Mapping Evapotranspiration, Vegetation and Precipitation Trends in the Catchment of the Shrinking Lake Poopó
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Period
2.2. Experimental Data
2.2.1. Satellite Data
2.2.2. Precipitation Data
2.2.3. Topography Model and Land Cover Map
2.3. Definition of Control Areas for the Main Land Cover Types
- Northern Crops corresponds to cropland areas located in the northern part of the system, which were under exploitation long before 2002, the beginning of the study period. Northern Crops comprises Multiple Crops extracted from COBUSO-2010.
- Central Crops represents agricultural areas located in the central valley of the DP system on alluvial soils and rather flat topography following the course of the Desaguadero River, grouping Multiple Crops from COBUSO-2010. Besides Multiple Crops, some residual pixels belonging to Central Crops are classified as Semi-arid Grassland and Wetland in COBUSO-2010.
- Southern Crops are located south of Lake Poopó and encompass the COBUSO-2010 land cover of Multiple Crops.
- Cordillera Real groups Multiple Crops, Sub-humid Andean Forest, Scattered Vivacious High-Andean Vegetation and Semi-arid Grassland located above 4200 m. All the covers are included in the same category, since their mixture occurs at a scale difficult to separate at the ET product resolution. An abundance of irrigation systems has been reported in this area by Canedo et al. [61] together with an expansion of the mining activity [23].
- Cordillera Occidental includes Scattered Vivacious High-Andean Vegetation and Scattered Puna in Sand areas in the North West mountain range.
- Autochthonous Flora encompasses Semi-arid Grassland, Scattered Puna in Sand areas, Scattered Vivacious High-Andean Vegetation and Sand Deposits in rare occurrences.
- Wetland areas are located in the northern and northwestern part of the system due to the high availability of water. These areas represent flood zones with unique ecosystems and encompasses Wet Grasslands.
- Bareland groups Sand, Sault and Lacustrine deposits with almost no vegetation. The highest extent of bareland is found in the arid south and southwest of the DP system.
2.4. Masking Water Pixels
2.5. Retrieval and Mapping of Vegetation, ET and Precipitation Trends
2.5.1. Calculation of Trends and Their Significance
3. Results
3.1. Average NDVI, ET and Precipitation Maps
3.2. Spatio-Temporal Trends in NDVI, ET and Precipitation
3.3. Analysis of ET and NDVI Trends Per Land Cover Type
4. Discussion
4.1. Temporal Assessment of ET, Precipitation and NDVI at the Catchment Scale
4.2. Spatial Distribution of ET, Precipitation and NDVI Trends
4.3. ET and NDVI Trends Per Land Cover Type
5. Conclusions
- The spatio-temporal analysis confirmed an increase of ET losses between 2002 and 2014 within the DP system, although our study showed the maximum increases of ET losses over the central area of the catchment, differing from previous studies.
- The NDVI and ET values averaged annually over the DP system increased at a mean rate of 0.001 yr−1 and 4.3 mm yr−1, which yields mean NDVI and annual ET increments of 0.013 and 56 mm for the 13-year study period. Water inputs into the system due to precipitation increased at a mean rate of 5.2 mm yr−1, exceeding the ET rise rate.
- The seasonal analysis revealed that the highest ET and NDVI changes occur during the wet period contrasting with the stationarity of the dry period.
- ET losses and their trends have been estimated for the main land covers in the DP catchment. Their values indicate that the land covers with higher water consumption are: Cordillera Real, Cordillera Occidental, Northern Crops, Wetlands and Central Crops with average values of 500, 410, 410, 370 and 310 mm yr−1, respectively. This quantification of water consumption per cover type provides crucial information for the sustainable planning of agriculture exploitation and water resources use in the DP system.
- Among the analysed land cover classes, only those including crops, such as Central and Southern Crops and Cordillera Real, have experienced an increase in NDVI and ET losses, while natural covers showed either constant or decreasing NDVI trends together with increases in ET. The larger increase in NDVI and ET losses over agricultural regions, strongly suggests that cropping practices exacerbated water losses in these areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hostetler, S.W. Hydrological and Thermal Response of Lakes to Climate: Description and Modeling; Springer: Berlin/Heidelberg, Germany, 1995; Volume 60, ISBN 3-540-57891-9. [Google Scholar]
- Hammer, U.T. Saline Lake Ecosystems of the World; Springer Science and Business Media: Amsterdam, The Netherlands, 1986; Volume 59, ISBN 978-90-6193-535-3. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. (Eds.) Climate Change 2001: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2, ISBN 0-521-80768-9. [Google Scholar]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, M.; Moore, J. Decline of the world’s saline lakes. Nat. Geosci. 2017, 10, 816. [Google Scholar] [CrossRef]
- Eimanifar, A.; Mohebbi, F. Urmia Lake (northwest Iran): A brief review. Saline Syst. 2005, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AghaKouchak, A.; Norouzi, H.; Madani, K.; Mirchi, A.; Azarderakhsh, M.; Nazemi, A.; Nasrollahi, N.; Farahmand, A.; Mehran, A.; Hasanzadeh, E. Aral Sea syndrome desiccates Lake Urmia. call for action. J. Great Lakes Res. 2015, 41, 307–311. [Google Scholar] [CrossRef]
- Micklin, P. Desiccation of the Aral Sea. A Water Management Disaster in the Soviet Union. Science 1988, 241, 1170–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micklin, P. The Aral sea disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Bohn, T.J.; Podest, E.; McDonald, K.C.; Lettenmaier, D.P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 2011, 6, 034021. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.I.; Morán-Tejeda, E.; Vicente-Serrano, S.M.; Bazo, J.; Azorin-Molina, C.; Revuelto, J.; Sánchez-Lorenzo, A.; Navarro-Serrano, F.; Aguilar, E.; Chura, O. Recent temperature variability and change in the Altiplano of Bolivia and Peru. Int. J. Clim. 2015, 36, 1773–1796. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, S.; Brönnimann, S.; Calle, J.; Moreno, I.; Andrade, M.; Ticona, L.; Huerta, A.; Lavado-Casimiro, W. Effects of undetected data quality issues on climatological analyses. Clim. Past. 2018, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Requena, C. Bolivia en un Mundo 4 Grados más Caliente: Escenarios Sociopolíticos Ante el Cambio Climático Para los Años 2030 y 2060 en el Altiplano Norte; Fundación PIEB, Programa de Investigación Estratégica en Bolivia: La Paz, Bolivia, 2012. [Google Scholar]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere 2016, 10, 2399–2413. [Google Scholar] [CrossRef] [Green Version]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean glaciers. Past, present and future. Earth Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Thibeault, J.M.; Seth, A.; García, M. Changing climate in the Bolivian Altiplano. CMIP3 projections for temperature and precipitation extremes. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Seth, A.; Thibeault, J.; Garcia, M.; Valdivia, C. Making sense of twenty-first-century climate change in the Altiplano. Observed trends and CMIP3 projections. Ann. Assoc. Am. Geogr. 2010, 100, 835–847. [Google Scholar] [CrossRef]
- Urrutia, R.; Vuille, M. Climate change projections for the tropical Andes using a regional climate model. Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística. Estadísticas Económicas; Instituto Nacional de Estadística, Ed.; The Bolivian National Institute of Statistics: La Paz, Bolivia, 2015. (In Spanish) [Google Scholar]
- Satgé, F.; Espinoza, R.; Zolá, R.P.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, F.; Seyler, F.; Bonnet, M.P. Role of climate variability and human activity on Poopó Lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; De Bièvre, B. Water for cities. The impact of climate change and demographic growth in the tropical Andes. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Kinouchi, T.; Nakajima, T.; Mendoza, J.; Fuchs, P.; Asaoka, Y. Water security in high mountain cities of the Andes under a growing population and climate change. A case study of La Paz and El Alto, Bolivia. Water Secur. 2019, 6, 100025. [Google Scholar] [CrossRef]
- Perreault, T. Dispossession by accumulation? Mining, water and the nature of enclosure on the Bolivian Altiplano. Antipode 2013, 45, 1050–1069. [Google Scholar] [CrossRef]
- Andreucci, D.; Radhuber, I. Limits to “counter-neoliberal” reform. Mining expansion and the marginalisation of post-extractivist forces in Evo Morales’s Bolivia. Geoforum 2017, 84, 280–291. [Google Scholar] [CrossRef]
- Zola, R.P.; Bengtsson, L. Long-term and extreme water level variations of the shallow Lake Poopó, Bolivia. Hydrol. Sci. J. 2006, 51, 98–114. [Google Scholar] [CrossRef] [Green Version]
- Zolá, R.P.; Bengtsson, L. Three methods for determining the area-depth relationship of Lake Poopó, a large shallow lake in Bolivia. Lakes and Reservoirs. Res. Manag. 2007, 12, 275–284. [Google Scholar] [CrossRef]
- Revollo, M.M. Management issues in the Lake Titicaca and Lake Poopo system. importance of developing a water budget. Lakes and Reservoirs. Res. Manag. 2001, 6, 225–229. [Google Scholar] [CrossRef]
- Arsen, A.; Crétaux, J.F.; Berge-Nguyen, M.; del Rio, R.A. Remote sensing-derived bathymetry of Lake Poopó. Remote Sens. 2014, 6, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Abarca-Del-Rio, R.; Crétaux, J.F.; Berge-Nguyen, M.; Maisongrande, P. Does Lake Titicaca still control the Lake Poopó system water levels? An investigation using satellite altimetry and MODIS data (2000–2009). Remote Sens. Lett. 2012, 3, 707–714. [Google Scholar] [CrossRef]
- Molina Carpio, J.; Satgé, F.; Pillco Zola, R. Los Recursos Hídricos Del Sistema TDPS. Available online: http.//horizon.documentation.ird.fr/exl-doc/pleins_textes/divers14-09/010062840.pdf (accessed on 10 July 2017).
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Marti-Cardona, B.; Lopez-Martinez, C.; Dolz-Ripolles, J.; Bladè-Castellet, E. ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring. Remote Sens. Environ. 2010, 114, 2802–2815. [Google Scholar] [CrossRef]
- Martí-Cardona, B.; Dolz-Ripollés, J.; López-Martínez, C. Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancillary spatial data. Remote Sens. Environ. 2013, 139, 171–184. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors. A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology. A review. Int. J. Clim. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Espinoza Villar, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). International Journal of Climatology. Int. J. Clim. 2009, 29, 1574–1594. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget. Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Crosman, E.T.; Horel, J.D. MODIS–derived surface temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- Liu, G.; Ou, W.; Zhang, Y.; Wu, T.; Zhu, G.; Shi, K.; Qin, B. Validating and mapping surface water temperatures in Lake Taihu. Results from MODIS land surface temperature products. IEEE J. Sel. Top. Appl. 2015, 8, 1230–1244. [Google Scholar] [CrossRef]
- Martí-Cardona, B.; Prats, J.; Niclòs, R. Enhancing the retrieval of stream surface temperature from Landsat data. Remote Sens. Environ. 2019, 224, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Duethmann, D.; Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 2018, 22, 5143–5158. [Google Scholar] [CrossRef] [Green Version]
- Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data. From empirical to numerical modeling approaches. Irrig. Drain 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 1. Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Martí-Cardona, B.; Pipia, L.; Rodríguez Máñez, E.; Hans Sánchez, T. Teledetección de la Evapotranspiración y Cambio de Cubiertas en la Cuenca del Río Locumba, Perú. In XXVII Congreso Latinoamericano de Hidráulica; IAHR: Lima, Peru, 2016. [Google Scholar]
- Mo, X.; Chen, X.; Hu, S.; Liu, S.; Xia, J. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: A case study in the North China Plain. Hydrol. Earth Syst. Sci. 2017, 21, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8–Day L4 Global 500 m SIN Grid V006. Nasa Eosdis Land Process. Daac 2017. [Google Scholar] [CrossRef]
- Jacobsen, S. The Situation for Quinoa and Its Production in Southern Bolivia. From Economic Success to Environmental Disaster. J. Agron. Crop. Sci. 2011, 197, 390–399. [Google Scholar] [CrossRef]
- Nina, D.A.; Mamani, P.V. Cambio climático y seguridad alimentaria, un análisis en la producción agrícola. J. De Cienc. Y Tecnol. Agrar. 2014, 3, 59–70. [Google Scholar]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA Eosdis Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Didan, K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA Eosdis Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- OEA (Organización de los Estados Americanos). Diagnóstico Ambiental del Sistema Titicaca-Desaguadero-Poopó-Salar de Coipasa (Sistema TDPS) Bolivia-Perú; Departamento Regional y Medio Ambiente, OEA: Washington, DC, USA, 1996. [Google Scholar]
- Pillco Zolá, R.; Bengtsson, L.; Berndtsson, R.; Martí-Cardona, B.; Satgé, F.; Timouk, F.; Bonnet, M.-P.; Mollericon, L.; Gamarra, C.; Pasapera, J. Modelling Lake Titicaca’s daily and monthly evaporation. Hydrol. Earth Syst. Sci 2019, 23, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Canedo, C.; Pillco Zolá, R.; Berndtsson, R. Role of Hydrological Studies for the Development of the TDP System. Water Sui. 2016, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine. Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of the Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Gao, X.; Huete, A.R.; Didan, K. Multisensor comparisons and validation of MODIS vegetation indices at the semiarid Jornada experimental range. IEEE Trans. Geosci. Remote 2003, 41, 2368–2381. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S.; Carlson, T.N. Uncertainties in latent heat flux measurement and estimation. implications for using a simplified approach with remote sensing data. Can. J. Remote Sens. 2004, 30, 769–787. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation. A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA Eosdis Land Process. DAAC 2015, 10. [Google Scholar] [CrossRef]
- Satgé, F.; Ruelland, D.; Bonnet, M.-P.; Molina, J.; Pillco, R. Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow-hydrological modelling in the Lake Titicaca region. Hydrol. Earth Syst. Sci. 2019, 23, 595–619. [Google Scholar] [CrossRef] [Green Version]
- Canedo Rosso, C.; Hochrainer-Stigler, S.; Pflug, G.; Condori, B.; Berndtsson, R. Early warning and drought risk assessment for the Bolivian Altiplano agriculture using high resolution satellite imagery data. Nat. Hazards Earth Syst. Sci. Discuss. 2018. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Morris, C.S.; Belz, J.E.; Chapin, E.C.; Martin, J.M.; Daffer, W.; Hensley, S. An Assessment of the SRTM Topographic Products; Technical Report JPL D-31639; Jet Propulsion Laboratory: Pasadena, CA, USA, 2005. [Google Scholar]
- UTNIT. Mapa de Cobertura y uso Actual de la Tierra, Bolivia. COBUSO-2010. Unidad Tecnica Nacional de Informacion de la Tierra. Available online: http.//cdrnbolivia.org/geografia-fisica-nacional.html (accessed on 2 March 2018).
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H. Nonparametric Tests Against Trend. Econometrica 1957, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin and Company Limited: London, UK, 1975. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A contextual mann-kendall approach for the assessment of trend significance in image time series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Guay, K.C.; Beck, P.S.; Berner, L.T.; Goetz, S.J.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resourc. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Fang, N.F.; Chen, F.X.; Zhang, H.Y.; Wang, Y.X.; Shi, Z.H. Effects of cultivation and reforestation on suspended sediment concentrations: A case study in a mountainous catchment in China. Hydrol. Earth Syst. Sci. 2016, 20, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Fathian, F.; Dehghan, Z.; Bazrkar, M.H.; Eslamian, S. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrol. Sci. J. 2016, 61, 892–904. [Google Scholar] [CrossRef] [Green Version]
- Goodman, S.N. Of P-values and Bayes: A modest proposal. Epidemiology 2001, 12, 295–297. [Google Scholar] [CrossRef]
- Garreaud, R.; Vuille, M.; Clement, A.C. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaegeogr. Palaeocl. 2003, 194, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Pillco, R.; Uvo, C.B.; Bengtsson, L.; Villegas, R. Precipitation variability and regionalization over the Southern Altiplano, Bolivia. Int. J. Clim. 2007, 149–164. [Google Scholar]
- Cretaux, J.-F.; Jelinski, W.; Calmant, S.; Kouraev, A.V.; Vuglinski, V.V.; Bergé Nguyen, M.; Gennero, M.-C.; Nino, F.; Abarca-Del-Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in Near Real Time water level and storage variations from remote sensing data. J. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Estado Plurinacional de Bolivia. El Plan de Desarrollo Económico y Social; Ministerio de Planificación de Desarrollo: La Paz, Bolivia, 2016. [Google Scholar]
- Seiler, C.; Hutjes, R.W.; Kabat, P. Climate variability and trends in Bolivia. J. Appl. Meteorol. 2013, 52, 130–146. [Google Scholar] [CrossRef] [Green Version]
PRODUCT NAME | MOD16A2 | MOD13Q1 | MYD13Q1 | MOD09A1 | SRTM | CHIRPS |
---|---|---|---|---|---|---|
Physical magnitude | Evapotranspiration (ET) | NDVI | NDVI | Reflectance | Terrain elevation | Precipitation |
Spatial resolution | 500 m | 250 m | 250 m | 500 m | 30 m | 0.05 arc degrees |
Temporal interval | 8 days | 16 days | 16 days | 8 days | N/A | Daily |
Number of products used | 16 May 2012 | Mosaic of 10 granules | ||||
Entire study period | 598 | 299 | 288 | 4748 | ||
Wet season | 105 | 52 | 48 | 770 | ||
Dry season | 104 | 52 | 52 | 806 |
Wet Period | Dry Period | |||||
---|---|---|---|---|---|---|
NDVI | ET | Precipitation | NDVI | ET | Precipitation | |
Sen’s slope | 0.049 | 10.7 mm yr−1 | 13.26 mm yr−1 | 0.002 | −0.7 mm yr−1 | 0.26 mm yr−1 |
p value | 0.06 * | 0.03 ** | 0.06 * | 0.02 ** | 0.24 | 0.15 |
Significant pixels | 51% | 66% | 40% | 70% | 20% | 28% |
NDVI | ET | |||||
---|---|---|---|---|---|---|
Land Cover Types | Entire Period | Wet Period | Dry Period | Entire Period | Wet Period | Dry Period |
Bareland | 0.42 | 0.34 | 0.36 | 0.01 ** | 0.03 ** | 0.38 |
Wetlands | 0.3 | 0.33 | 0.32 | 0.21 | 0.33 | 0.44 |
Cordillera Occ. | 0.24 | 0.28 | 0.01 ** | 0.36 | 0.32 | 0.24 |
Cordillera Orient. | 0.03 ** | 0.06 * | 0.00 ** | 0.03 ** | 0.26 | 0.36 |
Autochthonous Flora | 0.01 ** | 0.16 | 0.03 ** | 0.04 ** | 0.09 * | 0.21 |
Northern Crops | 0.14 | 0.09 * | 0.22 | 0.11 | 0.18 | 0.34 |
Central Crops | 0.00 ** | 0.00 ** | 0.08 * | 0.00 ** | 0.02 ** | 0.48 |
Southern Crops | 0.00 ** | 0.00 ** | 0.00 ** | 0.02 ** | 0.02 ** | 0.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Batlló, J.; Martí-Cardona, B.; Pillco-Zolá, R. Mapping Evapotranspiration, Vegetation and Precipitation Trends in the Catchment of the Shrinking Lake Poopó. Remote Sens. 2020, 12, 73. https://doi.org/10.3390/rs12010073
Torres-Batlló J, Martí-Cardona B, Pillco-Zolá R. Mapping Evapotranspiration, Vegetation and Precipitation Trends in the Catchment of the Shrinking Lake Poopó. Remote Sensing. 2020; 12(1):73. https://doi.org/10.3390/rs12010073
Chicago/Turabian StyleTorres-Batlló, Juan, Belén Martí-Cardona, and Ramiro Pillco-Zolá. 2020. "Mapping Evapotranspiration, Vegetation and Precipitation Trends in the Catchment of the Shrinking Lake Poopó" Remote Sensing 12, no. 1: 73. https://doi.org/10.3390/rs12010073
APA StyleTorres-Batlló, J., Martí-Cardona, B., & Pillco-Zolá, R. (2020). Mapping Evapotranspiration, Vegetation and Precipitation Trends in the Catchment of the Shrinking Lake Poopó. Remote Sensing, 12(1), 73. https://doi.org/10.3390/rs12010073