Wishart-Based Adaptive Temporal Filtering of Polarimetric SAR Imagery
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.S. Digital enhancement of noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Grunes, M.R.; de Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2363–2373. [Google Scholar]
- Oliver, C.; Quegan, S. Understanding Sythetic Aperture Radar Images; SciTech: West Perth, Australia, 2004. [Google Scholar]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtman, J.C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, 4, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Vasile, G.; Trouvé, E.; Lee, J.S.; Buzuloiu, V. Intensity-Driven-Adaptive-Neighborhood Technique for Polarimetric and Interferometric SAR Parameters Estimation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1609–1621. [Google Scholar] [CrossRef] [Green Version]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Deledalle, C.A.; Denis, L.; Poggi, G.; Tupin, F.; Verdoliva, L. Exploiting patch similarity for SAR image processing: The nonlocal paradigm. IEEE Signal Process. Mag. 2014, 31, 69–78. [Google Scholar] [CrossRef]
- Deledalle, C.; Denis, L.; Tupin, F.; Reigber, A.; Jäger, M. NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef] [Green Version]
- Cremer, F.; Urbazaev, M.; Berger, C.; Mahecha, M.D.; Schmullius, C.; Thiel, C. An Image Transform Based on Temporal Decomposition. IEEE Geosci. Remote Sens. Lett. 2018, 15, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Lv, X.; Li, R. A Speckle Filtering Method Based on Hypothesis Testing for Time-Series SAR Images. Remote Sens. 2018, 10, 1383. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.A.; Skriver, H.; Conradsen, K. The Loewner Order and Direction of Detected Change in Sentinel-1 and Radarsat-2 Data. IEEE Geosci. Remote Sens. Lett. (Early Access June 2019) 2020, 17, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.A. Fast matrix based computation of eigenvalues and the Loewner order in PolSAR data. IEEE Geosci. Remote Sens. Lett. (Early Access) 2019, 1–5. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Skriver, H.; Conradsen, K. Statistical Analysis of Changes in Sentinel-1 Time Series on the Google Earth Engine. Remote Sens. 2019, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Conradsen, K.; Nielsen, A.A.; Schou, J.; Skriver, H. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Conradsen, K.; Nielsen, A.A.; Skriver, H. Determining the points of change in time series of polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3007–3024. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.A.; Conradsen, K.; Skriver, H.; Canty, M.J. Visualization of and software for omnibus test based change detected in a time series of polarimetric SAR data. Can. J. Remote Sens. 2017, 43, 582–592. [Google Scholar] [CrossRef]
- Conradsen, K.; Nielsen, A.A.; Skriver, H. Omnibus change detection in block diagonal covariance matrix PolSAR data from Sentinel-1 and Radarsat-2. In preparation.
- Akbari, V.; Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T.; Moser, G.; Serpico, S.B. Polarimetric SAR change detection with the complex Hotelling-Lawley trace statistic. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3953–3966. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Tau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification, and Change Detection in Remote Sensing, With Algorithms for ENVI/IDL and Python, 4th ed.; Taylor and Francis: Boca Raton, FL, USA, 2019. [Google Scholar]
- Quegan, S.; Yu, J.J. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar] [CrossRef]
- Luukko, P.; Helske, J.; Räsänen, E. Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Comput. Stat. 2015, 31, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Yuhas, R.; Goetz, A.; Boardman, J. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop; NASA: Washington, DC, USA, 1992; pp. 147–149. [Google Scholar]
- Anfinsen, S.; Doulgeris, A.; Eltoft, T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3795–3809. [Google Scholar] [CrossRef]
Scene (Platform) | Band | Lee [2] | Gamma [3] | Frost [4] | IDAN [5] | EMD [9] | Quegan [21] | ATSF |
---|---|---|---|---|---|---|---|---|
Hambach (S1) | 2.52 | 3.49 | 4.52 | 2.12 | 1.53 | −0.04 | 3.33 | |
2.77 | 3.27 | 4.55 | 2.25 | 1.52 | 0.00 | 3.06 | ||
Bonn (RS2) | 3.04 | 4.40 | 4.34 | 1.86 | 2.88 | 2.77 | ||
2.30 | 4.73 | 3.60 | 1.12 | 2.33 | 2.58 | |||
3.14 | 4.31 | 4.65 | 1.90 | 2.04 | 2.21 | |||
Frankfurt (S1) | 1.42 | 2.70 | 3.01 | 0.91 | 2.47 | −0.07 | 2.64 | |
1.79 | 2.95 | 3.41 | 1.34 | 3.41 | −0.0 | 2.02 |
Scene (Platform) | Lee [2] | Gamma [3] | Frost [4] | IDAN [5] | EMD [9] | Quegan [21] | ATSF |
---|---|---|---|---|---|---|---|
Hambach (S1) | 2.80 | 2.25 | 2.57 | 3.97 | 6.31 | 129.8 | 4.44 |
Bonn (RS2) | 5.26 | 3.61 | 5.98 | 7.86 | 10.38 | 10.13 | |
Frankfurt (S1) | 3.23 | 2.85 | 3.10 | 4.85 | 8.01 | 134.3 | 7.27 |
Filter | Fidelity | Resolution | Remarks |
---|---|---|---|
Spatial | Good | Moderate | |
Quegan | Poor | Good | Recent details averaged away |
EMD | Moderate | Good | Recent details averaged away |
ATSF | Moderate | Good | Requires time series |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canty, M.J.; Nielsen, A.A.; Skriver, H.; Conradsen, K. Wishart-Based Adaptive Temporal Filtering of Polarimetric SAR Imagery. Remote Sens. 2020, 12, 2454. https://doi.org/10.3390/rs12152454
Canty MJ, Nielsen AA, Skriver H, Conradsen K. Wishart-Based Adaptive Temporal Filtering of Polarimetric SAR Imagery. Remote Sensing. 2020; 12(15):2454. https://doi.org/10.3390/rs12152454
Chicago/Turabian StyleCanty, Morton J., Allan A. Nielsen, Henning Skriver, and Knut Conradsen. 2020. "Wishart-Based Adaptive Temporal Filtering of Polarimetric SAR Imagery" Remote Sensing 12, no. 15: 2454. https://doi.org/10.3390/rs12152454
APA StyleCanty, M. J., Nielsen, A. A., Skriver, H., & Conradsen, K. (2020). Wishart-Based Adaptive Temporal Filtering of Polarimetric SAR Imagery. Remote Sensing, 12(15), 2454. https://doi.org/10.3390/rs12152454