Modeling and Quantitative Analysis of Tropospheric Impact on Inclined Geosynchronous SAR Imaging
Abstract
:1. Introduction
2. Modeling of Tropospheric Phase Errors
2.1. Modeling of Background Tropospheric Errors
2.1.1. The Radio Refractivity
2.1.2. Modeling of Propagation Errors
2.2. Modeling of Turbulence Random Errors
2.2.1. Power Spectrum Model of Tropospheric Turbulence
2.2.2. Turbulence Energy
2.2.3. Multiple Phase Screen Model
3. GEO SAR Signal Modeling and Tropospheric Effect Analysis
3.1. Background Troposphere Effects Analysis
3.1.1. Theoretical Analysis
3.1.2. Analysis and Discussion on Impacts of Different GEO SAR Configurations
3.2. Tropospheric Turbulence Effect Analysis
4. Simulations and Verifications
4.1. Background Troposphere
4.2. Tropospheric Turbulence
4.2.1. Simulations of Turbulent Energy
4.2.2. Simulation of Point Target
4.2.3. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Influences of Different Wavelengths and Turbulent Energies
Band | PSLR (dB) (Average Value) | ISLR (dB) (Average Value) | |
---|---|---|---|
L | 0.1 | −13.41 | −9.19 |
1.0 | −12.45 | −5.91 | |
3.0 | −11.45 | −2.66 | |
C | 0.1 | −10.49 | −1.21 |
1.0 | −7.01 | 1.76 | |
3.0 | −5.49 | 4.48 | |
X | 0.1 | −9.17 | −0.21 |
1.0 | −5.55 | 5.71 | |
3.0 | −2.03 | 6.96 |
Appendix B. Influence of Different Integration Time
Band | Integration Time(s) | PSLR (dB) (Average Value) | ISLR (dB) (Average Value) |
---|---|---|---|
L | 100 | −13.41 | −9.11 |
150 | −13.58 | −8.68 | |
300 | −12.57 | −6.63 | |
C | 100 | −12.71 | −3.52 |
150 | −9.47 | −0.98 | |
300 | −7.06 | 2.27 | |
X | 100 | −8.39 | −0.34 |
150 | −6.96 | 2.21 | |
300 | −3.77 | 4.01 |
References
- Kolmogorov, A.N. Local structure of turbulence in an incompressible viscous fluid at very high reynolds numbers. Phys. Uspekhi 1968, 10, 734–746. [Google Scholar] [CrossRef]
- Quegan, S.; Lamont, J. Ionospheric and tropospheric effects on synthetic aperture radar performance. Int. J. Remote Sens. 1986, 7, 525–539. [Google Scholar] [CrossRef]
- Sun, J.; Bi, Y.; Wang, Y.; Hong, W. High resolution SAR performance limitation by the change of tropospheric refractivity. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 2, pp. 1448–1451. [Google Scholar]
- Zhang, F.; Li, G.; Li, W.; Hu, W. Multiband Microwave Imaging Analysis of Ionosphere and Troposphere Refraction for Spaceborne SAR. Int. J. Antennas Propag. 2014, 2014, 913056. [Google Scholar] [CrossRef]
- Fuster, R.M.; Uson, M.F.; Ibars, A.B. Interferometric orbit determination for geostationary satellites. Sci. China Inf. Sci. 2017, 60, 060302. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Hu, C.; Li, Y.; Dong, X.; Wang, R.; Cui, C. Optimal 3D deformation measuring in inclined geosynchronous orbit SAR differential interferometry. Sci. China Inf. Sci. 2017, 60, 060303. [Google Scholar] [CrossRef]
- Porcello, L.J. Turbulence-Induced Phase Errors in Synthetic-Aperture Radars. IEEE Trans. Aerosp. Electron. Syst. 1970, AES-6, 636–644. [Google Scholar] [CrossRef]
- Fante, R.L. Turbulence-induced distortion of synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 1994, 32, 958–961. [Google Scholar] [CrossRef]
- Dickey, F.M.; DeLaurentis, J.M.; Doerry, A.W. A SAR imaging model for large-scale atmospheric inhomogeneities. In Proc. SPIE 5410, Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII; International Society for Optics and Photonics: Orlando, FL, USA, 2004; Volume 5410, pp. 1–9. [Google Scholar]
- Muschinski, A.; Dickey, F.M.; Doerry, A.W. Possible effects of clear-air refractive-index perturbations on SAR images. In Proc. SPIE 5788, Radar Sensor Technology IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5788, pp. 1–9. [Google Scholar]
- Dickey, F.M.; Doerry, A.W.; Romero, L.A. Degrading effects of the lower atmosphere on long-range airborne synthetic aperture radar imaging. IET Radarsonar Navig. 2007, 1, 329–339. [Google Scholar] [CrossRef]
- Danklmayer, A.; Doring, B.; Schwerdt, M.; Chandra, M. Assessment of Atmospheric Propagation Effects in SAR Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3507–3518. [Google Scholar] [CrossRef]
- Hu, B.Z.C.; Dong, X.; Li, Y. Geosynchronous SAR Tomography: Theory and First Experimental Verification using Beidou IGSO Satellite. IEEE Trans. Geosci. Remote Sens. 2019, in press. [Google Scholar]
- Yin, W.; Ding, Z.; Lu, X.; Zhu, Y. Beam scan mode analysis and design for geosynchronous SAR. Sci. China Inf. Sci. 2017, 60, 060306. [Google Scholar] [CrossRef]
- Long, T.; Hu, C.; Ding, Z.; Dong, X.; Tian, W.; Zeng, T. Geosynchronous SAR: System and Signal Processing; Springer: Singapore, 2018. [Google Scholar]
- Li, Y.; Guarnieri, A.M.; Hu, C.; Rocca, F. Performance and Requirements of GEO SAR Systems in the Presence of Radio Frequency Interferences. Remote Sens. 2018, 10, 82. [Google Scholar] [CrossRef]
- Ding, Z.; Xiao, F.; Xie, Y.; Yu, W.; Yang, Z.; Chen, L.; Long, T. A Modified Fixed-Point Chirp Scaling Algorithm Based on Updating Phase Factors Regionally for Spaceborne SAR Real-Time Imaging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7436–7451. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Dong, X.; Hu, C.; Sun, Y. GRFT-Based Moving Ship Target Detection and Imaging in Geosynchronous SAR. Remote Sens. 2018, 10, 2002. [Google Scholar] [CrossRef]
- Cheng, H.; Ye, T.; Dong, X.; Rui, W.; Teng, L. Computerized Ionospheric Tomography Based on Geosynchronous SAR: CIT based on geosynchronous SAR. J. Geophys. Res. Space Phys. 2017, 122, 2686–2705. [Google Scholar]
- Zheng, W.; Hu, J.; Zhang, W.; Yang, C.; Li, Z.; Zhu, J. Potential of geosynchronous SAR interferometric measurements in estimating three-dimensional surface displacements. Sci. China Inf. Sci. 2017, 60, 060304. [Google Scholar] [CrossRef]
- Hobbs, S.; Mitchell, C.N.; Forte, B.; Holley, R.; Snapir, B.; Whittaker, P. System Design for Geosynchronous Synthetic Aperture Radar Missions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7750–7763. [Google Scholar] [CrossRef]
- Bruno, D.; Hobbs, S.E. Radar Imaging From Geosynchronous Orbit: Temporal Decorrelation Aspects. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2924–2929. [Google Scholar] [CrossRef]
- Li, D.; Rodriguezcassola, M.; Pratsiraola, P.; Dong, Z.; Wu, M.; Moreira, A. Modelling of tropospheric delays in geosynchronous synthetic aperture radar. Sci. China Inf. Sci. 2017, 60, 060307. [Google Scholar] [CrossRef]
- Hobbs, S.; Guarnieri, A.M.; Wadge, G.; Schulz, D. GeoSTARe initial mission design. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 92–95. [Google Scholar]
- Guarnieri, A.M.; Rocca, F.; Ibars, A.B. Impact of atmospheric water vapor on the design of a Ku band geosynchronous SAR system. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 2, pp. II-945–II-948. [Google Scholar]
- Guarnieri, A.M.; Rocca, F. Options for continuous radar Earth observations. Sci. China Inf. Sci. 2017, 60, 060301. [Google Scholar] [CrossRef]
- Hobbs, S.; Sanchez, J.P. Laplace plane and low inclination geosynchronous radar mission design. Sci. China Inf. Sci. 2017, 60, 060305. [Google Scholar] [CrossRef]
- AGuarnieri, M.; Tebaldini, S.; Rocca, F.; Broquetas, A. GEMINI: Geosynchronous SAR for Earth Monitoring by Interferometry and Imaging. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 210–213. [Google Scholar]
- Guarnieri, A.M.; Broquetas, A.; Recchia, A.; Rocca, F.; Ruiz-Rodon, J. Advanced Radar Geosynchronous Observation System: ARGOS. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1406–1410. [Google Scholar] [CrossRef]
- JRodon, R.; Broquetas, A.; Guarnieri, A.M.; Rocca, F. Geosynchronous SAR Focusing With Atmospheric Phase Screen Retrieval and Compensation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4397–4404. [Google Scholar]
- Ruiz-Rodon, J.; Broquetas, A.; Makhoul, E.; Guarnieri, A.M.; Rocca, F. Nearly Zero Inclination Geosynchronous SAR Mission Analysis With Long Integration Time for Earth Observation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6379–6391. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Leanza, A.; Recchia, A.; Tebaldini, S.; Venuti, G. Atmospheric Phase Screen in GEO-SAR: Estimation and Compensation. IEEE Trans. Geosci. Remote Sens. 2017, 1–12. [Google Scholar] [CrossRef]
- Kou, L.-L.; Wang, X.-Q.; Xiang, M.-S.; Chong, J.-S.; Zhu, M.-H. Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing. J. Zhejiang Univ. Sci. C 2011, 12, 404–416. [Google Scholar] [CrossRef]
- Kou, L.; Xiang, M.; Wang, X.; Zhu, M. Tropospheric effects on L-band geosynchronous circular SAR imaging. IET Radarsonar Navig. 2013, 7, 693–701. [Google Scholar] [CrossRef]
- Ye, T.; Cheng, H.; Xichao, D.; Tao, Z.; Teng, L.; Kuan, L.; Xinyu, Z. Theoretical Analysis and Verification of Time Variation of Background Ionosphere on Geosynchronous SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 721–725. [Google Scholar]
- Hu, C.; Li, Y.; Dong, X.; Wang, R.; Ao, D. Performance Analysis of L-Band Geosynchronous SAR Imaging in the Presence of Ionospheric Scintillation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 159–172. [Google Scholar] [CrossRef]
- Wang, R.; Hu, C.; Li, Y.; Hobbs, S.E.; Tian, W.; Dong, X.; Chen, L. Joint Amplitude-Phase Compensation for Ionospheric Scintillation in GEO SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3454–3465. [Google Scholar] [CrossRef]
- Dong, X.; Hu, C.; Tian, Y.; Tian, W.; Li, Y.; Long, T. Experimental Study of Ionospheric Impacts on Geosynchronous SAR Using GPS Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2171–2183. [Google Scholar] [CrossRef]
- Tofsted, D.H. Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum; Army Research Laboratory: Adelphi, NY, USA, 2000; pp. 1–50. [Google Scholar]
- Urquhart, L.; Nievinski, F.G.; Santos, M.C. Ray-traced slant factors for mitigating the tropospheric delay at the observation level. J. Geod. 2012, 86, 149–160. [Google Scholar] [CrossRef]
- Eriksson, D.; Macmillan, D.S.; Gipson, J. Tropospheric delay ray tracing applied in VLBI analysis. J. Geophys. Res. 2014, 119, 9156–9170. [Google Scholar] [CrossRef]
- Parkinson, B.W.; Axelrad, P.; Enge, P. Global Positioning System Theory and Applications; AAIA: Washington, DC, USA, 1996.
- Wikipedia: General Circulation Model. Available online: https://en.wikipedia.org/wiki/General_circulation_model (accessed on 3 March 2019).
- Von Karman, T. Progress in the Statistical Theory of Turbulence. Proc. Natl. Acad. Sci. USA 1948, 34, 530–539. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Proc. R. Soc. A Math. Phys. Eng. Sci. 1991, 434, 9–13. [Google Scholar] [CrossRef]
- Ishimaru, A. Temporal frequency spectra of multifrequency waves in turbulent atmosphere. IEEE Trans. Antennas Propag. 1972, 20, 10–19. [Google Scholar] [CrossRef]
- Andrews, L.C. An Analytical Model for the Refractive Index Power Spectrum and Its Application to Optical Scintillations in the Atmosphere. J. Mod. Opt. 1992, 39, 1849–1853. [Google Scholar] [CrossRef]
- Pratsiraola, P.; Lopezdekker, P.; de Zan, F.; Yaguemartinez, N.; Zonno, M.; Rodriguezcassola, M. Performance of 3-D Surface Deformation Estimation for Simultaneous Squinted SAR Acquisitions. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2147–2158. [Google Scholar] [CrossRef]
- Fabbro, V.; Feral, L. Comparison of 2D and 3D Electromagnetic Approaches to Predict Tropospheric Turbulence Effects in Clear Sky Conditions. IEEE Trans. Antennas Propag. 2012, 60, 4398–4407. [Google Scholar] [CrossRef]
- Carrano, C.S.; Groves, K.M.; Caton, R.G. Simulating the impacts of ionospheric scintillation on L band SAR image formation. Radio Sci. 2012, 47, 1–14. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Q.; Zhang, Y.; Dong, Z. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities. Sci. China Inf. Sci. 2017, 60, 060308. [Google Scholar] [CrossRef]
- Leontovich, M.; Fock, V. Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation. J. Phys. USSR 1946, 10, 13–23. [Google Scholar]
- Hu, C.; Tian, Y.; Yang, X.; Zeng, T.; Long, T.; Dong, X. Background Ionosphere Effects on Geosynchronous SAR Focusing: Theoretical Analysis and Verification Based on the BeiDou Navigation Satellite System (BDS). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1143–1162. [Google Scholar] [CrossRef]
- Meyer, F.J. Performance Requirements for Ionospheric Correction of Low-Frequency SAR Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3694–3702. [Google Scholar] [CrossRef]
- Zeng, T.; Yin, W.; Ding, Z.; Long, T. Motion and Doppler Characteristics Analysis Based on Circular Motion Model in Geosynchronous SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 1–8. [Google Scholar] [CrossRef]
- FY-3C Global Navigation Satellite System Occultation Sounder (GNOS). Available online: http://satellite.nsmc.org.cn/portalsite/StaticContent/Load_Profile/FY_3C/Instrument/gnos.aspx?currentculture=en-US (accessed on 20 March 2019).
- Berrut, J.; Trefethen, L.N. Barycentric Lagrange Interpolation. SIAM Rev. 2004, 46, 501–517. [Google Scholar] [CrossRef]
- Oetken, G. A new approach for the design of digital interpolating filters. IEEE Trans. Acoust. Speechand Signal Process. 1979, 27, 637–643. [Google Scholar] [CrossRef]
- International GNSS Service (IGS) Troposphere Zenith Delay Data. Available online: ftp://cddis.nasa.gov/gnss/products/troposphere/zpd/ (accessed on 26 March 2019).
- International Telecommunications Union. Recommendation ITU-R S.484-3, Station-Keeping in Longitude of Geostationary Satellites in the Fixed-Satellite Service; International Telecommunications Union: Geneva, Switzerland, 2000. [Google Scholar]
- Jinping, S.; Yuekai, B.; Xiao, H.; Yanping, W. Turbulence effects on high resolution airborne SAR performance. In Proceedings of the International Conference on Electronics Communications and Control, Ningbo, China, 9–11 September 2011; pp. 1190–1193. [Google Scholar]
- Tunick, A.; Army Research Laboratory (Eds.) The Refractive Index Structure Parameter/Atmospheric Optical Turbulence Model:CN2; Army Research Laboratory: Adelphi, NY, USA, 1998. [Google Scholar]
- Fremouw, E.J.; Leadabrand, R.L.; Livingston, R.C.; Cousins, M.D.; Rino, C.L.; Fair, B.C.; Long, R.A. Early results from the DNA Wideband satellite experiment—Complex-signal scintillation. Radio Sci. 1978, 13, 167–187. [Google Scholar] [CrossRef]
- Keihm, S.J. Water Vapor Radiometer Measurements of the Tropospheric Delay Fluctuations at Goldstone Over a Full Year; TDA Progress Report; Jet Propulsion Laboratory: Pasadena, CA, USA, 1995. [Google Scholar]
- Realini, E.; Tsuda, T.; Sato, K.; Oigawa, M.; Iwaki, Y. Analysis of the Temporal and Spatial Variability of the Wet Troposphere at a Local Scale by High-rate PPP Using a Dense GNSS Network. In Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–22 September 2012; pp. 3406–3412. [Google Scholar]
ROC | ||||
---|---|---|---|---|
FY-3C Value | 2.21 | |||
IGF Value | 2.60 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Height of GEO SAR (km) | 35,793.170 | Orbit Inclination (°) | 60 |
Pulse Repetition Frequency (Hz) | 150 | Look-down Angle (°) | 4.65 |
Velocity of GEO SAR (m/s) | 1.54 × 103 | Eccentricity | 0 |
Sampling Frequency (MHz) | 20 | Bandwidth (MHz) | 18 |
Tropospheric drift velocity (m/s) | 10 | Tropospheric penetrate point velocity (m/s) | 300 |
Offset(m) | PSLR (dB) | ISLR (dB) | Integration Time(s) | Remark | |||
---|---|---|---|---|---|---|---|
L-band | H | P | 3.7 | −13.24 | −10.43 | 180 | |
E | 1.7 | −13.26 | −10.43 | 80 | |||
L | P | - | - | - | 1843 | Defocus | |
E | 5.4 | −13.16 | −9.49 | 256 | |||
X band | H | P | 3.7 | −13.29 | −10.45 | 22 | |
E | 1.7 | −13.29 | −9.29 | 10 | |||
L | P | 38.6 | −9.35 | −7.18 | 230 | ||
E | 5.4 | −13.33 | −10.01 | 32 |
Band | Integration Time(s) | PSLR (dB) (Average Value) | ISLR (dB) (Average Value) |
---|---|---|---|
L | 100 | −13.41 | −9.24 |
150 | −13.37 | −9.74 | |
300 | −13.33 | −9.72 | |
C | 100 | −14.58 | −10.74 |
150 | −13.36 | −9.58 | |
300 | −13.26 | −9.70 | |
X | 100 | −12.39 | −8.76 |
150 | −12.11 | −8.09 | |
300 | −11.87 | −7.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Hu, J.; Hu, C.; Long, T.; Li, Y.; Tian, Y. Modeling and Quantitative Analysis of Tropospheric Impact on Inclined Geosynchronous SAR Imaging. Remote Sens. 2019, 11, 803. https://doi.org/10.3390/rs11070803
Dong X, Hu J, Hu C, Long T, Li Y, Tian Y. Modeling and Quantitative Analysis of Tropospheric Impact on Inclined Geosynchronous SAR Imaging. Remote Sensing. 2019; 11(7):803. https://doi.org/10.3390/rs11070803
Chicago/Turabian StyleDong, Xichao, Jiaqi Hu, Cheng Hu, Teng Long, Yuanhao Li, and Ye Tian. 2019. "Modeling and Quantitative Analysis of Tropospheric Impact on Inclined Geosynchronous SAR Imaging" Remote Sensing 11, no. 7: 803. https://doi.org/10.3390/rs11070803