Exploring the Spatial Characteristics of Typhoon-Induced Vegetation Damages in the Southeast Coastal Area of China from 2000 to 2018
Abstract
:1. Introduction
2. Study Area and Data
2.1. The Study Area
2.2. Data
2.2.1. The Selected Typhoons
2.2.2. Remote Sensing Data
2.2.3. Land Cover Data
2.2.4. DEM
3. Methodology
3.1. Disaster Vegetation Damage Index (DVDI)
3.2. DNDVI and DEVI
3.3. The Relative Aspect to Typhoon Path
4. Results
4.1. The Comparison of DVDI, DEVI and DNDVI Results
4.2. The Spatial Characteristics of Historical Landfalling Typhoons in SCAC
4.2.1. The Accumulated DVDIs of 28 Selected Typhoons
4.2.2. The accumulated DVDIs of Four Typhoon Groups
4.2.3. Vegetation Damages Over Different Land Covers
4.2.4. Influence of Topography on Vegetation Damages by Typhoons
4.2.5. Influence of Relative Aspect on Vegetation Damages by Typhoons
5. Discussion
6. Conclusions
- DVDI is a more effective index for evaluating VD caused by typhoons.
- The Pearl River Delta, with elevation almost less than 600 m, is the most severe VD region. The severe VD regions for four typhoon groups have significant spatial correlation with landing locations.
- Forests are ranked first in terms of damaged areas by typhoon in every year, followed by sparse forests, while the percentage of damaged area for the land cover type is very similar.
- Topography has no influence on VD by a single typhoon event, and RA has no correlation with VD per typhoon in SCAC.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- China Meteorological Station, “Typhoon Network”. Available online: http://typhoon.nmc.cn/web.html (accessed on 9 November 2018).
- SOHU Network. Available online: http://www.sohu.com/a/254729500_100160593 (accessed on 19 September 2018).
- Shenzhen Government. Available online: http://www.sz.gov.cn/szemo/kpxj/dxal/201402/t20140210_2310464.htm (accessed on 10 February 2014).
- Rossi, E.; Rogan, J.; Schneider, L. Mapping forest damage in northern Nicaragua after Hurricane Felix 2007 using MODIS enhanced vegetation index. GIScience Remote Sens. 2013, 50, 385–399. [Google Scholar] [CrossRef]
- Wang, F.G.; Eurico, D.S. Potential of MODIS EVI in Identifying Hurricane Disturbance to Coastal Vegetation in the Northern Gulf of Mexico. Remote Sens. 2010, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.G.; Smith, R.B. The Impact of Hurricane Maria on the Vegetation of Dominica and Puerto Rico Using Multispectral Remote Sensing. Remote Sens. 2018, 6, 827. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Jiang, H.; Wang, X. Remote-sensing assessment of forest damage by typhoon Saomai and its related factors at landscape scale. Int. J. Remote Sens. 2013, 34, 7874–7886. [Google Scholar] [CrossRef]
- Rodgers, J.C.; Murrah, A.W.; Cooke, W.H. The Impact of Hurricane Katrina on the Coastal Vegetation of the Weeks Bay Reserve, Alabama form NDVI data. Estuaries Coasts 2009, 32, 496–507. [Google Scholar] [CrossRef]
- Allevato, E.; Saulino, L.; Cesarano, G.; Chirico, G.B.; D’Urso, G.; Bolognesi, S.F.; Rita, A.; Rossi, S.; Saracino, A.; Bonanomi, G. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens. Environ. 2019, 225, 431–440. [Google Scholar] [CrossRef]
- Tsai, F.; Hwang, J.H.; Chen, L.C.; Lin, T.H. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2179–2190. [Google Scholar] [CrossRef] [Green Version]
- Yunus, A.P.; Fan, X.M.; Tang, X.L.; Jie, D.; Xu, Q.; Huang, R.Q. Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sens. Environ. 2020, 236, 1–11. [Google Scholar] [CrossRef]
- Di, L.P.; Yu, E.; Shrestha, R.; Lin, L. DVDI: A New Remotely Sensed Index for Measuring Vegetation Damage Caused by Natural Disasters. In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 9067–9069. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coltin, B.; McMichael, S.; Smith, T.; Fong, T. Automatic boosted flood mapping from satellite data. Int. J. Remote Sens. 2016, 37, 993–1015. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Collect Earth, United Nations Food and Agriculture Organization. Available online: http://www.openforis.org/tools/collect-earth.html (accessed on 11 July 2016).
- Lu, L.Z.; Hang, D.W.; Di, L.P. Threshold Model for detecting Transparent Plastic mulched Landcover Using MODIS Time Series Data: A case study in southern Xinjiang, China. J. Appl. Remote Sens. 2015, 9, 097094-1–097094-14. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Tang, G.P.; Gu, H.; Liu, Y.L.; Yang, M.Z.; Sun, L. The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001–2013 based on MODIS data. Sci. Total Environ. 2019, 653, 536–546. [Google Scholar] [CrossRef]
- Brennan, M.J.; Knabb, R.D.; Mainelli, M.; Kimberlain, T.B. Atlantic Hurricane Season of 2007. Mon. Weather Rev. 2009, 12, 4061–4088. [Google Scholar] [CrossRef]
- Huete, R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- ESRI. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/aspect.htm (accessed on 5 May 2020).
No. | ID | Name | Scale of Landfall Wind Speed | Time | Group | Correlation Coefficient (R) | Significance Level | Ratio (%) |
---|---|---|---|---|---|---|---|---|
1 | 200013 | Maria | 10 | 2000.8.29–9.2 | Group 2 | 0.33 | 0.39 | 0.54 |
2 | 200104 | Utor | 11 | 2001.7.1–7.7 | Group 2 | −0.97 | 0.00 | 0.33 |
3 | 200107 | Yutu | 12 | 2001.7.22–7.26 | Group 4 | 0.77 | 0.01 | 0.77 |
4 | 200212 | Kammuri | 10 | 2002.8.1–8.6 | Group 3 | −0.92 | 0.00 | 2.87 |
5 | 200214 | Vongfong | 11 | 2002.8.15–8.20 | Group 4 | −0.97 | 0.00 | 0.00 |
6 | 200308 | Imbudo | 14 | 2003.7.15–7.25 | Group 4 | 0.90 | 0.00 | 0.88 |
7 | 200313 | Dujuan | 12 | 2003.8.28–9.3 | Group 2 | 0.14 | 0.69 | 0.5 |
8 | 200510 | Sanvu | 11 | 2005.8.9–8.15 | Group 3 | −0.80 | 0.01 | 2.49 |
9 | 200606 | Prapiroon | 12 | 2006.7.28–8.5 | Group 4 | 0.89 | 0.00 | 2.91 |
10 | 200812 | Nuri | 12 | 2008.8.17–8.23 | Group 2 | 0.92 | 0.00 | 0.31 |
11 | 200814 | Hagupit | 15 | 2008.9.17–9.25 | Group 4 | 0.91 | 0.00 | 1.10 |
12 | 200906 | Molave | 13 | 2009.7.15–7.19 | Group 2 | −0.59 | 0.09 | 0.00 |
13 | 200915 | Koppu | 12 | 2009.9.12–9.15 | Group 2 | 0.72 | 0.03 | 0.00 |
14 | 201003 | Chanthu | 12 | 2010.7.19–7.23 | Group 4 | 0.70 | 0.03 | 0.00 |
15 | 201011 | Fanapi | 12 | 2010.9.15–9.21 | Group 3 | −0.93 | 0.00 | 0.00 |
16 | 201208 | Vicente | 13 | 2012.7.21–7.25 | Group 2 | 0.79 | 0.01 | 0.00 |
17 | 201213 | Kai-tak | 12 | 2012.8.13–8.18 | Group 1 | 0.96 | 0.00 | 0.00 |
18 | 201311 | Utor | 14 | 2013.8.10–8.16 | Group 4 | −0.93 | 0.00 | 0.00 |
19 | 201319 | Usagi | 14 | 2013.9.17–9.23 | Group 3 | −0.97 | 0.00 | 0 |
20 | 201409 | Rammasun | 17 | 2014.7.12–7.20 | Group 1 | −0.15 | 0.70 | 0 |
21 | 201415 | Kalmaegi | 13 | 2014.9.12–9.17 | Group 1 | -0.14 | 0.72 | 0 |
22 | 201510 | Linfa | 12 | 2015.7.2–7.10 | Group 3 | 0.85 | 0.00 | 0 |
23 | 201522 | Mujigea | 15 | 2015.10.2–10.5 | Group 1 | −0.95 | 0.00 | 0 |
24 | 201604 | Nida | 14 | 2016.7.30–8.3 | Group 2 | −0.99 | 0.00 | 0.19 |
25 | 201622 | Haima | 14 | 2016.10.15–10.22 | Group 3 | 0.81 | 0.01 | 0 |
26 | 201713 | Hato | 14 | 2017.8.20–8.24 | Group 2 | 0.97 | 0.00 | 0 |
27 | 201714 | Pakhar | 12 | 2017.8.25–8.28 | Group 2 | 0.97 | 0.00 | 0 |
28 | 201822 | Mangkhut | 14 | 2018.9.7–9.17 | Group 2 | −0.94 | 0.00 | 0 |
Land Cover Types in this Study | Percentages of Area in SCAC in 2016 | MODIS Land Cover Types of UMD Scheme |
---|---|---|
Forests | 45.23% | Evergreen Needleleaf and Broadleaf Forests, Deciduous Broadleaf Forests, Mixed Forests |
Sparse Forests | 35.83% | Woody Savannas |
Croplands | 12.27% | Croplands, Cropland/Natural Vegetation Mosaics |
Impervious Lands | 3.78% | Urban and Built-up Lands |
Grasslands | 1.22% | Grasslands |
Wetlands | 0.81% | Permanent Wetlands |
Water Bodies | 0.80% | Water Bodies |
Barelands | 0.06% | Non-Vegetated Lands |
Typhoon | Group | DVDI | DNDVI | DEVI | |||
---|---|---|---|---|---|---|---|
R | SIG | R | SIG | R | SIG | ||
Vongfong | Group 4 | −0.883 | 0.000 | 0.773 | 0.000 | 0.251 | 0.036 |
Mugigea | Group 1 | −0.971 | 0.000 | −0.579 | 0.000 | −0.606 | 0.000 |
Usagi | Group 3 | −0.544 | 0.000 | 0.010 | 0.932 | −0.628 | 0.000 |
Mangkhut | Group 3 | −0.091 | 0.455 | −0.627 | 0.000 | −0.670 | 0.000 |
Utor | Group 2 | −0.882 | 0.000 | −0.676 | 0.000 | −0.682 | 0.000 |
Dujuan | Group 2 | −0.865 | 0.000 | −0.748 | 0.000 | −0.525 | 0.000 |
Nuri | Group 2 | −0.232 | 0.054 | −0.412 | 0.000 | −0.170 | 0.159 |
Kai-tak | Group 1 | −0.298 | 0.012 | −0.558 | 0.000 | 0.030 | 0.804 |
Rammasun | Group 1 | −0.787 | 0.000 | 0.182 | 0.131 | −0.588 | 0.000 |
Kalmaegi | Group 1 | −0.862 | 0.000 | 0.747 | 0.000 | 0.961 | 0.000 |
Sanvu | Group 3 | −0.809 | 0.000 | −0.637 | 0.000 | 0.342 | 0.004 |
Prapiroon | Group 4 | −0.212 | 0.078 | 0.456 | 0.000 | −0.177 | 0.142 |
Imbudo | Group 4 | −0.370 | 0.002 | 0.569 | 0.000 | 0.956 | 0.000 |
Utor | Group 4 | −0.864 | 0.000 | 0.321 | 0.007 | 0.285 | 0.017 |
Elevation Level | Area Percentage | Elevation Level | Area Percentage |
---|---|---|---|
<200 | 47.78% | 1200–1400 | 0.94% |
200–400 | 22.65% | 1400–1600 | 0.37% |
400–600 | 13.16% | 1600–1800 | 0.10% |
600–800 | 7.73% | 1800–2000 | 0.01% |
800–1000 | 4.97% | 2000–2200 | 0.00% |
1000–1200 | 2.29% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Wu, C.; Di, L. Exploring the Spatial Characteristics of Typhoon-Induced Vegetation Damages in the Southeast Coastal Area of China from 2000 to 2018. Remote Sens. 2020, 12, 1692. https://doi.org/10.3390/rs12101692
Lu L, Wu C, Di L. Exploring the Spatial Characteristics of Typhoon-Induced Vegetation Damages in the Southeast Coastal Area of China from 2000 to 2018. Remote Sensing. 2020; 12(10):1692. https://doi.org/10.3390/rs12101692
Chicago/Turabian StyleLu, Lizhen, Chuyi Wu, and Liping Di. 2020. "Exploring the Spatial Characteristics of Typhoon-Induced Vegetation Damages in the Southeast Coastal Area of China from 2000 to 2018" Remote Sensing 12, no. 10: 1692. https://doi.org/10.3390/rs12101692
APA StyleLu, L., Wu, C., & Di, L. (2020). Exploring the Spatial Characteristics of Typhoon-Induced Vegetation Damages in the Southeast Coastal Area of China from 2000 to 2018. Remote Sensing, 12(10), 1692. https://doi.org/10.3390/rs12101692