The Characteristics of Surface Albedo Change Trends over the Antarctic Sea Ice Region during Recent Decades
Abstract
:1. Introduction
2. Research Region and Datasets
2.1. Research Region
2.2. Datasets
2.2.1. CLARA-A2
2.2.2. NSIDC
2.2.3. APP-x
2.2.4. BSRN
3. Methodology
3.1. EMD
- (1)
- The local maxima and minima are determined in the original time series data.
- (2)
- A lower/upper envelope (u1(t)/u2(t)) is estimated by fitting cubic splines to the local minima (maxima).
- (3)
- The difference between the original time series data x(t) and the mean of the envelopes m1(t) as the first component h1(t) are defined in accordance with the following equations:
- (4)
- h1(t) is identified as the first IMF c1 if it satisfies the two conditions as follows: (1) throughout the whole length of a single IMF, the numbers of extrema and zero-crossings must either be equal or differ at most by 1; (2) at any data point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is 0.
- (5)
- If h1(t) does not satisfy one of these conditions, then it is regarded as a new parameter x(t), and the step in Formulas (1) and (2) is repeated k times until h1k(t) satisfies the conditions or until the difference between the successive sifted results is smaller than the given limit, which is fixed as σthr = 0.3 in our case.
- (6)
- The first IMF is identified as c1 = h1k, and the residual r1(t) can be obtained by subtracting c1 from the original data.
- (7)
- Taking the residual r1(t) as the new data, we repeated Steps 1–6 to determine the next IMF.
- (8)
- The sifting process is stopped until ri(t) becomes a monotonic function or |ri(t)| is very small. Finally, the original signal can be written as follows:
3.2. Slope Test
- (1)
- A subsample s(t) is selected from the original data y(t), and the lengths of the subsample and original data are denoted as j and k, respectively.
- (2)
- The slope of the subsample used in the linear regression equation is calculated as
- (3)
- l ∈ (2, j + 1) is set, and Steps 1 and 2 are repeated until l ∈ (k − j + 1, k).
- (4)
- Normally, a slope value that is greater/smaller than 0 indicates an increasing/decreasing trend; in addition, if the sign of the slope transforms from the positive (negative) to the negative (positive) phases, then the trend of the original data has changed and will be defined as the transition point.
4. Validation
5. Results and Discussion
5.1. Long-Term Changes and Trends
5.2. Seasonal Evolution of Composite Albedo, SIC and Sea Ice Albedo
5.3. Transition Points of the SAL, SIC, and SST
5.4. Spatial Distribution
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bracegirdle, T.J.; Connolley, W.M.; Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Alley, K.E.; Scambos, T.A.; Siegfried, M.R.; Fricker, H.A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 2016, 9, 290. [Google Scholar] [CrossRef]
- Hobbs, W.R.; Bindoff, N.L.; Raphael, M.N. New perspectives on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques. J. Clim. 2015, 28, 1543–1560. [Google Scholar] [CrossRef]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic climate change during the last 50 years. Int. J. Climatol. 2005, 25, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Steig, E.J. Climate science cooling in the Antarctic. Nature 2016, 535, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, C.T.Y.; Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical pacific decadal climate variability. Nat. Geosci. 2016, 9, 590–595. [Google Scholar] [CrossRef]
- Schemm, S. Regional trends in weather systems help explain Antarctic sea ice trends. Geophys. Res. Lett. 2018, 45, 7165–7175. [Google Scholar] [CrossRef]
- Jena, B.; Kumar, A.; Ravichandran, M.; Kern, S. Mechanism of sea-ice expansion in the Indian ocean sector of Antarctica: Insights from satellite observation and model reanalysis. PLoS ONE 2018, 13, e0203222. [Google Scholar] [CrossRef] [PubMed]
- Hanna, E. The role of Antarctic sea ice in global climate change. Prog. Phys. Geogr. 1996, 20, 371–401. [Google Scholar] [Green Version]
- Zwally, H.J.; Comiso, J.C.; Parkinson, C.L.; Cavalieri, D.J.; Gloersen, P. Variability of Antarctic sea ice 1979–1998. J. Geophys. Res. Ocean. 2002, 107, 9-1–9-19. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; Bitz, C.M.; Solomon, S.; Plumb, A. Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Clim. 2015, 28, 1206–1226. [Google Scholar] [CrossRef]
- Jones, J.M.; Gille, S.T.; Goosse, H.; Abram, N.J.; Canziani, P.O.; Charman, D.J.; Clem, K.R.; Crosta, X.; de Lavergne, C.; Eisenman, I.; et al. Assessing recent trends in high-latitude southern hemisphere surface climate. Nat. Clim. Chang. 2016, 6, 917–926. [Google Scholar] [CrossRef]
- Turner, J.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Phillips, T. Recent changes in Antarctic sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Orr, A.; Gudmundsson, G.H.; Jenkins, A.; Bingham, R.G.; Hillenbrand, C.-D.; Bracegirdle, T.J. Atmosphere-ocean-ice interactions in the Amundsen Sea embayment, West Antarctica. Rev. Geophys. 2017, 55, 235–276. [Google Scholar] [CrossRef]
- Turner, J.; Phillips, T.; Marshall, G.J.; Hosking, J.S.; Pope, J.O.; Bracegirdle, T.J.; Deb, P. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 2017, 44, 6868–6875. [Google Scholar] [CrossRef] [Green Version]
- Kusahara, K.; Reid, P.; Williams, G.D.; Massom, R.; Hasumi, H. An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environ. Res. Lett. 2018, 13, 084020. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea-ice albedo climate feedback mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Hall, A. The role of surface albedo feedback in climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef]
- Katlein, C.; Hendricks, S.; Key, J. Brief communication: Increasing shortwave absorption over the Arctic ocean is not balanced by trends in the Antarctic. Cryosphere 2017, 11, 2111–2116. [Google Scholar] [CrossRef]
- De Santis, A.; Maier, E.; Gomez, R.; Gonzalez, I. Antarctica, 1979–2016 sea ice extent: Total versus regional trends, anomalies, and correlation with climatological variables. Int. J. Remote Sens. 2017, 38, 7566–7584. [Google Scholar] [CrossRef]
- Smith, A.; Jahn, A. Definition differences and internal variability affect the simulated Arctic sea ice melt season. Cryosphere 2019, 13, 1–20. [Google Scholar] [CrossRef]
- Zhang, L.; Delworth, T.L.; Cooke, W.; Yang, X. Natural variability of southern ocean convection as a driver of observed climate trends. Nat. Clim. Chang. 2019, 9, 59–65. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Hosking, J.S.; Marshall, G.J.; Phillips, T.; Bracegirdle, T.J. Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Clim. Dyn. 2016, 46, 2391–2402. [Google Scholar] [CrossRef]
- Laine, V. Arctic sea ice regional albedo variability and trends, 1982–1998. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
- Pirazzini, R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.I.; King, J.C.; Lachlan-Cope, T.A.; Ladkin, R.S. Albedo of the ice covered Weddell and Bellingshausen Seas. Cryosphere 2012, 6, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Pavolonis, M.J.; Key, J.R.; Cassano, J.J. A study of the Antarctic surface energy budget using a polar regional atmospheric model forced with satellite-derived cloud properties. Mon. Weather Rev. 2004, 132, 654–661. [Google Scholar] [CrossRef]
- Abermann, J.; Kinnard, C.; MacDonell, S. Albedo variations and the impact of clouds on glaciers in the chilean semi-arid andes. J. Glaciol. 2014, 60, 183–191. [Google Scholar] [CrossRef]
- Sodergren, A.H.; McDonald, A.J.; Bodeker, G.E. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. Clim. Dyn. 2018, 51, 1639–1658. [Google Scholar] [CrossRef]
- Key, J.R.; Wang, X.J.; Stoeve, J.C.; Fowler, C. Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res. Atmos. 2001, 106, 12489–12497. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, S.; Morris, K.; Jeffries, M.O. Albedo of summer snow on sea ice, Ross Sea, Antarctica. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zender, C.S. Arctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear baseline surface radiation network measurements. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Munneke, P.K.; van den Broeke, M.R.; Lenaerts, J.T.M.; Flanner, M.G.; Gardner, A.S.; van de Berg, W.J. A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Inoue, J.; Horton, R.M. Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. Int. J. Climatol. 2007, 27, 81–91. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G.; Worby, A.P.; Grenfell, T.C. Surface albedo of the Antarctic sea ice zone. J. Clim. 2005, 18, 3606–3622. [Google Scholar] [CrossRef]
- Laine, V. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR polar pathfinder data. Remote Sens. Environ. 2008, 112, 646–667. [Google Scholar] [CrossRef]
- Shao, Z.-D.; Ke, C.-Q. Spring-summer albedo variations of Antarctic sea ice from 1982 to 2009. Environ. Res. Lett. 2015, 10, 064001. [Google Scholar] [CrossRef]
- Seo, M.; Kim, H.-C.; Seong, N.-H.; Kwon, C.; Kim, H.; Han, K.-S. Analysis on long-term variability of sea ice albedo and its relationship with sea ice concentration over Antarctica. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Edinburgh, Scotland, 26–27 September 2016; Bostater, C.R., Neyt, X., Nichol, C., Aldred, O., Eds.; SPIE: Edinburgh, Scotland, 2016; Volume 9999. [Google Scholar]
- Seo, M.; Kim, H.-C.; Huh, M.; Yeom, J.-M.; Lee, C.S.; Lee, K.-S.; Choi, S.; Han, K.-S. Long-term variability of surface albedo and its correlation with climatic variables over Antarctica. Remote Sens. 2016, 8, 981. [Google Scholar] [CrossRef]
- Xian, S.U.N.; Zhenshan, L.I.N. The regional features of temperature variation trends over china by empirical mode decomposition method. Acta Geogr. Sin. 2007, 62, 1132–1141. [Google Scholar]
- Comiso, J.C.; Kwok, R.; Martin, S.; Gordon, A.L. Variability and trends in sea ice extent and ice production in the Ross Sea. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, H.-C.; Jo, Y.-H.; Kidwell, A.; Hwang, J. Multi-temporal variation of the Ross Sea polynya in response to climate forcings. Polar Res. 2018, 37, 1444891. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Yu, Y.; Wang, D.; Gao, F.; Liu, Q. Greenland surface albedo changes in July 1981–2012 from satellite observations. Environ. Res. Lett. 2013, 8, 044043. [Google Scholar] [CrossRef] [Green Version]
- Autret, G.; Remy, F.; Roques, S. Multiscale analysis of Antarctic surface temperature series by empirical mode decomposition. J. Atmos. Ocean. Technol. 2013, 30, 649–654. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.L.C.; Shih, H.H.; Zheng, Q.N.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. A Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Shu, Q.; Qiao, F.; Song, Z.; Wang, C. Sea ice trends in the Antarctic and their relationship to surface air temperature during 1979–2009. Clim. Dyn. 2012, 38, 2355–2363. [Google Scholar] [CrossRef]
- Franzke, C. Significant reduction of cold temperature extremes at Faraday/Vernadsky station in the Antarctic peninsula. Int. J. Climatol. 2013, 33, 1070–1078. [Google Scholar] [CrossRef]
- Galassi, G.; Spada, G. Tide gauge observations in Antarctica (1958–2014) and recent ice loss. Antarct. Sci. 2017, 29, 369–381. [Google Scholar] [CrossRef]
- Kim, T.; Shin, J.-Y.; Kim, S.; Heo, J.-H. Identification of relationships between climate indices and long-term precipitation in south Korea using ensemble empirical mode decomposition. J. Hydrol. 2018, 557, 726–739. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Soil moisture forecasting by a hybrid machine learning technique: Elm integrated with ensemble empirical mode decomposition. Geoderma 2018, 330, 136–161. [Google Scholar] [CrossRef]
- Prasad, R.; Ali, M.; Kwan, P.; Khan, H. Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Appl. Energy 2019, 236, 778–792. [Google Scholar] [CrossRef]
- Holland, P.R. The seasonality of Antarctic sea ice trends. Geophys. Res. Lett. 2014, 41, 4230–4237. [Google Scholar] [CrossRef] [Green Version]
- Riihela, A.; Manninen, T.; Laine, V. Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009. Nat. Clim. Chang. 2013, 3, 895–898. [Google Scholar] [CrossRef]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D. The landsat image mosaic of Antarctica. Remote Sens. Environ. 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.G.; Thoss, A. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteorol. 2005, 44, 39–54. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Anttila, K.; Trentmann, J.; Stengel, M.; Meirink, J.F.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jaaskelainen, E.; Sedlar, J.; et al. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef]
- Karlsson, K.G.; Riihela, A.; Mueller, R.; Meirink, J.F.; Sedlar, J.; Stengel, M.; Lockhoff, M.; Trentmann, J.; Kaspar, F.; Hollmann, R.; et al. CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem. Phys. 2013, 13, 5351–5367. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.G.; Thoss, A. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part ii: Tuning and validation. J. Appl. Meteorol. 2005, 44, 55–71. [Google Scholar]
- Pegau, W.S.; Paulson, C.A. The albedo of Arctic leads in summer. In Proceedings of the International-Glaciological-Society Symposium on Sea Ice and Its Interactions with the Ocean, Atmosphere and Biosphere, University Alaska Fairbanks, Fairbanks, AK, USA, 19–23 June 2000; Jeffries, M.O., Eicken, H., Eds.; Annals of Glaciology: Cambridge, UK, 2001; Volume 33, pp. 221–224. [Google Scholar]
- Cavalieri, D.J.; Gloersen, P.; Parkinson, C.L.; Comiso, J.C.; Zwally, H.J. Observed hemispheric asymmetry in global sea ice changes. Science 1997, 278, 1104–1106. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Comiso, J.C.; Zwally, H.J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. Ocean. 1999, 104, 15803–15814. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar]
- Comiso, J.C.; Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P. Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ. 1997, 60, 357–384. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Vinnikov, K.Y. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Jacka, T.H.; Budd, W.F. Detection of temperature and sea-ice-extent changes in the Antarctic and southern ocean, 1949–1996. In Proceedings of the International Symposium on Antarctica and Global Change—Interactions and Impacts, Hobart, Australia, 13–18 July 1997; Budd, W.F., Ed.; Annals of Glaciology: Cambridge, UK, 1998; Volume 27, pp. 553–559. [Google Scholar]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature 2009, 457, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Key, J.R.; Collins, J.B.; Fowler, C.; Stone, R.S. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 1997, 61, 302–309. [Google Scholar] [CrossRef]
- Key, J.; Wang, X.; Liu, Y.; Dworak, R.; Letterly, A. The AVHRR polar pathfinder climate data records. Remote Sens. 2016, 8, 167. [Google Scholar] [CrossRef]
- Riihela, A.; Key, J.R.; Meirink, J.F.; Munneke, P.K.; Palo, T.; Karlsson, K.-G. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic. J. Geophys. Res. Atmos. 2017, 122, 4829–4848. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Xu, J.; Chen, Z.; Li, W.; Liu, Z.; Zhao, B.; Wang, Z. The regional features of temperature variation trends over xinjiang in china by the ensemble empirical mode decomposition method. Int. J. Climatol. 2015, 35, 3229–3237. [Google Scholar]
- Chen, X.R. Inference in a simple change-point model. Sci. Sin. Ser. A Math. Phys. Astron. Tech. Sci. 1988, 31, 654–667. [Google Scholar]
- Hawkins, D.M. Fitting multiple change-point models to data. Comput. Stat. Data Anal. 2001, 37, 323–341. [Google Scholar] [CrossRef]
- Scott, R.C.; Lubin, D.; Vogelmann, A.M.; Kato, S. West Antarctic ice sheet cloud cover and surface radiation budget from NASA A-Train satellites. J. Clim. 2017, 30, 6151–6170. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, C.; Zheng, L. Analysis of the temporal-spatial changes in surface radiation budget over the Antarctic sea ice region. Sci. Total Environ. 2019, 666, 1134–1150. [Google Scholar] [CrossRef]
- Simpkins, G.R.; Ciasto, L.M.; England, M.H. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett. 2013, 40, 3643–3648. [Google Scholar] [CrossRef]
- Fan, T.; Deser, C.; Schneider, D.P. Recent Antarctic sea ice trends in the context of southern ocean surface climate variations since 1950. Geophys. Res. Lett. 2014, 41, 2419–2426. [Google Scholar] [CrossRef]
- Stammerjohn, S.E.; Maksym, T.; Massom, R.A.; Lowry, K.E.; Arrigo, K.R.; Yuan, X.; Raphael, M.; Randall-Goodwin, E.; Sherrell, R.M.; Yager, P.L. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elem. Sci. Anthr. 2015, 3. [Google Scholar] [CrossRef]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Sen Gupta, A.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 2014, 4, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A review of recent changes in southern ocean sea ice, their drivers and forcings. Glob. Planet. Chang. 2016, 143, 228–250. [Google Scholar]
- Kosaka, Y.; Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Pezza, A.B.; Rashid, H.A.; Simmonds, I. Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Clim. Dyn. 2012, 38, 57–73. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar]
- Kirillov, S.; Dmitrenko, I.; Rysgaard, S.; Babb, D.; Ehn, J.; Bendtsen, J.; Boone, W.; Barber, D.; Geilfus, N. The inferred formation of a subice platelet layer below the multiyear landfast sea ice in the Wandel Sea (NE Greenland) induced by meltwater drainage. J. Geophys. Res. Ocean. 2018, 123, 3489–3506. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Key, J.R. Antarctic cloud radiative forcing at the surface estimated from the AVHRR polar pathfinder and ISCCP D1 datasets, 1985–1993. J. Appl. Meteorol. 2003, 42, 827–840. [Google Scholar] [CrossRef]
- Sedlar, J.; Tjernstrom, M.; Mauritsen, T.; Shupe, M.D.; Brooks, I.M.; Persson, P.O.G.; Birch, C.E.; Leck, C.; Sirevaag, A.; Nicolaus, M. A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Clim. Dyn. 2011, 37, 1643–1660. [Google Scholar] [CrossRef]
- Pirazzini, R.; Raisanen, P.; Vihma, T.; Johansson, M.; Tastula, E.M. Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet. Cryosphere 2015, 9, 2357–2381. [Google Scholar] [CrossRef] [Green Version]
- Stammerjohn, S.; Massom, R.; Rind, D.; Martinson, D. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, D.J.; Parkinson, C.L. Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Holland, P.R.; Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 2012, 5, 872–875. [Google Scholar] [CrossRef]
- Oliva, M.; Navarro, F.; Hrbacek, F.; Hernandez, A.; Nyvlt, D.; Pereira, P.; Ruiz-Fernandez, J.; Trigo, R. Recent regional climate cooling on the Antarctic peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Comiso, J.C. Spatial patterns of variability in antarctic surface temperature: Connections to the southern hemisphere annular mode and the southern oscillation. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Goosse, H.; Zunz, V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. Cryosphere 2014, 8, 453–470. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Lei, R.; Tian-Kunze, X.; Lepparanta, M.; Wang, J.; Kaleschke, L.; Zhang, Z. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic ocean during 1982–2009. J. Geophys. Res. Ocean. 2016, 121, 5470–5486. [Google Scholar] [CrossRef]
Acronym | Full Name |
---|---|
APP-x | AVHRR Polar Pathfinder-Extended |
ASIR | Antarctic Sea Ice Region |
AVG | Average |
AVHRR | Advanced Very High Resolution Radiometer |
BS | Bellingshausen–Amundsen Sea |
BSRN | Baseline Surface Radiation Network |
CDR | Climate Data Record |
CLARA-A2 | The CM SAF cloud, Albedo, and Surface Radiation dataset from AVHRR data-Second Edition |
CM SAF | Climate Monitoring Satellite Application Facility |
DMSP | Defense Meteorological Satellite Program |
EMD | Empirical Mode Decomposition |
GVN | Neumayer |
IMFs | Intrinsic Mode Functions |
IO | Indian Ocean |
NOAA | National Oceanic and Atmospheric Administration |
NSIDC | National Snow and Ice Data Center |
PO | Pacific Ocean |
RS | Ross Sea |
SAL | Surface Albedo |
SIC | Sea Ice Concentration |
SMMR | Scanning Multichannel Microwave Radiometer |
SSM/I | Special Sensor Microwave/Imager |
SSMIS | Special Sensor Microwave Imager/Sounder |
SST | Sea Surface Temperature |
SW | Shortwave |
WS | Weddell Sea |
Summer | December | January | February | |
---|---|---|---|---|
Mean Bias (%) | −2.02 | −2.17 | −1.91 | −1.86 |
RMSE | 2.68 | 2.64 | 3.15 | 3.69 |
Region | Summer | December | January | February | ||||
---|---|---|---|---|---|---|---|---|
Slope | AVG | Slope | AVG | Slope | AVG | Slope | AVG | |
ASIR | 0.851 ** | 46.75 | 0.842 ** | 45.42 | 0.672 ** | 44.75 | 1.387 ** | 50.14 |
BS | −2.926 ** | 48.88 | −1.652 ** | 49.55 | −1.183 ** | 47.47 | −0.701 ** | 49.65 |
WS | 0.605 ** | 50.38 | 0.306 * | 46.17 | 0.836 ** | 48.38 | 0.133 ** | 56.50 |
IO | 1.619 ** | 43.37 | 2.392 ** | 38.10 | 1.527 ** | 43.55 | 1.069 ** | 48.46 |
PO | 3.781 ** | 44.70 | 2.004 ** | 44.82 | 4.529 ** | 43.95 | 3.780 ** | 45.66 |
RS | 0.502 ** | 42.60 | 1.120 ** | 47.06 | 1.044 ** | 38.94 | −0.179 ** | 41.98 |
Region | Summer | December | January | February | ||||
---|---|---|---|---|---|---|---|---|
Slope | AVG | Slope | AVG | Slope | AVG | Slope | AVG | |
ASIR | 0.721 ** | 65.39 | 0.065 ** | 65.76 | 0.169 | 63.75 | 0.881 ** | 66.60 |
BS | −4.596 ** | 66.05 | −2.480 ** | 70.28 | −4.354 ** | 66.25 | −2.911 ** | 61.49 |
WS | 0.924 ** | 70.99 | 0.851 ** | 66.92 | 1.076 ** | 68.70 | 0.759 ** | 77.20 |
IO | 1.804 ** | 57.47 | 0.171 | 54.10 | 1.176 ** | 60.88 | −0.029 | 57.22 |
PO | 3.358 ** | 65.40 | 1.176 ** | 65.47 | 5.968 ** | 67.62 | 4.347 ** | 63.23 |
RS | 0.971 ** | 59.25 | 0.447 * | 68.82 | 0.779 ** | 54.61 | −1.350 ** | 54.36 |
Region | Summer | December | January | February | ||||
---|---|---|---|---|---|---|---|---|
Slope | AVG | Slope | AVG | Slope | AVG | Slope | AVG | |
ASIR | 0.392 ** | −2.44 | 0.350 ** | −1.49 | 0.365 ** | −1.44 | 0.175 ** | −4.44 |
BS | 0.473 ** | −2.30 | 0.348 ** | −1.55 | 0.404 ** | −1.40 | 0.599 ** | −3.99 |
WS | 0.300 ** | −2.78 | 0.337 ** | −1.53 | 0.083 | −1.60 | 0.094 ** | −5.23 |
IO | 0.840 ** | −1.81 | 0.739 ** | −1.12 | 0.951 ** | −1.03 | 0.608 ** | −3.45 |
PO | 0.568 ** | −1.89 | 0.622 ** | −1.40 | 0.467 ** | −1.06 | 0.343 ** | −3.30 |
RS | 0.103 | −2.50 | 0.354 ** | −1.65 | 0.292 ** | −1.50 | 0.052 ** | −4.34 |
ASIR | RS | BS | WS | IO | PO | |
---|---|---|---|---|---|---|
SIC | 0.992 | 0.990 | 0.955 | 0.913 | 0.975 | 0.957 |
Sea Ice Albedo | 0.980 | 0.738 | 0.779 | 0.809 | 0.761 | 0.874 |
Region | Summer | December | January | February | ||||
---|---|---|---|---|---|---|---|---|
Type | Point | Type | Point | Type | Point | Type | Point | |
ASIR | ↑ | / | ↓–↑ | 1987 | ↑–↓ | 2009 | ↑ | / |
BS | ↓ | / | ↓–↑ | 2008 | ↓ | / | ↓–↑ | 2001 |
WS | ↓–↑ | 1992 | ↓–↑ | 1996 | ↑–↓ | 2004 | ↓–↑ | 1996 |
IO | ↑ | / | ↑ | / | ↑ | / | ↑ | / |
PO | ↑ | / | ↑ | / | ↑ | / | ↑ | / |
RS | ↑ | / | ↑ | / | ↑–↓ | 2003 | ↓–↑ | 2000 |
Region | Summer | December | January | February | ||||
---|---|---|---|---|---|---|---|---|
Type | Point | Type | Point | Type | Point | Type | Point | |
ASIR | ↑ | / | ↑–↓ | 2001 | ↑–↓ | 1999 | ↑ | / |
BS | ↓ | / | ↓ | / | ↓ | / | ↓ | / |
WS | ↓–↑ | 1986 | ↓–↑ | 1995 | ↑–↓ | 2002 | ↑ | / |
IO | ↑ | / | ↓–↑ | 1997 | ↓–↑ | 1986 | ↓–↑ | 2000 |
PO | ↑ | / | ↑–↓ | 2009 | ↑ | / | ↑ | / |
RS | ↑ | / | ↑–↓ | 2000 | ↑–↓ | 2001 | ↓ | / |
Region | Summer | December | January | February | ||||
---|---|---|---|---|---|---|---|---|
Type | Point | Type | Point | Type | Point | Type | Point | |
ASIR | ↑–↓ | 2003 | ↑–↓ | 2003 | ↑–↓ | 2003 | ↑–↓ | 2003 |
BS | ↑–↓ | 2003 | ↑–↓ | 2004 | ↑–↓ | 2004 | ↑–↓ | 2006 |
WS | ↑–↓ | 2003 | ↑–↓ | 2004 | ↑–↓ | 2002 | ↑–↓ | 2003 |
IO | ↑–↓ | 2005 | ↑–↓ | 2004 | ↑–↓ | 2005 | ↑ | / |
PO | ↑–↓ | 2004 | ↑–↓ | 2006 | ↑–↓ | 2004 | ↑ | / |
RS | ↑–↓ | 2001 | ↑–↓ | 2006 | ↑–↓ | 2003 | ↑–↓ | 2003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zhang, T.; Zheng, L. The Characteristics of Surface Albedo Change Trends over the Antarctic Sea Ice Region during Recent Decades. Remote Sens. 2019, 11, 821. https://doi.org/10.3390/rs11070821
Zhou C, Zhang T, Zheng L. The Characteristics of Surface Albedo Change Trends over the Antarctic Sea Ice Region during Recent Decades. Remote Sensing. 2019; 11(7):821. https://doi.org/10.3390/rs11070821
Chicago/Turabian StyleZhou, Chunxia, Teng Zhang, and Lei Zheng. 2019. "The Characteristics of Surface Albedo Change Trends over the Antarctic Sea Ice Region during Recent Decades" Remote Sensing 11, no. 7: 821. https://doi.org/10.3390/rs11070821
APA StyleZhou, C., Zhang, T., & Zheng, L. (2019). The Characteristics of Surface Albedo Change Trends over the Antarctic Sea Ice Region during Recent Decades. Remote Sensing, 11(7), 821. https://doi.org/10.3390/rs11070821