Real-Time Estimation of Low Earth Orbit (LEO) Satellite Clock Based on Ground Tracking Stations
Abstract
:1. Introduction
2. Constellation and Observation Simulation
2.1. Constellation Design
2.2. Observation Simulation
3. Methods
3.1. LEO Satellite Clock Estimation
3.2. LEO-Augmented GNSS PPP
3.3. Data Processing Strategy
4. Analysis of Results
4.1. Analysis of LEO Satellite Clock
4.2. Analysis of LEO-Augmented GNSS PPP
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zumberge, J.; Heflin, M.; Jefferson, D.; Watkins, M.; Webb, F. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 8328. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, B.; Yuan, Y.; Li, M. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. J. Geod. 2018, 92, 1267–1283. [Google Scholar] [CrossRef]
- Cai, C.; Gao, Y. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut. 2013, 17, 223–236. [Google Scholar] [CrossRef]
- Aggrey, J.; Bisnath, S. Improving GNSS PPP convergence: The case of atmospheric-constrained, multi-GNSS PPP-AR. Sensors 2019, 19, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, C.; Gao, Y.; Pan, L.; Zhu, J. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv. Space Res. 2015, 56, 133–143. [Google Scholar] [CrossRef]
- Bisnath, S.; Gao, Y. Current state of precise point positioning and future prospects and limitations. In Observing Our Changing Earth; Sideris, M.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 133, pp. 615–623. [Google Scholar]
- De Selding, P.B. Signs of a Satellite Internet Gold Rush in Burst of ITU Filings. Available online: https://spacenews.com/signs-of-satellite-internet-gold-rush/ (accessed on 19 November 2018).
- Li, D.; Shen, X.; Li, D.; Li, S. On civil-military integrated space-based real-time information service system. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1501–1505. [Google Scholar]
- Xiaohong, Z.; Fujian, M. Review of the development of LEO navigation-augmented GNSS. Acta Geod. Cartogr. Sin. 2019, 48, 1073. [Google Scholar]
- De Selding, P.B. SpaceX To Build 4000 Broadband Satellites in Seattle. Available online: https://spacenews.com/spacex-opening-seattle-plant-to-build-4000-broadband-satellites/ (accessed on 23 October 2018).
- De Selding, P.B. Virgin, Qualcomm Invest in OneWeb Satellite Internet Venture. Available online: https://spacenews.com/virgin-qualcomm-invest-in-global-satellite-internet-plan/ (accessed on 28 January 2019).
- Magan, V. Samsung Exec Envisions LEO Constellation for Satellite Internet Connectivity. Available online: https://www.satellitetoday.com/telecom/2015/08/18/samsung-exec-envisions-leo-constellation-for-satellite-internet-connectivity/ (accessed on 8 June 2018).
- De Selding, P.B. Boeing Proposes Big Satellite Constellations in V- and C-bands. Available online: https://spacenews.com/boeing-proposes-big-satellite-constellations-in-v-and-c-bands/ (accessed on 21 April 2019).
- De Selding, P.B. Telesat: LEO Gives More User Bandwidth than GEO HTS. Available online: https://www.spaceintelreport.com/telesat-leo-gives-more-user-bandwidth-than-geo-hts/ (accessed on 15 June 2020).
- Reid, T.G.; Neish, A.M.; Walter, T.F.; Enge, P.K. Leveraging commercial broadband LEO constellations for navigation. In Proceedings of the ION GNSS 2016, Portland, OR, USA, 12–16 September 2016; pp. 2300–2314. [Google Scholar]
- Ke, M.; Lv, J.; Chang, J.; Dai, W.; Tong, K.; Zhu, M. Integrating GPS and LEO to accelerate convergence time of precise point positioning. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Li, X.; Ma, F.; Li, X.; Lv, H.; Bian, L.; Jiang, Z.; Zhang, X. LEO constellation-augmented multi-GNSS for rapid PPP convergence. J. Geod. 2019, 93, 749–764. [Google Scholar] [CrossRef]
- Ge, H.; Li, B.; Ge, M.; Zang, N.; Nie, L.; Shen, Y.; Schuh, H. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS). Remote Sens. 2018, 10, 984. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.; Ma, F.; Yuan, Y.; Zhang, K.; Zhou, F.; Zhang, X. Improved PPP ambiguity resolution with the assistance of multiple LEO constellations and signals. Remote Sens. 2019, 11, 408. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ge, H.; Ge, M.; Nie, L.; Shen, Y.; Schuh, H. LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services. Adv. Space Res. 2019, 63, 73–93. [Google Scholar] [CrossRef]
- Su, M.; Su, X.; Zhao, Q.; Liu, J. BeiDou augmented navigation from low earth orbit satellites. Sensors 2019, 19, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Zhang, Y. Design for LEO satellite navigation augmentation system based on integrated communication and navigation. In Proceedings of the 11th China Satellite Navigation Conference (CSNC), Chengdu, China, 23 May 2020; p. 5. [Google Scholar]
- Walker, J.G. Satellite constellations. J. Br. Interplanet. Soc. 1984, 37, 559–572. [Google Scholar]
- DOD SPS. Global Positioning System Standard Positioning Service Performance Standard, 4th ed.; Department of Defense USA: Washington, DC, USA, 2008. [Google Scholar]
- China Satellite Navigation Office (CSNO). BeiDou Navigation Satellite System Signal in Space Interface Control Document: Open Service Signal, Version 2.1; China Satellite Navigation Office: Beijing, China, 2016. [Google Scholar]
- Schmid, R.; Dach, R.; Collilieux, X.; Jäggi, A.; Schmitz, M.; Dilssner, F. Absolute IGS antenna phase center model igs08. atx: Status and potential improvements. J. Geod. 2016, 90, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. GNSS biases, their effect and calibration. In Proceedings of the IGS Workshop, Miami Beach, FL, USA, 2–6 June 2008. [Google Scholar]
- Ge, M.; Douša, J.; Gendt, G.; Wickert, J. A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. Gps Solut. 2012, 16, 9–17. [Google Scholar] [CrossRef]
- Enge, P.; Ferrell, B.; Bennet, J.; Whelan, D.; Gutt, G.; Lawrence, D. Orbital diversity for satellite navigation. In Proceedings of the ION GNSS 2012, Nashville, TN, USA, 17–21 September 2012; pp. 3834–3845. [Google Scholar]
System | Satellite Number | Constellation | Inclination [deg] | Altitude [km] |
---|---|---|---|---|
LEO A | 132 | Walker (132/12/1) | 50 | 800 |
LEO B | 36 | Walker (36/3/0) | 85 | 820 |
GPS | 24 | Six planes | 56 | 20,180 |
BDS MEO | 24 | Walker (24/3/1) | 55 | 21,528 |
BDS GEO | 3 | Placed at 80° E, 110.5° E, 140° E | 0 | 35,786 |
BDS IGSO | 3 | RAAN of 118° E | 55 | 35,786 |
Items | Description |
---|---|
Satellites | 168 LEO + 24 GPS + 30 BDS |
Estimator | LSQ in sequential mode |
Observations | Undifferenced code and phase observations |
Signal selection | GPS: L1/L2; BDS: B1C/B2a; LEO: L1/L2 |
Elevation mask | 7° |
Sampling interval | 5 s for PCE and 1 s for PPP |
Weighting | Priori precision 5 mm for phase and 1.0 m for code; Elevation-dependent weight |
Relativistic effect | IERS Conventions 2010 |
Tropospheric delay | Initial model (Saastamoinen [29] and GMF [30]) and random-walk process |
Ionospheric delay | IF combination |
Station displacement | Solid Earth tide, pole tide, ocean loading tide |
Satellite antenna phase center | PCO and PCV corrected for GPS and BDS using igs08.atx [28]; none for LEO |
Receiver antenna phase center | PCO and PCV corrected for GPS and only PCO corrected for BDS using igs08.atx [28]; none for LEO |
Phase wind-up | Corrected |
ISB | Estimated as constant |
Station coordinate | Fixed for PCE; Estimated in static mode for PPP |
Satellite orbit | Fixed with the simulated precise orbit products from STK software |
Satellite clocks | Estimated with white noise for PCE; Fixed with the products from PCE for LEO PPP; Fixed with the simulated precise clock products for GPS and BDS PPP |
Receiver clocks | Estimated with white noise |
Ambiguities | Constant for each arc |
System | Convergence Times [min] | RMS [ns] | STD [ns] |
---|---|---|---|
LEO | 2.86 | 0.71 | 0.39 |
GPS | 31.21 | 0.31 | 0.13 |
System | Station Numbers | Satellite TDOP | Delta TDOP |
---|---|---|---|
LEO | 7.19 | 19.13 | 0.10 |
GPS | 11.46 | 1294.70 | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Liu, H.; Qian, C.; Shu, B.; Zhang, L.; Xu, X.; Zhang, Y.; Lou, Y. Real-Time Estimation of Low Earth Orbit (LEO) Satellite Clock Based on Ground Tracking Stations. Remote Sens. 2020, 12, 2050. https://doi.org/10.3390/rs12122050
Yang Z, Liu H, Qian C, Shu B, Zhang L, Xu X, Zhang Y, Lou Y. Real-Time Estimation of Low Earth Orbit (LEO) Satellite Clock Based on Ground Tracking Stations. Remote Sensing. 2020; 12(12):2050. https://doi.org/10.3390/rs12122050
Chicago/Turabian StyleYang, Zhixin, Hui Liu, Chuang Qian, Bao Shu, Linjie Zhang, Xintong Xu, Yi Zhang, and Yidong Lou. 2020. "Real-Time Estimation of Low Earth Orbit (LEO) Satellite Clock Based on Ground Tracking Stations" Remote Sensing 12, no. 12: 2050. https://doi.org/10.3390/rs12122050
APA StyleYang, Z., Liu, H., Qian, C., Shu, B., Zhang, L., Xu, X., Zhang, Y., & Lou, Y. (2020). Real-Time Estimation of Low Earth Orbit (LEO) Satellite Clock Based on Ground Tracking Stations. Remote Sensing, 12(12), 2050. https://doi.org/10.3390/rs12122050