FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space
Abstract
:1. Introduction
1.1. Current Status of Flux Estimates
1.2. Developments Necessary for Significant Progress
2. Measuring Turbulent Heat and Moisture Surface Fluxes from Space
2.1. FluxSat
2.2. SST and Wind Speed from Passive Microwave Radiometers
2.3. Near-Surface Air Temperature and Humidity from a “Hyperspectral” Sounder
2.4. Calculating Fluxes
3. Implications for New Science
3.1. How Do Unresolved Spatial Gradients in Latent and Sensible Heat Fluxes Affect Weather?
3.2. How Well Do Existing Operational Numerical Weather Prediction Models Estimate Gradients in Turbulent Heat and Moisture Fluxes?
3.3. How Well Do Existing Flux Products Estimate Turbulent Heat and Moisture Fluxes in High-Gradient Regions?
4. Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frankignoul, C.; Müller, P.; Zorita, E. A Simple Model of the Decadal Response of the Ocean to Stochastic Wind Forcing. J. Phys. Oceanogr. 1997, 27, 1533–1546. [Google Scholar] [CrossRef]
- Barsugli, J.J.; Battisti, D.S. The Basic Effects of Atmosphere–Ocean Thermal Coupling on Midlatitude Variability. J. Atmos. Sci. 1998, 55, 477–493. [Google Scholar] [CrossRef]
- Ciasto, L.M.; Thompson, D.W.J. North Atlantic Atmosphere–Ocean Interaction on Intraseasonal Time Scales. J. Clim. 2004, 17, 1617–1621. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.; deSzoeke, S.P.; Xie, S.P.; O’Neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Xie, S.-P. Satellite observations of cool ocean-atmosphere interaction. Bull. Am. Meteorol. Soc. 2004, 85, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Xie, S.-P. Coupled ocean-atmosphere interactions at oceanic mesoscales. Oceanography 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Smirnov, D.; Newman, M.; Alexander, M.A.; Kwon, Y.-O.; Frankignoul, C. Investigating the Local Atmospheric Response to a Realistic Shift in the Oyashio Sea Surface Temperature Front. J. Clim. 2014, 28, 1126–1147. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.; Czaja, A.; Kwon, Y.-O. The impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea interaction. Geophys. Res. Lett. 2017, 44, 3246–3254. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.; Czaja, A.; Minobe, S.; Kuwano-Yoshida, A. The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett. 2016, 43, 2299–2306. [Google Scholar] [CrossRef] [Green Version]
- Hirata, H.; Kawamura, R.; Yoshioka, M.K.; Nonaka, M.; Tsuboki, K. Key Role of the Kuroshio Current in the Formation of Frontal Structure of an Extratropical Cyclone Associated with Heavy Precipitation. J. Geophys. Res. Atmos. 2019, 124, 6143–6156. [Google Scholar] [CrossRef]
- Czaja, A.; Frankignoul, C.; Minobe, S.; Vannière, B. Simulating the Midlatitude Atmospheric Circulation: What Might We Gain From High-Resolution Modeling of Air-Sea Interactions? Curr. Clim. Chang. Rep. 2019, 5, 390–406. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, C.H.; Czaja, A. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Q. J. R. Meteorol. Soc. 2015, 141, 52–66. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Okumura, Y.; Xie, S.-P.; Numaguti, A.; Tanimoto, Y. Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys. Res. Lett. 2001, 28, 1507–1510. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P. The Shape of Continents, Air-Sea Interaction, and the Rising Branch of the Hadley Circulation. Hadley Circ. Present Past Future 2004, 121–152. [Google Scholar] [CrossRef]
- Cayan, D.R. Latent and Sensible Heat Flux Anomalies over the Northern Oceans: Driving the Sea Surface Temperature. J. Phys. Oceanogr. 1992, 22, 859–881. [Google Scholar] [CrossRef]
- Seo, H. Distinct Influence of Air–Sea Interactions Mediated by Mesoscale Sea Surface Temperature and Surface Current in the Arabian Sea. J. Clim. 2017. [Google Scholar] [CrossRef] [Green Version]
- Wentz, F.J.; Smith, D.K. A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res. Ocean. 1999, 104, 11499–11514. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Marshall, J.; Ferrari, R.; Forget, G.; Maze, G.; Andersson, A.; Bates, N.; Dewar, W.; Doney, S.; Fratantoni, D.; Joyce, T.; et al. The Climode Field Campaign: Observing the Cycle of Convection and Restratification over the Gulf Stream. Bull. Am. Meteorol. Soc. 2009, 90, 1337–1350. [Google Scholar] [CrossRef]
- Weller, R.A.; Bigorre, S.P.; Lord, J.; Ware, J.D.; Edson, J.B. A Surface Mooring for Air–Sea Interaction Research in the Gulf Stream. Part I: Mooring Design and Instrumentation. J. Atmos. Ocean. Technol. 2012, 29, 1363–1376. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Chelton, D.B.; Esbensen, S.K.; Thum, N.; O’Neill, L.W. Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Clim. 2009, 22, 146–164. [Google Scholar] [CrossRef]
- Song, Q.; Chelton, D.B.; Esbensen, S.K.; Brown, A.R. An Investigation of the Stability Dependence of SST-Induced Vertical Mixing over the Ocean in the Operational Met Office Model. J. Clim. 2016, 30, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Jing, Z.; Wu, L. An Assessment of Representation of Oceanic Mesoscale Eddy-Atmosphere Interaction in the Current Generation of General Circulation Models and Reanalyses. Geophys. Res. Lett. 2018, 45, 11856–11865. [Google Scholar] [CrossRef]
- Bharti, V.; Fairall, C.W.; Blomquist, B.W.; Huang, Y.; Protat, A.; Sullivan, P.P.; Siems, S.T.; Manton, M.J. Air-Sea Heat and Momentum Fluxes in the Southern Ocean. J. Geophys. Res. Atmos. 2019, 124, 12426–12443. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S.; Aono, K.; Fukui, S. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio–Oyashio Confluence region. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xu, H.; Dong, C.; Lin, P.; Liu, Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos. 2015, 120, 6313–6330. [Google Scholar] [CrossRef]
- Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J.-S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns? Sci. Rep. 2015, 5, 17785. [Google Scholar] [CrossRef] [Green Version]
- Steinweg-Woods, J.M. A Lagrangian Analysis of Midlatitude Air-Sea Interaction Associated with Mesoscale Oceanic Eddies. Ph.D. Thesis, Texas A & M University, 2016. Available online: http://hdl.handle.net/1969.1/157015 (accessed on 28 May 2020).
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608. [Google Scholar] [CrossRef]
- Siqueira, L.; Kirtman, B.P. Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett. 2016, 43, 3964–3972. [Google Scholar] [CrossRef]
- Liman, J.; Schröder, M.; Fennig, K.; Andersson, A.; Hollmann, R. Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters. Atmos. Meas. Tech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.; Fennig, K.; Klepp, C.; Bakan, S.; Graßl, H.; Schulz, J. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data 2010, 2, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Clayson, C.A.; Brown, J. NOAA Climate Data Record Ocean Surface Bundle (OSB) Climate Data Record (CDR) of Ocean Heat Fluxes, Version 2. Clim. Algorithm Theor. Basis Doc. C-ATBD Asheville NC NOAA Natl. Cent. Environ. Inf. Doi 2016, 10, V59K4885. [Google Scholar]
- Bentamy, A.; Grodsky, S.A.; Katsaros, K.; Mestas-Nuñez, A.M.; Blanke, B.; Desbiolles, F. Improvement in air–sea flux estimates derived from satellite observations. Int. J. Remote Sens. 2013, 34, 5243–5261. [Google Scholar] [CrossRef] [Green Version]
- Bentamy, A.; Grodsky, S.A.; Elyouncha, A.; Chapron, B.; Desbiolles, F. Homogenization of scatterometer wind retrievals. Int. J. Climatol. 2017, 37, 870–889. [Google Scholar] [CrossRef] [Green Version]
- Tomita, H.; Hihara, T.; Kako, S.; Kubota, M.; Kutsuwada, K. An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr. 2019, 75, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; et al. Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ. 2017, 201, 196–218. [Google Scholar] [CrossRef] [Green Version]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Robertson, F.; Roberts, J.B.; Bosilovich, M.G.; Bentamy, A.; Clayson, C.A.; Fennig, K.; Schröder, M.; Tomita, H.; Compo, G.P.; Gutenstein, M.; et al. Uncertainties in Ocean Latent Heat Flux Variations Over Recent Decades in Satellite-Based Estimates and Reduced Observation Reanalyses. J. Clim. in revision.
- Clayson, C.A.; Roberts, J.B. 2020: SeaFlux V3: A satellite based climate data record of ocean-atmosphere turbulent heat fluxes. in prepare.
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Parfitt, R.; Kwon, Y.-O. The modulation of Gulf Stream influence on the troposphere by the eddy-driven jet. J. Clim. 2020. [Google Scholar] [CrossRef] [Green Version]
- Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.W.; Farrar, J.T.; Gille, S.T.; et al. Air-Sea Fluxes With a Focus on Heat and Momentum. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.P.; Small, R.J.; Bryan, F.O.; Tomas, R.A.; Bishop, S.P.; Small, R.J.; Bryan, F.O.; Tomas, R.A. Scale Dependence of Midlatitude Air–Sea Interaction. J. Clim. 2017. [Google Scholar] [CrossRef]
- Hagos, S.; Foltz, G.R.; Zhang, C.; Thompson, E.; Seo, H.; Chen, S.; Capotondi, A.; Reed, K.A.; DeMott, C.; Protat, A. Atmospheric Convection and Air-Sea Interactions over the Tropical Oceans: Scientific Progress, Challenges and Opportunities. Bull. Am. Meteorol. Soc. 2019. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-46757-5. Available online: https://www.nap.edu/catalog/24938/thriving-on-our-changing-planet-a-decadal-strategy-for-earth (accessed on 28 May 2020).
- Misra, S.; Kocz, J.; Jarnot, R.; Brown, S.T.; Bendig, R.; Felten, C.; Johnson, J.T. Development of an On-Board Wide-Band Processor for Radio Frequency Interference Detection and Filtering. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3191–3203. [Google Scholar] [CrossRef]
- Brown, S.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Milligan, L.; Montes, O.; Padmanabhan, S.; Redick, R.; Russel, D.; Bach, V.; et al. The COWVR Mission: Demonstrating the capability of a new generation of small satellite weather sensors. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; IEEE: Big Sky, MT, USA, 2017; pp. 1–7. [Google Scholar]
- Padmanabhan, S.; Gaier, T.C.; Reising, S.C.; Lim, B.H.; Stachnik, R.; Jarnot, R.; Berg, W.; Kummerow, C.D.; Chandrasekar, V. Radiometer payload for the temporal experiment for storms and tropical systems technology demonstration mission. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1213–1215. [Google Scholar]
- Blackwell, W.J.; Braun, S.; Bennartz, R.; Velden, C.; DeMaria, M.; Atlas, R.; Dunion, J.; Marks, F.; Rogers, R.; Annane, B.; et al. An overview of the TROPICS NASA Earth Venture Mission. Q. J. R. Meteorol. Soc. 2018, 144, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Shi, H.; Wang, Z.; Yu, H.; Yin, X.; Liao, Q. Comparison of Wind Speeds from Spaceborne Microwave Radiometers with In Situ Observations and ECMWF Data over the Global Ocean. Remote Sens. 2018, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J.; Ricciardulli, L. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. Oceans 2014, 119, 6499–6522. [Google Scholar] [CrossRef]
- Gentemann, C.L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. 2014, 119, 2583–2598. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Toudal Pedersen, L.; Gentemann, C.L.; Alerskans, E.; Block, T.; Donlon, C. Optimal Estimation of Sea Surface Temperature from AMSR-E. Remote Sens. 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Wilheit, T.T.; Chang, A.T.C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the Scanning Multichannel Microwave Radiometer (SMMR). Radio Sci. 1980, 15, 525–544. [Google Scholar] [CrossRef]
- Shibata, A. Calibration of AMSR-E SST toward a Monitoring of Global Warming. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; Volume 5, pp. 3448–3449.
- Shibata, A. A wind speed retrieval algorithm by combining 6 and 10 GHz data from advanced microwave scanning radiometer: Wind speed inside hurricanes. J. Oceanogr. 2006, 62, 351–359. [Google Scholar] [CrossRef]
- Wentz, F.J.; Meissner, T. AMSR-E Ocean Algorithms; Supplement 1; Remote Sensing Systems: Santa Rosa, CA, USA, 2007; p. 6. [Google Scholar]
- Alerskans, E.; Høyer, J.L.; Gentemann, C.L.; Pedersen, L.T.; Nielsen-Englyst, P.; Donlon, C. Construction of a climate data record of sea surface temperature from passive microwave measurements. Remote Sens. Environ. 2020, 236, 111485. [Google Scholar] [CrossRef]
- Roberts, J.B.; Clayson, C.A.; Robertson, F.R. Improving Near-Surface Retrievals of Surface Humidity Over the Global Open Oceans From Passive Microwave Observations. Earth Space Sci. 2019, 6, 1220–1233. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.L.; Wick, G.A. Near-Surface Air Temperature Retrieval Derived from AMSU-A and Sea Surface Temperature Observations. J. Atmos. Ocean. Technol. 2010, 27, 1769–1776. [Google Scholar] [CrossRef] [Green Version]
- Mahfouf, J.-F.; Birman, C.; Aires, F.; Prigent, C.; Orlandi, E.; Milz, M. Information content on temperature and water vapour from a hyper-spectral microwave sensor. Q. J. R. Meteorol. Soc. 2015, 141, 3268–3284. [Google Scholar] [CrossRef]
- Tennant, G.; Hurd, D.; Kangas, V. The NWP contribution from the microwave sounder (MWS) on MetOp-Second Generation. In Proceedings of the 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Espoo, Finland, 11–14 April 2016; pp. 115–120. [Google Scholar]
- Blackwell, W.J.; Bickmeier, L.J.; Leslie, R.V.; Pieper, M.L.; Samra, J.E.; Surussavadee, C.; Upham, C.A. Hyperspectral Microwave Atmospheric Sounding. IEEE Trans. Geosci. Remote Sens. 2011, 49, 128–142. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Orlandi, E.; Milz, M.; Eriksson, P.; Crewell, S.; Lin, C.-C.; Kangas, V. Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case. J. Geophys. Res. Atmos. 2015, 120, 11334–11351. [Google Scholar] [CrossRef] [Green Version]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Colbo, K.; Weller, R.A. Accuracy of the IMET Sensor Package in the Subtropics. J. Atmos. Ocean. Technol. 2009, 26, 1867–1890. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Weller, R.A. Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005). Bull. Am. Meteorol. Soc. 2007. [Google Scholar] [CrossRef] [Green Version]
- Shaman, J.; Samelson, R.M.; Skyllingstad, E. Air–Sea Fluxes over the Gulf Stream Region: Atmospheric Controls and Trends. J. Clim. 2010, 23, 2651–2670. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.; Czaja, A. On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Q. J. R. Meteorol. Soc. 2016, 142, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Catto, J.L.; Pfahl, S. The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos. 2013, 118, 10791–10801. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.; Seo, H. A New Framework for Near-Surface Wind Convergence Over the Kuroshio Extension and Gulf Stream in Wintertime: The Role of Atmospheric Fronts. Geophys. Res. Lett. 2018, 45, 9909–9918. [Google Scholar] [CrossRef]
- Lee, R.W.; Woollings, T.J.; Hoskins, B.J.; Williams, K.D.; O’Reilly, C.H.; Masato, G. Impact of Gulf Stream SST biases on the global atmospheric circulation. Clim. Dyn. 2018, 51, 3369–3387. [Google Scholar] [CrossRef] [Green Version]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsletter; Shinfield Park: Reading, UK, 2016. Available online: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (accessed on 15 April 2020).
- Shi, Q.; Bourassa, M.A. Coupling Ocean Currents and Waves with Wind Stress over the Gulf Stream. Remote Sens. 2019, 11, 1476. [Google Scholar] [CrossRef] [Green Version]
- Clayson, C.A.; Bogdanoff, A.S. The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air–Sea Fluxes. J. Clim. 2012, 26, 2546–2556. [Google Scholar] [CrossRef]
- Ruppert, J.H.; Johnson, R.H. On the cumulus diurnal cycle over the tropical warm pool. J. Adv. Model. Earth Syst. 2016, 8, 669–690. [Google Scholar] [CrossRef] [Green Version]
- DeMott, C.A.; Benedict, J.J.; Klingaman, N.P.; Woolnough, S.J.; Randall, D.A. Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos. 2016, 121, 8350–8373. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; von Storch, J.-S.; Hertwig, E. Impact of SST diurnal cycle on ENSO asymmetry. Clim. Dyn. 2019, 52, 2399–2411. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.-P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Beaudoing, H.K.; L’Ecuyer, T.S.; Olson, W.S.; Famiglietti, J.S.; Houser, P.R.; Adler, R.; Bosilovich, M.G.; Clayson, C.A.; Chambers, D.; et al. The Observed State of the Water Cycle in the Early Twenty-First Century. J. Clim. 2015, 28, 8289–8318. [Google Scholar] [CrossRef]
- L’Ecuyer, T.S.; Beaudoing, H.K.; Rodell, M.; Olson, W.; Lin, B.; Kato, S.; Clayson, C.A.; Wood, E.; Sheffield, J.; Adler, R.; et al. The Observed State of the Energy Budget in the Early Twenty-First Century. J. Clim. 2015, 28, 8319–8346. [Google Scholar] [CrossRef] [Green Version]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O.; et al. The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.-L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; d’Ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Smith, P.J.; Fowler, A.M.; Lawless, A.S. Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere–ocean model. Tellus Dyn. Meteorol. Oceanogr. 2015, 67, 27025. [Google Scholar] [CrossRef] [Green Version]
- Penny, S.G.; Bach, E.; Bhargava, K.; Chang, C.-C.; Da, C.; Sun, L.; Yoshida, T. Strongly Coupled Data Assimilation in Multiscale Media: Experiments Using a Quasi-Geostrophic Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 1803–1829. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L. cgentemann/2020_FluxSat_MDPI_RemoteSensing: Initial_release (Version v1.0). Zenodo 2020. [Google Scholar] [CrossRef]
Flux Variable | Size (km × km) | |||
---|---|---|---|---|
Aqua AMSRE 1 | WindSAT | SSMI 2 | NOAA ATMS 3 | |
Tsea | 74 × 43 | 71 × 39 | --- | --- |
u | 27 × 16 | 27 × 16 | 69 × 43 | --- |
Tair | --- | --- | 50 × 40 | 32 (nadir) |
qair | --- | --- | 50 × 40 | 16 (nadir) |
Variable | Observational Random Error | Latent Flux Uncertainty (W m−2) | Sensible Flux Uncertainty (W m−2) | |||
---|---|---|---|---|---|---|
Current | FluxSat | Current | FluxSat | Current | FluxSat | |
qsea (g kg−1) | 0.47 1 | 0.4 | 6.8 | 6.1 | - | - |
qair (g kg−1) | 1.3 2 | 0.6 | 23.2 | 10.8 | - | - |
Tsea (K) | 0.5 3 | 0.6 | - | - | 5.1 | 4.6 |
Tair (K) | 1.6 4 | 0.7 | - | - | 14.6 | 7.2 |
u (m s−1) | 0.8 5 | 0.6 | 5.9 | 4.4 | 1.5 | 1.1 |
pressure (mb) | 5.0 | 5.0 | 0.5 | 0.5 | 0.1 | 0.1 |
total 6 | - | - | 24.9 | 13.2 | 15.5 | 8.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Farrar, J.T.; Bourassa, M.; Minnett, P.J.; Seo, H.; Gille, S.T.; et al. FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space. Remote Sens. 2020, 12, 1796. https://doi.org/10.3390/rs12111796
Gentemann CL, Clayson CA, Brown S, Lee T, Parfitt R, Farrar JT, Bourassa M, Minnett PJ, Seo H, Gille ST, et al. FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space. Remote Sensing. 2020; 12(11):1796. https://doi.org/10.3390/rs12111796
Chicago/Turabian StyleGentemann, Chelle L., Carol Anne Clayson, Shannon Brown, Tong Lee, Rhys Parfitt, J. Thomas Farrar, Mark Bourassa, Peter J. Minnett, Hyodae Seo, Sarah T. Gille, and et al. 2020. "FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space" Remote Sensing 12, no. 11: 1796. https://doi.org/10.3390/rs12111796
APA StyleGentemann, C. L., Clayson, C. A., Brown, S., Lee, T., Parfitt, R., Farrar, J. T., Bourassa, M., Minnett, P. J., Seo, H., Gille, S. T., & Zlotnicki, V. (2020). FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space. Remote Sensing, 12(11), 1796. https://doi.org/10.3390/rs12111796