Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data and Processing
3.2. Lake Ice Extraction
3.3. TheLake Ice Phenology Extraction
4. Results
4.1. Temporal Characteristics of Ice Phenology in Qinghai Lake
4.2. Verify the Accuracy of Lake Ice Phenology Extracted from AVHRR Data
4.3. Changes in Ice Phenology of Qinghai Lake
4.4. Spatial Patterns in the Freeze–thaw Cycle of Qinghai Lake
4.5. Impact of Climate Change on Lake Ice Phenology of Qinghai Lake
5. Discussion and Expectation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kropáček, J.; Maussion, F.; Chen, F.; Hoerz, S.; Hochschild, V. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 2013, 7, 287–301. [Google Scholar] [CrossRef] [Green Version]
- GCOS-107. Systematic Observation Requirements for Satellite-Based Products for Climate; GCOS, WMO/TD; WMO: Geneva, Switzerland, 2006; Volume 1338, p. 103. [Google Scholar]
- Brown, L.C.; Duguay, C.R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 2010, 34, 671–704. [Google Scholar] [CrossRef]
- Blenckner, T.; Jarvinen, M.; Weyhenmeyer, G.A. Atmospheric circulation and its impact on ice phenology in Scandinavia. Boreal Environ. Res. 2004, 9, 371–380. [Google Scholar]
- Weyhenmeyer, G.A.; Livingstone, D.M.; Meili, M.; Jensen, O.; Benson, B.; Magnuson, J.J. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Chang. Biol. 2011, 17, 268–275. [Google Scholar] [CrossRef]
- De, J.R.; Kamenik, C. Validation of a chrysophyte stomatocyst-based cold-season climate reconstruction from high-alpine Lake Silvaplana Switzerland. J. Quat. Sci. 2011, 26, 268–275. [Google Scholar]
- Oreilly, C.; Sharma, S.; Gray, D.; Hampton, S.E. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2016, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, J.J.; Roberton, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Kimball, J.S.; Duguay, C.; Kim, Y.; Watts, J.D. Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere 2017, 11, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.Q.; Tao, A.Q.; Jin, X. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013. J. Appl. Remote Sens. 2013, 7, 12. [Google Scholar] [CrossRef]
- Gou, P.; Ye, Q.h.; Wei, Q.F. Lake ice change at the Namco Lake on the Tibetan Plateau during 2000–2013 and influencing factors. Prog. Geogr. 2015, 34, 1241–1249. [Google Scholar]
- Yao, X.J.; Li, L.; Zhao, J.; Sun, M.P.; Li, J. Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011. J. Geogr. Sci. 2016, 26, 70–82. [Google Scholar] [CrossRef]
- Wei, Q.F.; Ye, Q.H. Review of lake ice monitoring by remote sensing. Prog. Geog. 2010, 29, 803–810. [Google Scholar]
- Rouse, W.R.; Oswald, C.J.; Binyamin, J.; Spence, C.; Schertzer, W.H.; Blanken, P.D.; Bussières, N.; Duguay, C.R. The role of northern lakes in a regional energy balance. J. Hydrometeorol. 2005, 6, 291–305. [Google Scholar] [CrossRef]
- Laugaste, R.; Haberman, J.; Blank, K. Cool winters versus mild winters: Effects on spring plankton in Lake Peipsi. Est. J. Ecol. 2010, 59, 163–183. [Google Scholar] [CrossRef] [Green Version]
- Eichenlaub, V.L. Lake effect snowfall to the lee of the great lakes: Its role in Michigan. Bull. Am. Meteorol. Soc. 1970, 51, 403–473. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D. Analysis of climate change impacts on LIP in Canada using the historical satellite data record. Remote Sens. Environ. 2007, 106, 492–507. [Google Scholar] [CrossRef]
- Wang, J.; Duguay, C.R.; Clausi, D.A. Semi-automated classification of Lake Ice Cover using dual polarization RADARSAT-2 imagery. Remote Sens. 2018, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Tom, M.; Aguilar, R.; Imhof, P.; Leinss, S.; Baltsavias, E.; Schindler, K. Lake Ice Detection from Sentinel-1 SAR with Deep Learning. arXiv 2020, arXiv:2002.07040. [Google Scholar]
- Tom, M.; Kälin, U.; Sütterlin, M.; Baltsavias, E.; Schindler, K. Lake ice detection in low-resolution optical satellite images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci. 2018, IV, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Natalia, Z.; Anton, K.; Stefan, M.; Stein, S.; Mohamed, B. Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images. Cryosphere 2017, 11, 33–46. [Google Scholar]
- Hoekstra, M.; Jiang, M.; Clausi, D.A.; Duguay, D. Lake Ice-Water Classification of RADARSAT-2 Images by Integrating IRGS Segmentation with Pixel-Based Random Forest Labeling. Remote Sens. 2020, 12, 1425. [Google Scholar] [CrossRef]
- Engram, M.; Anthony, K.W.; Meyer, F.J.; Grosse, G. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska. Cryosphere 2013, 7, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.B.; Huang, H.J.; Su, Q.; Yan, L.W.; Liu, Y.X.; Xu, X.L. An Arctic sea ice thickness variability revealed from satellite altimetric measurements. Acta Oceanol. Sin. 2014, 33, 134–140. [Google Scholar] [CrossRef]
- Howell, S.E.; Brown, L.C.; Kang, K.K.; Duguay, C.R. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuickSCAT: 2000–2006. Remote Sens. Environ. 2009, 113, 816–834. [Google Scholar] [CrossRef]
- Peter, D.; Rouzbeh, N.; Peter, R.; Key, G.R. Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES imager. Remote Sens. 2016, 8, 1015. [Google Scholar]
- Dibike, Y.; Prowse, T.; Bonsal, B.; Rham, D.L.; Saloranta, T. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. Hydrol. Process. 2012, 32, 695–709. [Google Scholar] [CrossRef]
- Fan, J.H.; Shi, Y.F. Impact of climate change on the water regime of Qinghai Lake—Ⅰ. Analysis of the past 30 years. Sci. Sin. 1992, 22, 537–542. [Google Scholar]
- Dong, H.M.; Song, Y.G. Shrinkage history of Lake Qinghai and causes during the last 52 years. In Proceedings of the International Symposium on Water Resource & Environmental Protection (ISWREP), Xi’an, China, 20–22 May 2011; pp. 446–449. [Google Scholar]
- Chen, X.M.; Han, B.; Wang, L.L.; Fu, X.Y. Analysis on the Correlation Between Total Phosphorus, Water Temperature, Mineralization and Chlorophyll-a in Qinghai Lake, China. J. Agr. Environ. Sci. 2013, 32, 333–337. [Google Scholar]
- Qi, M.M.; Yao, X.J.; Li, X.F.; Duan, H.Y.; Gao, Y.P.; Liu, J. Spatial-temporal characteristics of ice phenology of Qinghai Lake from 2000 to 2016. J. Geogr. Sci. 2019, 29, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Z.; Wang, G.Y.; Li, W.J.; Zeng, Q.Z.; Jin, D.H.; Wang, L.H. Lake ice and its remote sensing monitoring in the Tibetan Plateau. J. Glac. Geocryol. 1995, 17, 241–246. [Google Scholar]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Vermote, E.; Wolfe, R. MOD09GQ MODIS/Terra Surface Reflectance Daily L2G Global 250 m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MOD09GQ.006 (accessed on 6 July 2020).
- Tao, A.Q. Research on the Variation of Namco Lake ice by Passive Microwave Remote Sensing. Master’s Thesis, Nanjing University, Nanjing, China, 2014. [Google Scholar]
- Yin, Q.J.; Yang, Y.L. Remote sensing monitoring of Qinghai Lake based on EOS/MODIS data. J. Lake Sci. 2005, 17, 356–360. [Google Scholar]
- Reed, B.; Budde, M.; Spencer, P.; Eiller, A.E. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 2009, 113, 1443–1452. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607–608, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Donk, E.V.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.E.; Vavrus, S.J.; Foley, J.A.; Fisher, V.A.; Wynne, R.H.; Lenters, J.D. Global patterns of lake ice phenology and climate: Model simulations and observations. J. Geophys. Res. Atmos. 1998, 103, 28825–28837. [Google Scholar] [CrossRef] [Green Version]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Guo, L.N.; Wu, Y.H.; Zheng, H.X.; Zhang, B. Uncertainty and variation of remotely sensed lake cie phenology across the Tibetan Plateau. Remote Sens. 2018, 10, 1534–1551. [Google Scholar] [CrossRef] [Green Version]
- Lei, R.B.; Li, Z.J.; Zhang, Z.H.; Chen, Y.F. Comparisons of thermodynamic processes between lake ice and landfast sea ice around Zhongshan Station, East Antarctica. Chin. J. Pol. Res. 2011, 23, 289–298. [Google Scholar]
- Weber, H.; Riffler, M.; Nõges, T.; Wunderle, S. Lake ice phenology from AVHRR data for European lakes: An automated two-step extraction method. Remote Sens. Environ. 2016, 174, 329–340. [Google Scholar] [CrossRef]
- Duan, A.M.; Xiao, Z.X.; Wu, G.X. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014. Clim. Chang. Res. 2016, 12, 374–381. [Google Scholar]
- Krakow, B.D. Introduction to Lake Science, 1st ed.; The Commercial Press: Beijing, China, 1963; pp. 315–360. [Google Scholar]
- Beyene, M.T.; Jain, S. Freezing degree-day thresholds and Lake ice-out dates: Understanding the role of El Niño conditions. Int. J. Climatol. 2018, 38, 4335–4344. [Google Scholar] [CrossRef]
- Qin, D.H. Introduction to Cryospheric Science, 1st ed.; Science Press: Beijing, China, 2017; pp. 114–115. [Google Scholar]
- Oveisy, A.; Boegman, L.; Imberger, J. One-dimensional simulation of lake and ice dynamics during winter. J. Limnol. 2014, 73, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng. 2015, 42, 696–703. [Google Scholar] [CrossRef]
Bands | Landsat MSS | Landsat TM | Landsat OLI | Terra MODIS | NOAA AVHRR |
---|---|---|---|---|---|
Blue | / | B1(0.45~0.52) | B2(0.45~0.51) | B3(0.46~0.48) | / |
Green | B4(0.50~0.60) | B2(0.52~0.60) | B3(0.53~0.59) | B4(0.55~0.57) | / |
Red | B5(0.60~0.70) | B3(0.63~0.69) | B4(0.64~0.67) | B1(0.62~0.67) | B1(0.58~0.68) |
NIR | B6/B7(0.7~1.1) | B4(0.76~0.90) | B5(0.85~0.88) | B2(0.84~0.88) | B2(0.725~1.1) |
SWIR-1 | / | B5(1.55~1.75) | B6(1.57~1.65) | B5(1.23~1.25) | / |
SWIR-2 | / | B7(2.08~2.35) | B7(2.11~2.29) | B6(1.63~1.65) | / |
TIR | / | B6(10.4~12.5) | B10(10.60~11.19) B11(11.50~12.51) | B7(2.11~2.16) | B4(10.30~11.30) B5(11.50~12.50) |
Resolution | 60 m | 30 m | 30 m | 250 m/daily | 1.1 km/daily |
Purpose | Extract boundary and determine the lake ice recognition threshold (e.g., a and b) | Accuracy verification | Extracting LIP |
Lake Ice Phenology | Abbreviation | Definition | Reference |
---|---|---|---|
freeze-up start | FUS | Lake ice area ≥10% of the lake area | [38] |
freeze-up end | FUE | Lake ice area ≥90% of the lake area | |
break-up start | BUS | Lake ice area ≤90% of the lake area | |
break-up end | BUE | Lake ice area ≤10% of the lake area | |
ice coverage duration | ICD | ICD = BUE–FUS | This study |
complete freeze duration | CFD | CFD = BUS–FUE | [1] |
freeze duration | FD | FD = BUE–FUE | [38] |
ablation duration | AD | AD = BUE–BUS | This study |
Year | FUS | FUE | BUS | BUE | ICD | AD | FD | CFD |
---|---|---|---|---|---|---|---|---|
2000/2001 | 4 | −3 | 2 | 1 | −3 | −1 | 4 | 5 |
2001/2002 | 3 | −2 | 2 | 0 | −3 | −2 | 2 | 4 |
2002/2003 | 3 | −5 | 3 | 3 | 0 | 0 | 8 | 8 |
2003/2004 | −1 | −4 | 1 | 1 | 2 | 0 | 5 | 5 |
2004/2005 | 0 | −3 | −3 | 0 | 0 | 3 | 3 | 0 |
2005/2006 | 3 | −1 | 3 | −4 | −7 | −7 | −3 | 4 |
2006/2007 | 3 | −1 | 2 | 0 | −3 | −2 | 1 | 3 |
2007/2008 | 1 | −1 | 2 | 2 | 1 | 0 | 3 | 3 |
2008/2009 | 4 | −2 | 3 | −3 | −7 | −6 | −1 | 5 |
2009/2010 | 2 | −1 | 1 | 3 | 1 | 2 | 4 | 2 |
2010/2011 | 2 | −1 | 8 | 1 | −1 | −7 | 2 | 9 |
2011/2012 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 |
2012/2013 | 2 | −3 | 0 | 0 | −2 | 0 | 3 | 3 |
2013/2014 | 4 | −7 | 5 | 0 | −4 | −5 | 7 | 12 |
2014/2015 | 4 | −2 | 2 | −2 | −6 | −4 | 0 | 4 |
2015/2016 | 2 | −1 | 0 | 0 | −2 | 0 | 1 | 1 |
2016/2017 | 3 | −5 | 0 | 0 | −3 | 0 | 5 | 5 |
2017/2018 | 3 | −1 | 0 | 0 | −3 | 0 | 1 | 1 |
MAE | 2.66 | 2.38 | 2.05 | 1.11 | 2.66 | 2.16 | 2.94 | 4.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.; Liu, S.; Yao, X.; Xie, F.; Gao, Y. Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sens. 2020, 12, 2217. https://doi.org/10.3390/rs12142217
Qi M, Liu S, Yao X, Xie F, Gao Y. Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sensing. 2020; 12(14):2217. https://doi.org/10.3390/rs12142217
Chicago/Turabian StyleQi, Miaomiao, Shiyin Liu, Xiaojun Yao, Fuming Xie, and Yongpeng Gao. 2020. "Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine" Remote Sensing 12, no. 14: 2217. https://doi.org/10.3390/rs12142217
APA StyleQi, M., Liu, S., Yao, X., Xie, F., & Gao, Y. (2020). Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sensing, 12(14), 2217. https://doi.org/10.3390/rs12142217