; Weichelt, H.; Oxfort, M. Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method. J. Appl. Remote Sens. 2011, 5, 053544. [Google Scholar] [CrossRef]
- Sakuma, F.; Ono, A.; Tsuchida, S.; Ohgi, N.; Inada, H.; Akagi, S.; Ono, H. Onboard calibration of the ASTER instrument. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2715–2724. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J. Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain. In Sensors, Systems, and Next-Generation Satellites VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5570, p. 307. [Google Scholar]
- Teillet, P.M.; Barsi, J.A.; Chander, G.; Thome, K.J. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. In Earth Observing Systems XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6677, p. 66770S. [Google Scholar]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Thome, K.J. Ground-look radiometric calibration approaches for remote sensing images in the solar reflective. Int. Arch. Photogram. Rem. Sens. Spat. Inform. Sci. 2002, 34, 255–260. [Google Scholar]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The Ground Based Absolute Radiometric Calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Knight, E.; Kvaran, G. Landsat-8 operation land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Mendenhall, J.A.; Lencioni, D.E. Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Absolute Radiometry and Stability During the First Year (No. PR-EO-1-10); Massachusetts Inst of Tech Lexington Lincoln Lab: Lexington, MA, USA, 2002. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Tanré, D.; Mattoo, S.; Kaufman, Y.J. Algorithm for Remote Sensing of Tropospheric Aerosol over Dark Targets from MODIS: Collections 005 and 051: Revision 2. 2009. Available online: http://modisatmos.gsfc.nasa.gov/_docs/ATBD_MOD04_C005_rev2.Pdf (accessed on 3 February 2016).
- Slater, P.N.; Biggar, S.F.; Holm, R.G.; Jackson, R.D.; Mao, Y.; Moran, M.S.; Palmer, J.M.; Yuan, B. Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens. Environ. 1987, 22, 11–37. [Google Scholar] [CrossRef]
- Yang, A.; Zhong, B.; Lv, W.; Wu, S.; Liu, Q. Cross-Calibration of GF-1/WFV over a Desert Site Using Landsat-8/OLI Imagery and ZY-3/TLC Data. Remote Sens. 2015, 7, 10763–10787. [Google Scholar] [CrossRef]
- Lin, T.H.; Chen, A.J.; Liu, G.R.; Kuo, T.H. Monitoring the atmospheric aerosol optical depth with SPOT data in complex terrain. Int. J. Remote Sens. 2007, 23, 647–659. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhao, Y.; Li, C.; Ma, L.; Wang, N.; Qian, Y.; Ren, L. An investigation of a Novel Cross-Calibration Method of FY-3C/VIRR against NPP/VIIRS in the Dunhuang Test Site. Remote Sens. 2016, 8, 77. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm Jr, F.J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.A.; Young, S.A.; Winker, D.M.; Powell, K.A.; Omar, A.H.; Liu, Z.; Hu, Y.; Hostetler, C.A. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. In Laser Radar Techniques for Atmospheric Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5575, pp. 16–30. [Google Scholar]
- Teillet, P.M.; Markham, B.L.; Irish, R.R. Landsat cross-calibration based on near simultaneous imaging of common ground targets. Remote Sens. Environ. 2006, 102, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, B.; Zhang, H.; Zhang, W. Vicarious Calibration of Beijing-1 Multispectral Imagers. Remote Sens. 2014, 6, 1432–1450. [Google Scholar] [CrossRef] [Green Version]
- Dinguirard, M.; Slater, P.N. Calibration of space-multispectral imaging sensors: A review. Remote Sens. Environ. 1999, 68, 194–205. [Google Scholar] [CrossRef]
Date | Calibration Site | FS-5 RSI | ||||
---|---|---|---|---|---|---|
Pass Time (UTC) | SZA | SAA | VZA | VAA | ||
Nov. 30, 2017 | Alkali Lake | 19:07:35 | 59.96 | 171.44 | 35.29 | 286.77 |
Dec. 04, 2017 | Alkali Lake | 19:07:58 | 60.58 | 171.22 | 35.87 | 286.66 |
Dec. 05, 2017 | Railroad Valley Playa | 18:18:46 | 63.45 | 160.41 | 35.79 | 100.39 |
Dec. 06, 2017 | Alkali Lake | 19:08:10 | 60.84 | 171.09 | 36.20 | 286.45 |
Dec. 07, 2017 | Railroad Valley Playa | 18:18:58 | 63.70 | 160.32 | 35.51 | 100.56 |
Sep. 04, 2018 | Alkali Lake | 19:23:38 | 31.51 | 167.66 | 45.50 | 287.87 |
Sep. 05, 2018 | Railroad Valley Playa | 18:34:26 | 35.49 | 150.00 | 24.87 | 101.79 |
Sep. 06, 2018 | Alkali Lake | 19:23:43 | 32.23 | 168.27 | 45.54 | 287.92 |
Sep. 07, 2018 | Railroad Valley Playa | 18:34:31 | 36.10 | 150.81 | 24.80 | 101.69 |
Sep. 10, 2018 | Alkali Lake | 19:23:53 | 33.67 | 169.40 | 45.61 | 288.03 |
Sep. 11, 2018 | Railroad Valley Playa | 18:34:41 | 37.36 | 152.35 | 24.78 | 101.60 |
Date | Calibration Site | FS-5 RSI | L-8 OLI | ||||||
---|---|---|---|---|---|---|---|---|---|
Pass Time (UTC) | SZA | SAA | VZA | VAA | Pass Time (UTC) | SZA | SAA | ||
Nov. 09, 2017 | Railroad Valley Playa | 18:16:10 | 58.03 | 159.85 | 34.58 | 100.36 | 18:23:35 | 57.38 | 173.98 |
Nov. 25, 2017 | Railroad Valley Playa | 18:17:47 | 61.78 | 160.61 | 32.73 | 100.77 | 18:21:08 | 61.87 | 161.96 |
Dec. 11, 2017 | Railroad Valley Playa | 18:19:22 | 64.17 | 160.10 | 30.93 | 101.26 | 18:21:06 | 64.35 | 161.02 |
Aug. 08, 2018 | Railroad Valley Playa | 18:33:14 | 28.05 | 138.19 | 22.20 | 102.15 | 18:20:19 | 29.82 | 134.13 |
Aug. 31, 2018 | Alkali Lake | 19:23:28 | 30.14 | 166.47 | 39.83 | 287.77 | 18:27:05 | 34.56 | 141.85 |
Sep. 16, 2018 | Alkali Lake | 19:24:08 | 35.86 | 170.97 | 40.06 | 288.03 | 18:27:09 | 39.28 | 148.47 |
Sep. 25, 2018 | Railroad Valley Playa | 18:35:16 | 42.00 | 157.24 | 21.70 | 101.28 | 18:20:38 | 41.80 | 152.90 |
Date | Calibration Site | Aerosol Optical Depth | Ozone (cm-atm) | Water Vapor (g/cm2) |
---|---|---|---|---|
Sep. 04, 2018 | Alkali Lake | 0.092 | 1.399 | 0.287 |
Sep. 05, 2018 | Railroad Valley Playa | 0.133 | 0.286 | 1.684 |
Sep. 06, 2018 | Alkali Lake | 0.053 | 1.518 | 0.286 |
Sep. 07, 2018 | Railroad Valley Playa | 0.052 | 0.286 | 1.452 |
Sep. 10, 2018 | Alkali Lake | 0.034 | 0.588 | 0.285 |
Sep. 11, 2018 | Railroad Valley Playa | 0.051 | 0.285 | 0.553 |
Atmospheric Profile | Water Vapor (g/cm2) | Ozone (cm-atm.) |
---|---|---|
Tropical | 4.420 | 0.247 |
Mid-latitude summer | 2.930 | 0.319 |
Mid-latitude winter | 0.853 | 0.395 |
Sub-arctic summer | 2.100 | 0.480 |
Sub-arctic winter | 0.419 | 0.480 |
US standard 1962 | 1.420 | 0.344 |
Date | Calibration Site | RSI Band | Blue | Green | Red | NIR | Pan |
---|---|---|---|---|---|---|---|
Sep. 04, 2018 | Alkali Lake | FS-5 L1A Retrieved (DEV%) | –4.22 | 0.67 | 4.90 | 2.35 | 7.14 |
Sep. 05, 2018 | Railroad Valley | 5.77 | 5.50 | 5.09 | 1.42 | 10.78 | |
Sep. 06, 2018 | Alkali Lake | –5.89 | –0.29 | 4.17 | –0.40 | 6.92 | |
Sep. 07, 2018 | Railroad Valley | 6.93 | 6.75 | 6.47 | 2.68 | 11.51 | |
Sep. 10, 2018 | Alkali Lake | –3.00 | 3.43 | 7.71 | 5.77 | 9.88 | |
Sep. 11, 2018 | Railroad Valley | 4.54 | 4.10 | 3.54 | 2.96 | 8.88 |
Date | Calibration Site | RSI Band | Blue | Green | Red | NIR | Pan |
---|---|---|---|---|---|---|---|
Aug. 08, 2018 | Railroad Valley | FS-5 L1A Retrieved (DEV%) | 8.84 | 12.17 | 10.10 | 9.82 | 16.19 |
Aug. 31, 2018 | Alkali Lake | 1.96 | 4.10 | 4.68 | 2.77 | 8.63 | |
Sep. 16, 2018 | Alkali Lake | 3.45 | 5.88 | 5.96 | 3.62 | 10.80 | |
Sep. 25, 2018 | Railroad Valley | 5.65 | 8.85 | 6.20 | 6.30 | 12.06 |
Year | Calibration | RSI Band | Blue | Green | Red | NIR | Pan |
---|---|---|---|---|---|---|---|
2017 | Vicarious Calibration | FS-5 L1A Retrieved (STD%) | 0.64 | 0.69 | 0.51 | 0.65 | 0.60 |
Cross-Calibration | 0.20 | 0.15 | 0.22 | 0.02 | 0.24 | ||
2018 | Vicarious Calibration | 0.68 | 0.38 | 0.18 | 0.30 | 0.24 | |
Cross-Calibration | 0.34 | 0.46 | 0.25 | 0.45 | 0.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-H.; Chang, J.-C.; Hsu, K.-H.; Lee, Y.-S.; Zeng, S.-K.; Liu, G.-R.; Tsai, F.-A.; Chan, H.-P. Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements. Remote Sens. 2019, 11, 2634. https://doi.org/10.3390/rs11222634
Lin T-H, Chang J-C, Hsu K-H, Lee Y-S, Zeng S-K, Liu G-R, Tsai F-A, Chan H-P. Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements. Remote Sensing. 2019; 11(22):2634. https://doi.org/10.3390/rs11222634
Chicago/Turabian StyleLin, Tang-Huang, Jui-Chung Chang, Kuo-Hsien Hsu, Yun-Shan Lee, Sheng-Kai Zeng, Gin-Rong Liu, Fu-An Tsai, and Hai-Po Chan. 2019. "Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements" Remote Sensing 11, no. 22: 2634. https://doi.org/10.3390/rs11222634
APA StyleLin, T. -H., Chang, J. -C., Hsu, K. -H., Lee, Y. -S., Zeng, S. -K., Liu, G. -R., Tsai, F. -A., & Chan, H. -P. (2019). Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements. Remote Sensing, 11(22), 2634. https://doi.org/10.3390/rs11222634